
Collaborators:
Paul Anderson, Kim Christensen, Simone A di Collobiano, Matt Hall, 
Domininc Jones,  Simon Laird, Daniel Lawson, Paolo Sibani

Emergence of complex structure 
through co-evolution: 
The Tangled Nature model of evolutionary ecology   

 Henrik Jeldtoft Jensen
 Institute for Mathematical Sciences 
 &
 Department of Mathematics
 



What are we after ?

>>  Connecting micro to macro

Micro level: 
stochastic individual based dynamics always 
running at clock speed one

Macro level: 
 intermittent dynamics 
 networks, structure

Collective 
adaptation
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Motivation:
☻How far can a minimal model go?    

☻Input: mutation prone reproduction at             
             level of interacting individuals.    

☻Output: Species formation, macro dynamics, 
decreasing extinction rate + SAD, SAR, etc. 

                                             
☻Check: Trend in broad range of data.
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Phenomenology



Interaction and co-evolution

The Tangled Nature model
•  Individuals reproducing in type space

•  Your success depends on who you are amongst
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Type - S

n(S)= Number of individuals 

Type - S

n(S)= Number of individuals 



Definition
 
 Individuals      

   , where   

     and   

                                                                                      L= 3     
       Dynamics – a time step

            Annihilation
             Choose indiv. at random, remove with
             probability  
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Reproduction:

   ►  Choose indiv. at random
  ►  Determine
                                            
 

                                              

occupancy at the location    
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The coupling matrix 

Either consider           to be uncorrelated 

or to vary smoothly through type space.

J(S, S′)

J(S, S′)
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from           reproduction probability
                                            

                                 1
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      Asexual  reproduction:
               

   by two copies 

                           with probability   

                                       

Replace
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Mutations

      Mutations occur with probability

                    , i.e.
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       Time dependence 

                    Total population N(t)
    
                                

                     Diversity 

 

             Time in Generations 
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        Origin of drift?   Effect of mutation
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convex



Dynamics:  
The functional form of reproduction 
probability 

pkill

poff

pkill

poff
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Intermittency: 

                                                    
 # of transitions in window Matt Hall

1 generation = 

Non Correlated
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Intermittency at systems level:
Correlated 

Simon Laird
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Complex dynamics:
Intermittent, non-stationary

Jumping through collective adaptation space 

Transitions



Record dynamics
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Record dynamics:
                                
the record

stochastic signal 

Paolo Sibani and Peter Littlewood:      

exponentially distributed
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Record dynamics:

► Poisson process in logarithmic time 

► Mean and variance

     

►Rate of records constant as function of ln(t)

► Rate decreases 

exponentially distributed



Record dynamics:
Ratio 

remains non-zero
Cumulative Distribution (tk − tk−1)/tk−1

Paul Anderson
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Consequences of record dynamics.
  Statistics of transition times independent of

  underlying “noise mechanism”.

Evolution: 
same intermittent dynamics in micro- as in 

             macro-evolution. 

             Decreasing extinction rate. 
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Other systems
• Ants: 

         exit times 

• Earthquakes: 

         After shocks -  Omori law (?)  

• Magnetic relaxation: 

           temperature independent creep rate

• Spin glass: 

            exponential tails
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Dynamics - correlations:  
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      Dynamics - correlations:                
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The evolution of
 the correlations

I =
∑

J1,J2

P (J1, J2) log[
P (J1, J2)

P (J1)P (J2)
]
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Networks emerge  
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Simon Laird

Time evolution of
    Distribution of active coupling strengths

    Correlated
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The evolved degree distribution  
 Correlated

Simon Laird

Exponential becomes 1/k in limit of vanishing mutation rate
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The evolved connectance  
 Correlated

Simon Laird

#edges

D(D − 1)



Connectance  
4.3. Network properties CHAPTER 4.

Figure 4.11: Field data showing connectance versus diversity for a variety of eco-
logical systems. Data is taken from articles by Montoya et al [18] and Williams et
al [19] mostly representing the same ecosystems. The connectances of the original
articles have been doubled to make their measures consistent with the connectance
definition in this thesis (see text).

4.3.2 May-wigner criterion for ecosystem stability

It was a commonly held view that the stability of an ecological network was en-

hanced by increased complexity. There are many notions of complexity [73], but

here we primarily mean the connectance. The perception was that the larger num-

ber of interaction paths between species acts to dampen any natural fluctuations or

environmentally-sourced perturbations. This seemed reasonable and is intuitive if we

think of the concurrent effects of the feedback loops as being averaged out. This

intuition can be misleading though. If we consider, as an approximation, that the

interaction effects occur as random normally distributed fluctuations each identically

distributed and independent then the dampening viewpoint is inappropriate. The

volatility of these fluctuations is measured by the standard deviation of the normal

distribution. As the summed effects of multiple sources of the fluctuations leads to

a variance which is a sum of the individual variances we have an overall standard
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Coarse Grained Description

Node and Edge Model

   



Analysis approach:

Fokker-Planck
equation

Simple Mean Field 
analysis

Node model

Tangled Nature
 IBM
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Dynamical Rules

Removal:       with probability 

Duplication:   

  place edge between parent and child 

  copy existing edge with probability 

  introduce new edge with probability     

Focus only on whether a type is 
occupied or not

1/D

Pp

Pe

Pn
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Self-consistent Mean Field Degree 
Dynamics 
Resulting evolution equation for degree  distribution 

nk(t + 1) = nk(t) − nk(t)
D

+ 〈k〉nk+1 − nk

D

+ [Pe〈k〉 + Pn(D − 1 − 〈k〉)]nk−1 − nk

D

+ Pp
nk−1

D
+ (1 − Pp)

nk

D

Removed node

Adjacent node looses an edge

Adjacent gains
an edge

Daughter node

Henrik Jeldtoft Jensen                                                 Imperial College London



Mean field Degree Dynamics 

Stationary solution

with 

n(k) = n(0) exp[−k/k0]

Qualitative agreement with simulations of Node 
Model (and TaNa)

k0 →∞ as Pn → 0
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Effect of adaptation on 
connectance
Underlying type space is a binomial net - place a sub-net of size D

Some regions of this space will, due to fluctuations, locally have an 
above average conenctance. It is beneficial for the evolved 
configurations to enter into these regions  



With increasing size, D, of the adapted sub-net;  it becomes 
increasingly difficult to confine the sub-net to within the 
above average regions 

Increasing D



Effect of selection on connectance 
Consider a binomial net of size D and 
connectance C (= edge probability).

Assume that adapted sub-net is located in a region of the 
master-network in which the total number of edges E is larger 
than the global average.

Estimate this increase as
 
 E = 〈E(D,C)〉 + sσ(D,C)

= EmC + s[EmC(1 − C)]
1
2

Fluctuations 
in E

Max,i.e., Em=D(D-1)

Fraction



Effect of selection on connectance
 
The resulting estimate for the connectance, E/Em, of the 
adapted sub-net 
 

CAdap = C + s

[
C(1− C)

Em

] 1
2

= C + s

[
2C(1− C)
D(D − 1)

] 1
2

.

Qualitative agreement with simulations of Tangled 
Nature model
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The evolved connectance  
 Correlated

Simon Laird

#edges

D(D − 1)



Fokker-Planck equation

    



Analytical result
nk(t + 1) = nk(t) + ΓR(D, k, t) + ΓDu(D − 1, k, t).

ΓR(D, k, t) = Γd
R(k) + ΓN

R (k + 1)− ΓN
R (k).

ΓDu(D − 1, k, t) = ΓP
Du(k − 1)− ΓP

Du(k) + ΓC
Du(k)

+ΓN
Du(k − 1)− ΓN

Du(k).
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Fokker-Planck eq. iterated  

Again we assume PnEd(k1, k2, q) = PEd(D−2−k1, k2, q). In general it is not simple to find
analytic solutions to this somewhat involved set of equations. The result of iterating the
Fokker-Planck Eq. (9) using these estimates is shown in Fig. 2 for diversity D = 20, which
makes the numerical iteration manageable. We notice good qualitative agreement with
the behaviour of simulation results presented Fig. 1. For a broad range of values of the
parameters the degree distributions exhibit much of the same approximate exponential
form as produced by the individual based Tangled Nature model described in the Sec. 2.

10 20
k

0.01

1

n
(k
)

1 10
k

0.01

1

n
(k
)

Figure 2: The degree distribution obtained by iteration of the Fokker-Planck equation
(9). The exponential form is visible for a broad range of parameter values in the linear-log
plot to the left. The approach towards a 1/k dependence in the limit of Pe → 1 can be
seen in the log-log plot to the right. The two straight lines have slope -1. The parameters
are D = 20, Pe = 0.01, 0.1, 0.3, 0.5, 0.7, 0.9, 0.95 and Pp = 0.01. Pn was chosen to be
Pn = Pp(1 − Pe)/(1 − Pp) )

Let us finally mention that direct simulations [11] of the simple model introduced in
section 3 show that in the limit Pe → 1, Pn → 0 and Pp # 1 the degree distribution nk

behaves like 1/k. The Fokker-Planck equation Eq. (9) confirms this result. In the limit
Pe = 1 and Pn → 0 (i.e. perfect replication) the Fokker-Planck equation reduces to

nk(t + 1) = nk(t) + nk(
1

D − 1
−

1

D
) +

2Pp

D − 1
(nk−1 − nk)

+
D−2
∑

k1=1

k1
∑

q=1

qnk1[
1

D
PEd(k1, k + 1, q) −

1

D − 1
PEd(k1, k, q)

−
1

D
PEd(k1, k, q) +

1

D − 1
PEd(k1, k − 1, q)]. (23)

Including only the leading terms from k1 = 1 and q = 1 one obtains

nk(t + 1) = nk +
nk

D(D − 1)
+

2Pp

D − 1
[nk−1 − nk]

+
n1

M
[
1

D
{(k + 1)nk+1 − knk}−

1

D − 1
{knk − (k − 1)nk−1}]. (24)

In the limit D $ 1 and Pp # 1 this equation has the stationary solution nk ∝ 1/k.

8
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Limiting behaviour 
In limit mutations          0

Implies 

Fokker-Planck eq. reduces to        

Pe = 1 and Pn → 0

nk(t + 1) = nk(t) + nk(
1

D − 1
− 1

D
) +

2Pp

D − 1
(nk−1 − nk)

+
D−2∑

k1=1

k1∑

q=1

qnk1[
1
D

PEd(k1, k + 1, q)− 1
D − 1

PEd(k1, k, q)

− 1
D

PEd(k1, k, q) +
1

D − 1
PEd(k1, k − 1, q)]
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Limiting behaviour
 Include only leading terms from  k1 = 1 and q = 1

nk(t + 1) = nk +
nk

D(D − 1)
+

2Pp

D − 1
[nk−1 − nk]

+
n1

M
[
1
D
{(k + 1)nk+1 − knk}

− 1
D − 1

{knk − (k − 1)nk−1}].

Stationary solution nk ∝ 1/k



Summary



Summary and conclusion  
From minimal micro-dynamics  

   Collective evolution and adaptation

   Intermittent dynamics >> record dynamics.

   Nature of the evolved networks - compares well

   Dynamics (degree of overlap with parent)    
       determines degree distribution

   Adaptation/selection influences connectance
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