Elliptic curves

Problem sheet 2

May 1, 2009

1 Consider the plane curve C_{a} given by $x^{3}+y^{3}+z^{3}=a x y z$, where $a \in k$.
(a) Determine the values of a for which C_{a} is singular, and find the singular points. (Don't forget that char (k) can be 2 or 3 .)
(b) Find the inflection points of C_{a}.
(c) Assuming that char $(k) \neq 2$ or 3 , find the Weierstrass form of C_{0}.

2 Find the inflection points of the curves
(a) $y z^{2}=x^{3}$
(b) $y z^{2}=x^{3}-x z^{2}$

3 Let C be the elliptic curve $y^{2}=x^{3}+4 x$ over \mathbf{Q}, and $P=(2,4)$. Find the coordinates of the points $n P$ for all $n \in \mathbf{Z}$.

4 Prove that the equation $y^{2}+y=x^{3}-x^{2}$ defines a non-singular curve $E \subset \mathbb{P}_{\mathbf{Q}}^{2}$. Determine all the points $P=(x, y)$ in $E(\mathbf{Q})$ such that $x, y \in \mathbf{Z},|x| \leq 1,|y| \leq 1$, and the subgroup of $E(\mathbf{Q})$ generated by them.

5 (a) Determine the primes p such that $y^{2}+y=x^{3}-x$ defines a non-singular curve over a field of characteristic p. Check that 2 and 3 are among these primes.
(b) Let E be the elliptic curve with equation $y^{2}+y=x^{3}-x$ over the finite field \mathbf{F}_{p} with p elements, where $p=2$ or $p=3$. Find the group of points $E\left(\mathbf{F}_{p}\right)$ in these cases.
(c) Can the group $\mathbf{Z} \times \mathbf{Z} / 6 \times \mathbf{Z} / 8 \times \mathbf{Z} / 10$ be realized as the group of points $E(k)$ for some elliptic curve over some field k ?

