Elliptic curves

Problem sheet 2

November 12, 2009

1 (easy) Assume that $\operatorname{char}(k) \neq 2$. For any polynomial $f(x)$ find the singular points
(a) of the affine curve C given by $y^{2}=f(x)$,
(b) of the projective closure of C.
(c) Now let $\operatorname{char}(k)=2$. When is the affine curve $y^{2}+y=f(x)$ singular?

2 (a) (easy) Prove that no irreducible plane curve of degree 4 has three collinear singular points.
(b) (harder) Can you construct an irreducible curve of degree 4 with two singular points?

3 Find the dimension of the space of cubics that are singular at a given point P.
4 (easy) For the following elliptic curves $y^{2}+x y=x^{3}-2 x^{2}+x, y^{2}+x y=x^{3}+x^{2}+x, y^{2}+y=x^{3}, y^{2}+3 x y=x^{3}+x$
(a) find the short Weierstrass form, (b) hence find the disriminant, and (c) find Q-points of order 2.

5 (easy) In lectures we did a linear change of coordinates over \mathbf{Q} to reduce the Fermat cubic $x^{3}+y^{3}=z^{3}$ to the Weierstrass form $y^{2}=x^{3}-27 / 4$. Let E be the elliptic curve in this Weierstrass form with the point at infinity as the neutral element of the group law, us usual. Find the points of E that correspond to the three obvious Q-points on the Fermat cubic under this isomorphism. Use addition and duplication formulas to determine the subgroup of $E(\mathbf{Q})$ generated by them.

6 Write addition and duplication formulas for the curve $y^{2}+y=x^{3}-x$ (warning: it is not a short Weierstarss form, so you can't apply the formulas from lectures as they are). Using these formulas find $n P$, where $P=(0,0)$ and $n=1,2,3,4,5,6$.
$\mathbf{7}$ (a) (easy) Let $G=\mathbf{Z} / 2$. Let M be the trivial G-module $\mathbf{Z}, \mathbf{Z} / 2, \mathbf{Z} / 3, \mathbf{Z} / 4$. Working with the definition from lectures compute $H^{1}(G, M)$.
(b) (harder) Let $G=\mathbf{Z} / 2$ be the Galois group of $\mathbf{Q}(\sqrt{d}) / \mathbf{Q}$. Compute $H^{1}(G, \mathbf{Q}(\sqrt{d}))$.

