Elliptic curves

Problem sheet 2

May 1, 2009

1 Consider the plane curve C_a given by $x^3 + y^3 + z^3 = axyz$, where $a \in k$.

(a) Determine the values of a for which C_a is singular, and find the singular points.

(Don't forget that char(k) can be 2 or 3.)

(b) Find the inflection points of C_a .

(c) Assuming that $char(k) \neq 2$ or 3, find the Weierstrass form of C_0 .

2 Find the inflection points of the curves

- (a) $yz^2 = x^3$
- (b) $yz^2 = x^3 xz^2$

3 Let C be the elliptic curve $y^2 = x^3 + 4x$ over **Q**, and P = (2, 4). Find the coordinates of the points nP for all $n \in \mathbf{Z}$.

4 Prove that the equation $y^2 + y = x^3 - x^2$ defines a non-singular curve $E \subset \mathbb{P}^2_{\mathbf{Q}}$. Determine all the points P = (x, y) in $E(\mathbf{Q})$ such that $x, y \in \mathbf{Z}, |x| \leq 1, |y| \leq 1$, and the subgroup of $E(\mathbf{Q})$ generated by them.

5 (a) Determine the primes p such that $y^2 + y = x^3 - x$ defines a non-singular curve over a field of characteristic p. Check that 2 and 3 are among these primes.

(b) Let *E* be the elliptic curve with equation $y^2 + y = x^3 - x$ over the finite field \mathbf{F}_p with *p* elements, where p = 2 or p = 3. Find the group of points $E(\mathbf{F}_p)$ in these cases.

(c) Can the group $\mathbf{Z} \times \mathbf{Z}/6 \times \mathbf{Z}/8 \times \mathbf{Z}/10$ be realized as the group of points E(k) for some elliptic curve over some field k?