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1. (a) In the first case any additive subgroup of Q generated by finitely
many elements will have only finitely many primes in denominators. This is
also true in the second case. In the third case any finitely generated subgroup
of Q/Z is finite, and so is never equal to the whole group.
(b) For a factor group of G this is obvious: it is generated by the images

of generators of G. Let M be a f.g. abelian group, and let N ⊂ M be a
subgroup. There exists a surjective homomorphism f : Zn→M for some n.
By a theorem from lectures f−1(N) is isomorphic to Zr for some r. Then N
is generated by the images of the standard basis vectors of Zr.

2. The discriminant of the polynomial is −11, so K = Q(
√
−11). Since

−11 is 1 modulo 4, p = 2 is not ramified, so the only prime ramified in K is
11. The prime 2 is inert since −11 is 5 modulo 8. Gauss reciprocity implies
that an odd p 6= 11 is split if and only if p is a square modulo 11, that is, 1,
3, 4, 5 or 9 modulo 11.
p = 47 is 3 modulo 11, so it is split in K. The minimal polynomial of

δ = 1
2
(1 +

√
−11) is t2 − t + 3. Let’s solve it modulo 47 using the standard

formula. −11 is 62 modulo 47; note also that 1
2
is 24. Hence the solutions

are 27 and 21. (It’s good to check here that 21+27 is 1 mod 47, and 21× 27
is 3 mod 47.) Therefore the ideals are (47, δ − 27) and (47, δ − 21).
There is a quicker way to find these ideals. Let d be a square-free integer

congruent to 1 modulo 4, δ = 1
2
(1 +

√
d), and let p 6= 2 be an odd prime

that splits in Q(
√
d). Let A be an integer such that t2 − t + 1

4
(1 − d) =

(t− A)(t− 1 + A) modulo p. I claim that we have the equality of ideals

(p, δ − A) = (p,
√
d− a),

where a is an integer such that a2 ≡ d mod p. In fact, we can take a = 2A−1.
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Since
√
d = 2δ − 1 the displayed equality becomes

(p, δ − A) = (p, 2(δ − A)).

But δ − A ≡ (p+ 1)/2× 2(δ − A) mod p, so we are done.
Going back to the question we obtain (47, δ− 27) = (47,

√
−11− 6), and

similarly (47, δ − 21) = (47,
√
−11 + 6). Please bear in mind that this will

only work for odd primes, and for 2 you will need the general formulae with
δ given in lectures.

3. (a) If d is 2 or 3 mod 4, then 2 is ramified. If d is 1 mod 4, then
d 6= ±1, so there is a odd prime p dividing d, which is ramified in Q(

√
d).

(b) Let d be the product of all odd primes in S, and let d∗ = ±d, where
the sign is chosen so that d∗ ≡ 1 mod 4. If S = {2} define d∗ = 1. If S does
not contain 2, then Q(

√
d∗) does the job, and this is the only quadratic field

ramified exactly at the primes of S. If S contains 2, then we have Q(
√
−d∗),

Q(
√
2d∗), Q(

√
−2d∗).

4. The linear span of 3
√
d and 3

√
d
2
; the linear span of

√
a,
√
b and

√
ab.

The calculation is straightforward.

5. Write a = x + y
√
d, then x − y

√
d = (z1 + z2

√
d)(x + y

√
d) gives a

system of two linear equations in x and y with zero determinant.

6. −5 ≡ 3 mod 4, so OK = Z[
√
−5]. If I = (a + b

√
−5), a, b ∈ Z, then

a2 + 5b2 divides 4 and 6, so an easy calculation shows that a + b
√
−5 is a

unit, hence I = OK . But I is a prime ideal over 2, so I = OK is impossible.
Therefore, I is not principal. We have I2 = 2OK which is clearly principal.

7. Consider d = −1, −2 and −3, and do an easy calculation using Gauss
reciprocity. In the last case −3 ≡ 1 mod 4, and the norm looks like this:

N(a+ bδ) = a2 + ab+ b2(1− d)/4 = a2 + ab+ b2.

2


