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Abstract. – We present the first solvable non-conservative sandpile-like critical model of
Self-Organised Criticality (SOC), and thereby substantiate the suggestion by Vespignani and
Zapperi (Vespignani A. and Zapperi S., Phys. Rev. E, 57 (1998) 6345) that a lack of conser-
vation in the microscopic dynamics of an SOC model can be compensated by introducing an
external drive and thereby re-establishing criticality. The model shown is critical for all values
of the conservation parameter. The analytical derivation follows the lines of Bröker and Grass-
berger (Bröker H.-M. and Grassberger P., Phys. Rev. E, 56 (1997) 3944) and is supported
by numerical simulation. In the limit of vanishing conservation the Random Neighbour Drossel
Schwabl Forest Fire Model (R-DS-FFM) is recovered.

The role of conservation in SOC models is an old issue [1–3] and is still unsettled. The
number of non-conservative models which are definitely critical is, however, strikingly small.
The Random Neighbour Drossel Schwabl Forest Fire Model (R-DS-FFM) [4] is one of them,
while the Random Neighbour Olami-Feder-Christensen model (R-OFC) has been shown not
to be critical in the non-conservative regime [5, 6]. The nearest-neighbour OFC model is
commonly accepted to be critical in the conservative limit, but whether this model is critical
in the non-conservative regime is still debated [2, 7].

In [8, 9] it has been suggested that non-conservation in the microscopic dynamics can be
compensated by an external drive in order to re-establish criticality. Applying this concept
directly to a model known to be non-critical in its original definition provides the ideal basis
to identify the effect of such an external drive. In this letter such a model is defined and solved
semi-analytically. The results are compared to simulations and the (trivial) critical exponents
are extracted. Several limits are discussed.

The model, which is derived from the DS-FFM [10] and the Zhang model [11], has three
main parameters: N is the total number of sites, which diverges in the thermodynamic limit.
The number of randomly chosen “neighbours” is given by n, where n = 4 in all examples,
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corresponding to a two-dimensional square lattice. The conservation parameter is α. The
degree of non-conservation is then 1 − nα, as is shown below. Each site i ∈ {1, 2, . . . , N} has
associated a value zi for its “energy”. Sites with 0 ≤ zi < 1 − α are said to be “stable”, sites
with 1 − α ≤ zi < 1 are called “susceptible” and sites with 1 ≤ zi are “active”. Negative
energies are not allowed. The probability density function (PDF) for the variable zi is P (z)
with z ∈ [0, 1[ and is defined only when no sites are active. P (z) contains most of the
stationary properties of the model.

The dynamics of the model are defined as follows: After an initial choice of zi (i =
1, 2, . . . , N) from a uniform distribution in the interval [0, 1[, the model is updated by re-
peatedly i) “driving”, ii) “triggering” and iii) “relaxing” the system. During the drive i),
i = 1, . . . , (1/θ) sites are chosen randomly ((1/θ) = p/f in the notation of [10]), one after
the other, and their energies zi are set to 1 − α, if the site is stable, otherwise zi remains
unchanged. Subsequently, one random site j is chosen and if it is susceptible, the system is
triggered ii) by setting the energy of the chosen site to 1, i.e. making it active (initial seed).
Otherwise, zj remains unchanged and the model is driven again by repeating i). As long as
N and (1/θ) are finite, the system will escape from the driving loop sooner or later. In the
thermodynamic limit this is ensured by a non-vanishing density of susceptible sites.

During the relaxation iii) the energy of each active site i is redistributed according to the
conservation parameter α to n randomly chosen sites j and the energy of zi is then set to 0:

zj −→ zj + αzi, zi −→ 0. (1)

Each visit or “toppling” (1) defines a microscopic time step and dissipates exactly (1− nα)zi

energy units. The sites j are chosen randomly one after the other and are not necessarily
different. In the thermodynamic limit the probability of choosing a target site which is already
active or was already charged during the same avalanche vanishes and therefore the order of
these visits is irrelevant. In this very restricted sense the model might be considered as
“Abelian”. In contrast, sites in finite systems have always a finite probability to get charged
more than once. Nevertheless, this probability decreases rapidly with increasing system size.

The number of active sites relaxed by (1) defines the avalanche size s, which is always
positive due to the initial seed. In the stationary state the avalanches must dissipate, on
average, the same amount of energy as is supplied by the external drive and the initial seed.
The average dissipation depends on the avalanche size weighted average energy of active sites
zact, which is equivalent to the average energy of active sites per toppling. Therefore

(1 − nα)zact〈s〉 = (1/θ)
pst

pc
(1 − α − zst) + (1 − zc) (2)

must hold exactly in the stationary state even for finite systems and does not introduce any
approximation. Here 〈s〉 is the average avalanche size, pst (pc) is the density of stable (sus-
ceptible) sites (the drive stage is, on average, repeated 1/pc times), zst and zc are the average
energy of stable and susceptible sites, respectively. As in [5] the only crucial assumption is
that 〈s〉/N as well as (1/θ)/N vanishes in the thermodynamic limit, which turns out to be
entirely consistent with the results. This assumption allows us, for example, to assume the
distribution P (z) to be essentially unaffected by external drive or relaxation for sufficiently
large systems.

From (2) it is clear that in general 〈s〉 diverges for diverging (1/θ) or vanishing dissipation
rate 1 − nα. From the microscopic dynamics it is clear that there is always a non-vanishing
fraction of sites with z = 0, therefore (1−α)− zst is finite and a divergence of (1/θ) entails a
divergence of 〈s〉, which is a sign of criticality.
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In the following outline of the actual calculation, which is adapted from [5], the PDFs of
the model are derived.

After an avalanche, each site belongs to one of m+2 classes, where m = �1/α�. The index
k = 0, 1, . . . ,m of the class indicates the number of charges received from other toppling sites
since their last toppling, while k = m+1 indicates the class of sites, whose energy has been set
by external drive. A site charged more than m times must be active. For each of these classes
a conditional distribution function Qk(z) is introduced, describing the distribution of energy
among non-active sites, which have been charged k = 0, . . . ,m times or externally driven,
k = m + 1. The distribution of sites which have not been charged since their last toppling,
Q0(z), is a delta peak at z = 0. For convenience the normalisation of Q0(z) is chosen to be
unity and all other distribution functions are normalised relative to class 0. The distribution
of sites which have not changed after once being driven externally, Qm+1(z), is obviously a
weighted delta peak at 1 − α. If the fraction of these sites is g (“accumulated susceptible
sites”), P (z) can be written as

P (z) = N
m+1∑
k=0

(1 − g)Qk(z), (3)

where N (1−g)Qm+1(z) = gδ((1−α)−z) and N < 1 is an appropriately chosen normalisation.
The upper bound for the energy of an active site is the geometric sum 1 + α(1 + α(· · · )) =
1/(1 − α), neglecting double charges. Therefore, the support of the distribution function of
active sites C(z) is [1, 1/(1− α)[. If this distribution is normalised, the expected increase per
avalanche in the class k > 0 is given, in the thermodynamic limit (where multiple toppling
can be neglected), by the convolution

n〈s〉
∫ 1/(1−α)

1

dz′C(z′)Qk−1(z − αz′), (4)

where the factor n〈s〉 takes into account the expected total number of charges. There are
three different ways in which the classes k < m + 1 may be decreased:

1) By charges, Qk(z)n〈s〉.

2) By external drive, Qk(z)θ<((1−α)−z)(1/θ)pc
−1, where θ< is the Heaviside unit function

with θ<(0) = 0.

3) By initial seed, Qk(z)θ>(z − (1 − α))/pc, where θ>(0) = 1 correspondingly.

Adding these contributions together and assuming stationarity leads to m equations for Qk,
k = 1, . . . , m:

Qk(z)l(z) =
∫ 1/(1−α)

1

dz′C(z′)Qk−1(z − αz′), (5)

where

l(z) = 1 +
(1/θ)
pcn〈s〉θ

<((1 − α) − z) +
1

pcn〈s〉θ
>(z − (1 − α)) (6)

has been used. For diverging (1/θ), the last term in (6) becomes irrelevant and the RHS of (2)
is dominated by the first term, meaning that the initial seed becomes irrelevant compared to
the external drive. It is reasonable to restrict the range of α so that single charges cannot
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activate a site, α/(1− α) < 1 ⇔ α < 1/2 (due to nα < 1, this is a restriction only for n = 1).
For k = 1 (5) can be written as

C
( z

α

)
= αQ1(z)l(z), (7)

due to the particularly simple form of Q0(z).
Since Q0(z) = δ(z), by definition, and N (1 − g)Qm+1(z) = gδ((1 − α) − z) as mentioned

above (see (3)), one further equation is necessary in order to find m + 3 distributions Qk,
k = 0, . . . ,m + 1 and C(z). This equation concerns the construction of the distribution of
active sites C(z). Since active sites are created due to charging or as the initial seed the
average distribution of the number of those sites per avalanche is given by

〈s〉C(z) = n〈s〉
∫ 1/(1−α)

1

dz′C(z′)P (z − αz′) + δ(z − 1), (8)

where the δ-function represents the initial seed.
Although it is a priori unknown whether there exists a stable solution, or whether it is

unique, the set of equations given above is enough to start an iteration procedure in order to
find a solution. The scalar parameters required are 〈s〉 from (2), pst, pc, zst, zc, which are
easily derived from (3) and zact, the first moment of C(z). While n and (1/θ) parameterise
the problem, g remains the only unknown quantity, which is found to be

g =
pst(1/θ)

n〈s〉pc + 1
, (9)

by comparing the in- and outflow of class m + 1, the externally driven sites, per avalanche.
All the equations above can alternatively be derived from the microdynamics of the system.

This ensures that the solution is exact in the thermodynamic limit given the stationarity
assumption.

The implementation of the iteration procedure is straightforward. As a criterion for ter-
mination, one could check whether C(z), as defined by (8), is properly normalised [5], as it
can be proven that it must be correctly normalised if it is a solution. However, it would
be sufficient to assume C(z) proportional to the RHS in (8). Moreover, in the numerical
procedure the quality of the normalisation of C(z) depends strongly on the resolution of the
grid chosen, whenever C(z) changes rapidly as function of z. Therefore, convergence of the
iteration procedure is better verified by checking whether C(z) approaches a fixed point, i.e.
is invariant under (8). Since the distribution is expected to be highly non-analytic —there are
at least two δ-functions in P (z)— sophisticated integration routines are inappropriate. For
n = 4 the procedure quickly converges for 0.07 < α < 0.24, all non-pathological initial values
tested lead to the same stable solutions. Only for small values of 〈s〉, when the delta peak
of the initial seed starts to propagate through the distribution, a large grid is required for
sufficient resolution. The same problem appears close to the commensurable limits mentioned
below. In fig. 1 numerical simulations of the model are compared to the numerical solution
of the analytical approach. Although the PDF is very structured, discrepancies are small and
can be reduced by increasing the resolution of the underlying grid.

The distribution C(z) collapses to a δ-function in at least two limits. Firstly, when α → 0,
the R-DS-FFM limit, the probability for a site to become susceptible due to a number of
charges vanishes as q(1−α)/α, where q < 1 is the product of the probability that a site receives
a charge from a relaxing site and the probability that a site is not driven externally between
two hits. Hence, for α → 0 the mechanism of “growing by charges” becomes negligible and the
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Fig. 1 – Distribution of energy, P (z), for n = 4 and different values of α. Since there is only a delta
peak in 0 ≤ z ≤ 0.2, results for z < 0.2 are cut off. Continuous lines indicate results from theory (grid
size 32000, integrated in 125 bins), points represent results from numerical simulations with N = 106,
106 avalanches for equilibration and 5 · 106 avalanches for statistics (125 bins for the histogram).

external drive becomes the dominating source for susceptible sites. The dynamics now become
equivalent to the R-DS-FFM: stable sites = empty sites, susceptible sites = trees, and active
sites = fires. Furthermore, as α → 0, the support of C(z) becomes smaller and smaller and the
distribution of active sites is strongly peaked at z = 1, collapsing to a δ-function. Therefore,
the distributions Qk, k > 0 are less smeared out, as shown in fig. 2(a) for a small value of α.
Assuming C(z) to be a δ-function, one can easily reconcile the results in [4] (eqs. (3) and (7)).
The assumption that P (z) is unaffected by single avalanches corresponds to p, f → 0 in the
SOC limit of the DS-FFM [12].

In the second limit, α → 1/n, the model becomes conservative, but more important, α
becomes more and more commensurable in the sense that a site charged m = n times is almost
always active and therefore the support of Qm vanishes, as it is squeezed between nα and 1.
When α is very close to 1/n, most of the active sites are provided by Qm−1 and their average
energy is just above 1, i.e. C(z) becomes more and more δ shaped and so do the Qi, as shown
in fig. 2(b). The same behaviour is obtained whenever kα = 1 for k ∈ N.

The critical exponents of the model, for all α ∈ ]0, 1/n[, can be obtained by mapping
it on to a branching process [13] in order to identify the critical exponent b = 2, where
P(t) ∝ t−b is the exponent of avalanche duration. The exponent τ = 3/2, found by mapping
the model on to a random walker along an absorbing barrier, is the exponent of avalanche sizes,
P(s) ∝ s−τ . Formally these exponents arise only for diverging cutoffs in the distributions,
which are controlled by the average number of active sites produced per single toppling, the
branching ratio σ. The cutoffs diverge for σ → 1.

However, the mapping is non-trivial, except when C(z) is a δ-function. This is because
a distribution of active sites entails a distribution in the branching ratio, i.e. the branching
probability itself becomes a random variable. However, it is not necessary to consider the
explicit time dependence of the branching probability. In order to justify the mapping, it
is sufficient, though not less accurate, to consider the ensemble average of the process with
an annealed disorder in the branching probability, i.e. writing the probabilities for one given
node (active site) to branch into k new nodes (active sites) as

P(1 −→ k) =
〈(

n
k

)
pk(1 − p)n−k

〉
p

, (10)

where p denotes the branching probability (which is a function of the energy of the site) and
〈〉p denotes the weighted average over the probabilities. Therefore σ =

∑
k kP(1 → k). This
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Fig. 2 – P (z) as in fig. 1, but for α = 0.07 and α = 0.248 and 500 bins.

branching process is characterised by the same generating functions as the standard branching
process [13], which becomes critical for σ = 1. Hence the condition for criticality is

∞∑
k=0

k

〈 (
n
k

)
pk(1 − p)n−k

〉
p

= n〈p〉p = 1, (11)

which is the (average) branching ratio, according to (8) given by

n〈p〉p = n

∫ 1/(1−α)

1

dz

∫ 1/(1−α)

1

dz′C(z′)P (z − αz′) = 1 − 1
〈s〉 . (12)

Defining C(z, t) to be the averaged distribution of active sites after t updates, C(z, t) will
only gradually change from an initial delta peak at z = 1 towards C(z), the latter being
then the active-site weighted average of C(z, t). However, any deviation from C(z) decays
exponentially fast, which can be seen by investigating the Markov chain of the repetitive
convolution of C(z, t) with P (z) as in (8). Therefore the cutoff, introduced by the deviation
of σ from 1, is dominated by the asymptotic iteratively stable limit of C(z) only. Since the
asymptote is approached exponentially fast, the transient cannot influence the value of the
exponents. The same arguments apply for the random walker approach, therefore b = 2 and
τ = 3/2 is true for all α ∈ ]0, 1/n[.

The calculations above are a priori valid only in the thermodynamic limit. However, a
simulation of the model must consider a finite system. Moreover, the model relies on several
assumptions, which entail certain finite-size scaling: (1/θ)N/N (the index indicates the value
to be measured in a system of size N) as well as 〈s〉N/N must vanish for diverging N , while
(1/θ)N/〈s〉N must remain constant. It is a well-known problem in the DS-FFM [14] that the
number of trees grown between two ignitions is a parameter, (1/θ)N , which needs to be tuned
according to the system size; it is supposed to diverge, but its value is restricted by system
size. An inappropriately chosen parameter produces a small value of the cutoff or a bump
in the distribution function of avalanche sizes. Nevertheless, P (z) depends only weakly on
(1/θ)N . As a more quantitative measure for the “right choice of (1/θ)N”, we compared gN to
g (see eq. (9)) in the thermodynamic limit. Assuming a cutoff of order O(N) in P(s) of a finite
system, the scaling is 〈s〉N =

∫
dsP(s)s ∈ O(N1/2) and thus (1/θ)N ∈ O(N1/2). For a more

quantitative picture, one can map the avalanche on to a random walker along an absorbing
barrier with time-dependent walking probability p(t) (in the sense of [15] a drinking rather
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than a drunken random walker). However, the result is comparatively involved and gives only
rough estimates for the avalanche size as a function of N and (1/θ).

In summary, a solvable SOC model, critical in the entire regime of the conservation pa-
rameter, has been defined and the main properties have been derived. The critical exponents
are as expected the trivial exponents of a critical branching process and a random walker.
The model clarifies the role of the external drive and represents an explicit example of the
recovery of criticality by introducing an external drive.
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