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1. (a) The multiplicativity is clear, so we just need to check that N(OK) ⊂
Z which is an issue when d is 1 mod 4. But then any element of OK is either
in Z[

√
d], or is one half of n + m

√
d, where n and m are both odd. Then

n2 − dm2 is 0 mod 4, so it’s OK.

(b) This is clear by taking norms.

(c) Let’s first do the easy case when d is not 1 mod 4. Then every element
of O∗K can be written as n +m

√
d and we need to find all pairs of integers

n, m for which (n +m
√
d)(a + b

√
d) = 1 for some a, b ∈ Z. Taking norms

we get
(n2 + |d|m2)(a2 + |d|b2) = 1,

which implies n2 + |d|m2 = 1. If d < −1, then m = 0 and n = ±1, so
O∗K = {±1}. If d = −1 we see that O

∗
K = {±1,±i}.

If d is 1 mod 4 we know that any element of OK is as before or one half
of n+m

√
d. So we need to solve the equation

(n2 + |d|m2)(a2 + |d|b2) = 4.

The factors can be 1, 2 or 4. We already listed all solutions with n2+ |d|m2 =
1. Note that |d| is 3 mod 4, so n2 + |d|m2 = 2 has no solutions. Finally, the
solutions of n2 + |d|m2 = 4 are (±2, 0), or (±1,±1) if d = −3. Therefore,
for d = −3 the group O∗K is cyclic of order 6 formed by the 6th roots of 1
in C, for d = −1 the group O∗K is the group of 4th roots of 1, and so is the
product of two groups of order 2, and O∗K = {±1} in all other cases.

(d) is an application of (b).

2. (a) This element is clearly non-zero, and not a unit by Q1. If it is
a product of two non-units, then its norm is a product of two integers of
modulus greater than 1, a contradiction.
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(b) For n = 0 and n = 6 we can use (a). A calculation as in Q1 shows
that OK has no elements of norm 2, 3 or 7. Since the norm of an element of
OK which is not a unit and not an irreducible, is a product of two integers
> 1 which are norms, we see that for n = 1, 2, 3, 4 the element n +

√
−5 is

irreducible. It is clear that 5 +
√
−5 =

√
−5(1−

√
−5) is not irreducible. It

remains to understand 7 +
√
−5 whose norm is 54. So let’s find all elements

of norm 6 and 9. Apart from ±3, which is useless, we have ±1 ±
√
−5 and

±2±
√
−5. A little experimentation shows that

7 +
√
−5 = (1 +

√
−5)(2−

√
−5),

so this one is certainly not irreducible.

3. (a) If y is even, then the LHS is congruent to 2 mod 4, then the RHS
is even, then the RHS is congruent to 0 mod 4. Contradiction.
(b) If a+ b

√
−2 is a common divisor of y+

√
−2 and y−

√
−2, it divides

their sum and difference, that is, 2y and 2
√
−2. On taking norms we get

a2 + 2b2|4y2 and a2 + 2b2|8. By (a) it follows that a2 + 2b2|4, hence (a, b) =
(±1, 0) or (a, b) = (±2, 0) or (a, b) = (0,±1). The first solution corresponds
to units. Since y is odd, y +

√
−2 is not divisible by

√
−2, neither is it

divisible by 2. Thus the second and the third solutions do not lead to divisors
of y +

√
−2. Hence y +

√
−2 and y −

√
−2 are coprime.

(c) Comparing the coefficients at
√
−2 in y +

√
−2 = (c + d

√
−2)3 one

gets 1 = d(3c2 − 2d2). The rest is immediate.

4. We note that p is odd and coprime with d, so that p can only be split
or inert. If p is a norm, then p = z.z, for some z ∈ OK . The ideal I = (z)
contains (p) and is different from the whole ring. Since the norm of z is p, and
the norm of p is p2, we have z 6∈ (p). Hence I 6= (p). By the classifications
of prime ideals in OK we know that I must be a prime ideal over p, which
is distinct from (p). Therefore p is split. This is known to be equivalent to
(d
p
) = 1.

A more direct proof is this. We have p = N(z), for some z ∈ OK . Then
2z can be written as a+

√
db with integer a and b. Then 4p = a2−db2. Since

p 6= 2 and (p, d) = 1, it follows that a and b are not divisible by p. Reducing
modulo p we conclude that d is a square modulo p.

The converse. If p is split, then (p) = (p, a+
√
d)(p, a−

√
d). Let z be a

generator of the first of these ideals, then z generates the second one. Hence
(p) = (N(z)) as ideals in OK . This implies p = u.N(z), where u ∈ O∗K . Since
p and N(z) are positive integers, u = 1. Thus p is a norm.
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