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Summary. We present a review of the Tangled Nature model. The model is de-
veloped to focus on the effect of evolution and multiple interactions on ecological
and evolutionary observables. The model is individual based and ecological struc-
tures, such as species, are emergent quantities. The dynamics consists of a simplistic
mutation prone multiplication in which the probability of producing an offspring is
determined by the occupancy in genotype space. The macroscopic long time dynam-
ics is intermittent and exhibit a slow decrease in the macroscopic extinction rate.
Ecological quantities such as the Species Abundance Distribution and the Species
Area Relation compare qualitatively well with observations, as does the relation
between interaction and diversity. The effect of correlations between parents and
mutants has been studied as has the effect of a conserved resource.
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1.1 Introduction

Can we establish a general framework for the description of ecosystems consist-
ing of many interacting and evolving organisms? We seek a description which
will enable us to bridge the span from microscopic to macroscopic time. The
model is to be defined at the level of individuals so that ecological and taxo-
nomic structures emerge as a result of the dynamics. The description should
be logically simple and cover broad classes of observed facts.

Much work is done on the regime of strongly separated timescales, using
e.g. ‘adaptive dynamics’ [1] or game theory [2, 3]. One can incorporate evolu-
tion by considering that evolutionary dynamics occurs much more slowly than
ecological dynamics, so that at all times the system is in an equilibria (e.g. the
Webworld model, [4][5]). However, the timescales may overlap when long-lived
species interact with short-lived, and additionally there is evidence [6] that
the evolutionary dynamics can affect ecological stability, and vice versa. These
are not insurmountable problems, e.g. the ‘Streetcar theory of evolution’ [7]
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addresses this problem, but assumes that the system equilibriates between
mutations. Such models are essential to understand individual cases but we
wish to also address the broad picture. Individual-based models [8] are an
appropriate tool to combine fast and usually predictable ecological processes
with the highly stochastic evolutionary behaviour in a controlled and realistic
manner. Our model falls into the category (e) in DeAngelis and Mooij’s clas-
sification system [9]: “Genetic Variability and evolution”, although arguably
the most important feature gained from an individual based approach at such
a simple level is ‘demographic stochasticity’, that is, representing the inher-
ent noise in the population in an accurate way. Our approach is inspired by
statistical mechanics and complex systems theory, looking for overall general
structures instead of specific details of the organisms comprising the system.

Our model consists of asexually reproducing individuals all subject to the
same killing probability (per time unit). The multitude of interactions between
co-existing organisms is included through a weight function which determines
the reproduction rate of individuals. Our philosophy is that a simple statistical
model may help to identify the important mechanisms behind macroscopic
observed ecological measures.

1.2 A simple introductory model

The Tangled Nature model is an individual based model of evolutionary ecol-
ogy. We give a brief outline of the model here, with more details available in
[10, 11, 12, 13]. This version of the model is an attempt to address systems
with many interactions between species in the simplest possible way, with de-
tail and realism added in stages. We start with the bare model, to which we
will add spatial effects and consider more realistic forms of the fitness.

1.2.1 Uncorrelated non-spatial model

An individual is represented by a vector Sα = (Sα1 , S
α
2 , ..., S

α
L) in the genotype

space S, where the ‘genes’ Sαi may take the values ±1, i.e. Sα denotes a corner
of the L-dimensional hypercube. In the present paper we take L = 20, giving
a reasonable sized space (over a million genotypes) whilst not being compu-
tationally prohibitive. We think of the genotype space S as containing all
possible ways of combining the genes into genome sequences. Many sequences
may not correspond to viable organisms. The viability of a genotype is de-
termined by the evolutionary dynamics. All possible sequences are available
for evolution to select from. We will see that a natural species concept arises
from the dynamics, in which each species is separated in genotype space.

The system consists of N(t) individuals, and a time step consists of one
annihilation attempt followed by one reproduction attempt. A reproduction
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event is successful with varying probability poff , defined below, and an anni-
hilation attempt is successful with constant probability pkill

1. One generation
consists of N(t)/pkill time steps, which is the time taken (on average) to
kill all currently living individuals. The dynamics lead to an (approximately)
constant population size, on short timescales.

The ability of an individual to reproduce, poff , is ultimately controlled by
a weight function H(Sα, t):

H(Sα, t) =
c

N(t)

(∑

S∈S
J(Sα,S)n(S, t)

)
− µN(t), (1.1)

where c controls the strength of interaction (large c means large interaction),
N(t) is the total number of individuals at time t, the sum is over the 2L

locations in S and n(S, t) is the number of individuals (or occupancy) at
position S. Two positions Sa and Sb in genome space are coupled with fixed
but random strength J(Sa,Sb) (= Jab in matrix notation) which can be either
positive, negative or zero. This link exists (in both directions) with probability
θ (= 0.2 in Sect. 1.2.1), i.e. θ is simply the probability that any two sites are
interacting. If the link exists, then J(Sa,Sb) and J(Sb,Sa) are both generated
random and independent ∈ (−1, 1). To study the effects of interactions between
species, we exclude self-interaction so that J(Sa,Sa) = 0.

The conditions of the physical environment are simplistically described by
the term µN(t) in Eq. (1.1), where µ determines the average sustainable total
population size, i.e. the carrying capacity of the environment. An increase in
µ corresponds to harsher physical conditions. We use asexual reproduction
consisting of one individual being replaced by two copies mimicking the pro-
cess of binary fission seen in bacteria. Successful reproduction occurs with a
probability per unit time given by

poff (Sα, t) =
exp[H(Sα, t)]

1 + exp[H(Sα, t)]
∈ [0, 1]. (1.2)

This function is chosen for convenience, the specific functional form having
no effect on the dynamics of the model - any smoothly varying function that
maps H(Sα, t) to the interval [0, 1] will do. We allow for mutations in the
following way: with probability pmut per gene we perform a change of sign
Sαi → −Sαi during reproduction.

Eq. (1.1) can be understood as the average interaction for an individual
with all others, with a normalisation condition given by the µN term, which
determines the total population and controls fluctuations. The interaction
strength c gives the magnitude of the total interactions, regardless of density;
i.e. we choose to represent systems in which the population size has saturated2.

1The restriction of constant killing probability can be shown to be qualitatively
irrelevant in this model, as we do not include individual aging.

2One could easily consider the case of density dependent interactions by allowing
c = c(N).
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We can tune the effective ‘resource’ density (and hence population density)
with the parameters c and µ. The total population remains approximately
constant over ecological timescales (and actually increases over evolutionary
timescales). Setting self-interaction to zero is equivalent to considering that
all types interact equally with their own species (one can rescale pkill and µ
to accommodate this); we relax this constraint in Sect. 1.2.3.

Initially, we place N(0) = 500 individuals with randomly chosen geno-
type. Their initial location in genotype space does not affect the nature of
the dynamics. A two-phase switching dynamic is seen, consisting of long peri-
ods of relatively stable configurations (quasi-Evolutionary Stable Strategies or
q-ESSs) (Fig. 1.1) interrupted by brief spells of reorganisation of occupancy
called transitions. Transition periods are terminated when a new q-ESS is
found, as discussed in [10]. A ‘species’ can be well defined as the highly oc-
cupied genotype points called ‘wildtypes’, which are separated in genotype
space. Each wildtype is surrounded by a ‘cloud’ of mutant genotypes with low
occupancy. Thus we can take a natural definition of diversity: the number of
wildtypes in the system.

The q-ESS themselves consist of a number of wildtype species, which are
ecologically stable and stable to mutations from the neighbouring genotype
space. The absolute stability of a q-ESS depends on both the stability against
invasion by mutants, and against ecological ‘accidents’ such as the extinction
of a keystone species. The two cannot be separated in our model, as, for
example, the probability of an accident eliminating a wildtype will depend on
the interaction properties of all individuals in the system.

The observed Species Abundance Distribution is log-normal like[10] with
a log-series like tail, consistent with many observations and similar to that
found in neutral theory [14]. The log-normal portion is made up of wildtypes
species only. These have evolved so that the number of births in a given species
exactly cancels the number of deaths (and mutations). The log-series section
is made up of ‘mutant’ sub-species, that is, species who have experienced
deleterious mutations from a wildtype. They are less successful and short
lived, as their population is only supported by a constant influx of mutants
from the neighbouring wildtype.

The long term dynamics of this model are essentially the same as the
extension in Sect. 1.2.3. The stability of the q-ESS found increases slowly
with time, as does the mean total population < N(t) >. The waiting time for
extinction events (occurring at transitions) decreases with time (close to 1/t),
and the species lifetime distribution compares well with much fossil data [10].
Results which support these conclusions are presented in [15, 16] for a very
similar model but with simplified dynamics.

1.2.2 Uncorrelated spatial model

To add spatial extension the the Tangled Nature model, we consider a number
of sites on a spatial lattice, with a number of individuals in each. We now
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Fig. 1.1. q-ESS in a single run, both graphs have the same time axis. Top: Occu-
pancy of wildtype species vs. time. Horizontal lines constitute q-ESS and the changes
between q-ESS are transitions, too fast to see on this timescale. Labels are placed
only on species that survive q-ESS transitions. Bottom: A sample plot of species
existence vs time. The Genotype Label axis is not meaningfully ordered, and is in-
cluded for comparison to the correlated phenotype space model in Sect. 1.3 (Fig.
1.4).

consider that individuals interact only with other individuals at the same site,
and hence compete only locally for space via the µ term. Migration moving an
individual to a randomly chosen neighbouring lattice point and occurs with
constant probability pmove. Spatial boundaries are periodic to prevent the
complication of edge effects.

Each site on spatial lattice behaves similarly to the non-spatial model,
spending most time in a q-ESS. However, in the spatial case a small number of
migrants are present in each site. This acts as an additional pressure to enter a
transition phase, unless the site is in the same type of q-ESS as its neighbours.
This gives rise to spatial patches of q-ESS types. These patches grow and
shrink on a very slow timescale, except when the migration probability pmove
is high.

Patches form in sizes that appear to be power-law distributed, and close to
power-law Species-Area Curves are observed (Fig. 1.2). The species area curve
has a slight s-shape produced by the periodic boundary. This same shape was
found in a ‘neutral’ (non-interacting) model[17] of Durrett and Levin. In their
neutral model the z-value (the slope in the log-log plot of diversity v.s. area)
decreases with decreasing speciation rate. However, their speciation rate can
be thought of as a migration rate from an external pool as there is no genotype
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Fig. 1.2. Sample Species Area Relation (from a single run), which is very close to
a power law, with a slight S shape due to the periodic boundaries.

space. In our model with interactions and explicit genotype space, we find
that z-value decreases with increasing migration rate inside the system. This
is because mutation occurs at constant speed, therefore increasing migration
rate increases the competition faced by a new species.

In general it is logical that immigration (from outside the system) and
migration (within the system) are correlated. However, increased internal mi-
gration rate reduces the chances of mutations surviving, and so produces the
inverse effect of the immigration rate (i.e. mutation rate in models without
genotype space) of new species from outside the system. High mobility (i.e.
migration and immigration rates) for a family of species may mean better mix-
ing and so less chance for spatial segregation of species within a single family -
the standard explanation for why birds families generally have lower z-values
than land-dwelling families. Conversely, e.g. on islands, it allows species from
elsewhere to arrive, so possibly increasing diversity (as argued in [17]). Which
effect dominates will depend on the geography in question - i.e. the size of the
local groups of individuals, and the separation between them.

Magurran and Henderson [18], noted that permanent fish species have
log-normal Species Abundance Distribution whilst transient species have a
log-series distribution. Our local q-ESS has the same distribution, with a log-
normal like distribution for the wildtypes and a log-series like for mutants and
migrants. For low mutation rates and high migration rates, clearly migrants
will outnumber local mutants and we will observe the exact same distribution
near the q-ESS patch borders. In our spatial model, the distinction between
the two types is of fitness - the wildtypes with a log-normal like Species Abun-
dance Distribution are all equally fit in that they have a reproduction rate
exactly balancing the death rate; the migrants with a log-series like Species
Abundance Distribution are all less fit and rely on repopulation from an ex-
ternal pool (and, hence, are transient).

Full details for the spatial model are available in [19].
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1.2.3 Diversity and Fitness in the non-spatial model

The restriction that all species are uniform with respect to their own members
is approximately valid for many circumstances but is in general unrealistic.
We therefore introduce different values of ‘intrinsic fitness’ to each genotype,
which can be formed in many ways. The cases are considered separately for
clarity, but are easily combined.

A fitness landscape can be uncorrelated or correlated - the correlation we
choose is a type of Fujiyama landscape (because it has a single, large peak) [2]
defined as follows. One type α has a fitness of 1, and with each mutational step
away from this type we subtract ∆ (= 0.1 in simulations), down to a minimum
of 0. An uncorrelated landscape is generated with each type having a fitness
drawn uniformly from (0, 1). This results in the modified weight functions:

1: Density Dependent fitness, which is the varying interaction of an individ-
ual with its own type, defined by:

Hd(S
α, t) = H(Sα, t) +

ε

N(t)
n(Sα, t)E(Sα) (1.3)

Here, ε is the magnitude of the density dependent part of the ‘intrinsic
fitness strength’ and εE(Sα) is the intrinsic fitness of individual α. E(Sα)
is determined according to the case studied. 1(a): Uncorrelated, density
dependent intrinsic fitness landscape, 1(b): Correlated, density dependent
intrinsic fitness using a ‘Fujiyama’ landscape.

2: Density Independent fitness, defined by:

Hi(S
α, t) = H(Sα, t) + εIE(Sα) (1.4)

Here, εI is the magnitude of the density independent part of the intrinsic
fitness strength. Ei is again determined by the case studied. 2(a): Uncor-
related, density dependent intrinsic fitness landscape, 2(b): Correlated,
density dependent intrinsic fitness using a ‘Fujiyama’ landscape.

Fig. 1.3 shows the behaviour of the wildtype diversity. Cases 1(a), 1(b) and
2(b) are qualitatively the same, with a rise in density above some characteristic
interaction strength c. The density independent case produces diverse states
at much smaller values of c because only the difference in fitness needs to
be overcome; in the density dependent case, it is the absolute fitness that
provides a barrier to diversification. In the uncorrelated density independent
case, there are many species with (approximately) the same high fitness within
a couple of mutation steps. This means that, for low c, neutral drift can occur
between the numerous fit types, and for larger c interaction is the dominant
form of selection; in each case, multiple species can be supported (although
not in q-ESS for the case of drift).

Interestingly, case 1(b) allows the fittest species to be replaced at lower
interaction than for which a diverse state can be supported. However, case
2(b) allows diverse states at lower interaction than for which replacement of
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Fig. 1.3. left: c dependence of the average wildtype diversity of an evolved system, taken
for 40000 − 50000 generations and 500 runs per data point for the separate cases of density
dependent (case 1) and density independent (case 2) fitness, both on a rugged random fitness
landscape (cases (a)) and a Fujiyama landscape (cases (b)). Right: A closer look at the low-c
region, showing the qualitative similarity in D vs c for all cases except case 2(a).

a fittest type is possible. These claims can all be shown with a simple mean
field approximation of our model; see [20] for details.

1.3 Correlated non-spatial model

In the original model, mutated offspring acquired interaction properties that
were uncorrelated with those of the parent. This was unrepresentative of a
real biological system where correlations are vital to the evolutionary pro-
cess. Efforts have since been made to rectify the issue [21] but the limited
size and hypercubic geometry of the genotype space have proven to be very
restrictive. The problems were finally resolved by disregarding the hypercu-
bic geometry entirely. Correlations were then successfully incorporated so
that mutated offspring had interactions comparable with those of the par-
ent [22]. To achieve this goal we use a phenotype description of L = 16 traits,
Ta = (T a

1 ,T
a
2 , ...,T

a
L ), with each trait taking a value from the periodically

bounded range, [0, 99999]. A proportion, θ, of the entries of the greatly en-
larged interaction matrix, J(Ta,Tb) are assigned normally distributed values
that are locally correlated within the J-matrix . All other values of the re-
maining proportion of the matrix, 1−θ, are assigned zeroes which are treated
as a lack of interaction between the two relevant phenotypes. As well as being
locally correlated in value, the non-zero entries, as a set, are also distributed
with a local correlation. By this we mean the J-matrix exhibits a clustering
of non-zero entries so correlated phenotypes will interact with similar sets of
other phenotypes. The result is that given a mutation of one trait value we
have an exponential decay in the correlation between parent and offspring in-
teraction set values that is dependent upon the distance mutated in the trait
value, ∆(Tα,Tβ),

c(J(Tα,Tγ),J(Tβ ,Tγ)) = exp[−∆(Tα,Tβ)/ξ] ∈ (0, 1], (1.5)
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Here, ξ is the correlation length and, α, β and γ, indices are used to represent
individuals as opposed to, a and b, which would indicate points in phenotype
space - multiple individuals may exist with the same phenotype vector. As
phenotypes are essentially defined by their interaction sets we shall herein refer
to the correlation measure between two phenotypes as, C(Tα,Tβ) ie. as an
entry in the correlation matrix, C. The clustering of non-zero J-matrix entries
also exhibits a short range correlation length similar to (1.5). The probability
of a random phenotype, α having an interaction with another phenotype, γ
is θ but if α has a vector similar to another, β that has an interaction with
γ then this probability is elevated by virtue of the correlation (and therefore
we have clustering). Importantly, interacting uncorrelated phenotypes take
values J(Ta,Tb) and J(Tb,Ta) that are uncorrelated thus permitting any
interaction type (predator-prey, mutualistic etc.) to exist in principle. The
process with which we achieve these quantifiable correlations is quite involved
so we have elected to give an overview here whilst referring the reader to the
original paper for a fuller explanation [22].

In order to more truly represent evolution in a real ecosystem several
changes were made to the original model. These changes can best be described
via the modifications made to the weight function shown previously in (1.1),

H (Tα, t) = a1

∑
T∈T J(Tα,T)n(T, t)∑
T∈T C(Tα,T)n(T, t)

− a2

∑

T∈T
C(Tα,T)n(T, t)− a3

N (t)

R(t)
.

(1.6)
The sums are made over the points in phenotype space, T , and the occupancies
(population associated with each phenotype), n(T, t) are used to account for
the multiplicity of individuals with the same phenotype vector. We consider
here a well mixed system of constant spatial size, although spatial extent
is not explicitly considered. For clarity we reiterate at this point that the
phenotype space is a pre-defined, complete set of all possible phenotypes and
it is evolution and contingency that select the actualised phenotypes in the
evolved system. The J-matrix is similarly a pre-defined complete set of all
possible interactions for all possible phenotypes that may exist in potentia.

The correlation measure is used in the first term of the weight function to
restrict the impact of the interaction sum. It represents the fact that interac-
tions are shared amongst members of the same species. For example, a tree
may provide a volume of fruit to a solo member of a species but the provision
must be shared with reduced efficacy if there are many members. So the overall
effect of this denominator, on an individual, is to dampen its interaction sum
as a whole thus representing the effect of distributing all interaction effects
amongst the individual’s own species members. Another example could be a
wildebeest in proximity to a lion. The negative predatory effect (or predation
probability) of the single lion on that specific wildebeest is decreased if there
are many wildebeest about to select from. The interaction is damped by the
presence of other members of the individuals own species. This aspect is not
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ubiquitous in species interactions but does feature in many cases. It is less
applicable at low population densities but our system generally maintains sig-
nificant species populations even at low resource levels. Lowering the resource
tends to reduce diversity rather than distinct species populations so this limi-
tation was deemed to be acceptable. In recognition of the phenotypic variation
inherent in a species, the sum over the correlation values, C(Ta,Tb), accounts
for the fact that species members have different but similar phenotypes. This
can be seen as a species description in itself.

When referring to diversity we specifically mean the wildtype diversity
but all interaction effects from all extant phenotypes, mutants included, are
accounted for in every interaction sum. The mutant cloud itself is in fact very
sparse as we have elected to use a low mutation rate, Pmut = 0.0002. As a
consequence, the phenotype distribution is essentially a set of delta points of
high occupancy with infrequent mutants existing with low occupancy. This
makes the recognition of the wildtype diversity very simple as each species is
massively dominated by the population of the wildtype.

The second term of the weight function represents intra-specific compe-
tition and uses the same correlation measure as before. Similar but distinct
phenotypes are likely to be in competition for resources, space etc. that are
specific to their niche. The correlation measure accounts for this similarity.
The original model operated without such a term, but it was deemed essential
here to allow sufficient wildtype diversity to develop. As otherwise mutualistic
pairs of phenotypes dominate the system, competitively excluding all others.

The third term represents competition for a conserved vital resource that
all phenotypes require for survival. Any successful reproduction event pro-
duces an offspring that assumes a unit of resource from the bath, R(t). The
conservation requirement, R(t) +N(t) = constant means we have a carrying
capacity for the system as a whole. It’s functional form represents the number
of system members competing per unit of available resource.

The parameters, a1 = 0.5, a2 = 0.01, a3 = 0.2 are the selection, conspe-
cific competition and resource competition parameters respectively. These are
subjectively chosen to allow interaction controlled dynamics and a sufficient
wildtype diversity to develop. A value of θ = 0.05 is used throughout the
simulations.

1.3.1 Lifetimes and extinctions

The macroscopic dynamics of the system have similarities with the original
model as intermittency occurs but the phases of stability are not so disjoint.
Fig. 1.4 shows the evolution of the occupancy in phenotype space where phe-
notypes can be seen to drift, speciate and often go extinct. The transitions
are there to some degree as demonstrated in the accompanying plot of the
mean age of the system wildtype phenotypes. There are regular collapses of
the system where long term phenotypes go extinct and the extant set becomes
partially reset. Many phenotypes survive these transitions, however.



1 Tangled Nature: An overview 11

0

5000

10000

15000

20000

M
ea

n 
sp

ec
ie

s 
ag

e 
(g

en
s)

   
   

   
   

   
 T

ra
it 

va
ri

ab
le

0 200000 400000 600000 800000 1000000
Generational time

Fig. 1.4. The upper plot represents the time evolution of the extant phenotype
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Fig. 1.5. An example of a lifetime distribution for a low resource system. The form
is nearly a power-law with a distinct deviation. Dotted line represents a functional
power law, P (s) ∼ s−γ with exponent, γ=2.

The lifetime distribution associated with these extinctions has a near
power-law form, P (s) ∼ s−γ as can be seen in Fig. 1.5. It has often been
suggested that the such real system distributions are power laws with pro-
posed exponents around γ ' 2 but this still an open debate. Our data implies
a near power law form that is exhibited both in other models and the original
Tangled Nature model itself, [23] [24] [25] [26] (and also [27] in reference to
[28]). By increasing the resource in our system we can shift the mean lifetime



12 Laird et al.

to lower values which is a consequence of an increase in the mean population
density. This phenomenon arises as a population density increase leads to an
elevation in the rate of mutant offspring per generational time step resulting
in the system destabilising more frequently. It has recently been discovered
that species diversity may negatively correlate with average species duration
so implying a greater species turnover rate [29]. The population density and
wildtype diversity are positively correlated in our model due to the presence
of the intra-specific competition term in (1.6). As this aspect is an arguably
realistic portrayal of niches within an ecosystem we can provide agreement
that wildtype diversity does incur a greater species turnover rate.

1.3.2 Species interaction network

0 10 20 30 40 50 60 70
Diversity, D

0

2

4

6

8

10

M
ea

n 
de

gr
ee

, <
k>

Null system <k> = θ(D-1) = 0.05(D-1)

Fig. 1.6. Plot of mean degree, < k >, against wildtype diversity, D. Each point
is an ensemble average of data taken at each instance of each diversity achieved at
the resource level, R = 30000, with error bars representing the standard error. Fifty
simulation runs of a million generations each were made, so given the fluctuations
involved, a large range of diversities were repeatedly encountered. The lower line is
the mean degree of the null system < k >= θ(D − 1) = 0.05(D − 1).

The species interaction network is defined by the realised adjacency matrix
of the wildtype diversity, D. The structural formation of the network arises
from evolutionary processes occurring at the level of individuals but it has
dynamic global properties as a result of this. The evolutionary pressure to
achieve positive interactions leads to a global increase in the mean degree,
< k > of the extant species set - here the mean degree, < k > is the number
of interactions of any type a species has with other species, averaged over all
species. We can compare the evolved system to a ‘null’ one consisting of a ran-
dom species set. For this set, the connectance values will conform on average
to the value of θ, the proportion of non-zero interactions in the J-matrix. Fig.
1.6 shows the mean degree versus wildtype diversity taken at the highest re-
source level, R = 30000 (all other resource levels exhibit similar behaviour). In
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comparison to the null system mean degree, < k >θ= θ(D−1) = 0.05(D−1),
it is obvious that the network achieves a status that far exceeds this value. It is
generally unclear whether greater stability is achieved through mean degrees
that are either lower than the network percolation threshold or higher [30]
[31] [32] [33], but here the system naturally evolves towards the latter. The
mean interaction strength also increases to a positive value that is diversity-
dependent, but around one standard deviation of the normal distribution val-
ues of the null system. Our system therefore has a global response whereby it
evolves to assume networks involving greater numbers of positive interactions.
This process is strongly enhanced by mutualistic interaction types and whilst
the interactions are generally asymmetric their strengths are more positively
biased in the evolved systems.

The correlations in inheritance have an unusual effect on the degree dis-
tributions of the assumed networks. They all conform closely to exponential,
P (k)∼e−k/<k>, as opposed to the null system binomial distributions. We
attribute this degree form to the inheritance process which directs the evo-
lution of the network. Simulations performed with zero correlations lead to
networks that display enhanced mean degrees but without any deviation from
the binomial degree distribution. The correlation appears to be a necessary
requirement for these longer tailed distributions to appear.

1.4 Overview

Our focus has been on emergence and large numbers of interdependent organ-
isms. We have described a set of minimalistic models in which reproduction
probability is the only explicit phenotypical property of individuals, and is
not defined as an intrinsic property but rather determined for each type of
organism through its interaction with other extant types. Basic properties,
such as the existence and formation of separate species, and the existence of
quasi-stable states separated by periods of mutation, are emergent from the
dynamics.

In the simple model in Sect. 1.2.1, transitions between q-ESS are rare
events, even though mutations are common. On transition, all species per-
form an evolutionary random walk with an effective selection gradient due to
interactions, meaning the distance covered is much larger than predicted by
a standard random walk of equal time (i.e. the jumps resemble Levy Flights
[34]).

The Tangled Nature model, and similar approaches, should be considered
as complimentary to more detailed models such as those in adaptive dynamics,
in which ecosystems are established with many shared features with observa-
tions on real biological systems. The sort of questions which can be asked
of our model are very different. In particular, we do not intend to model a
specific situation, but to capture features common to a great many evolving
systems, such as the effect of interaction on the stability of an ecosystem, and
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the time dependence of properties such as stability, average population, the
form of interactions, etc.

By allowing evolution to select the network of interacting species from
an in potentia configuration space we are able to study issues concerning
functionality and stability. Our approach allow us to consider the network
properties of the ecosystem as collectively selected quantities.
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