1st progress test 2/11/2011

1. Let $f: S^{1} \rightarrow S^{1}$ defined by

$$
f(x)=(a x+b \sin (2 \pi x)+c) \bmod 1
$$

with $x \in[0,1) \cong S^{1}$ and parameters $a, b, c \in \mathbb{R}$.
(a) Determine what conditions on the parameters a, b, and c must be satisfied for f to be an orientation preserving circle homeomorphism.
Answer: For f to be a circle map we need $a \in \mathbb{Z}$ so that $f(x+1)=f(x)$. For f to be invertible it is necessary that its degree has absolute value 1 . As $\operatorname{deg}(f)=a$, this implied that $|a|=1$. Furthermore, in order to ensure monotinicity that is necessary for invertibility, we need $\frac{d}{d x} f(x)=a+2 \pi b \cos (2 \pi x) \neq 0$ for all x, which implies that $|2 \pi b|<1$. Preservation of orientation implies that $a=1$ (and not $a=-1$).
(b) Let $F: \mathbb{R} \rightarrow \mathbb{R}$ be a lift of f. Give all possible choices for this lift F.

Answer: $F(x)=a x+b \sin (2 \pi x)+c+m$ with $m \in \mathbb{Z}$.
(c) Show that the rotation number of f is equal to $\frac{1}{2}$ if $a=1, b=\frac{1}{8}, c=\frac{1}{2}$.
[Hint: use a property that f^{2} must satisfy if $\rho(f)=\frac{1}{2}$.]
Answer: It suffices to show that f has a periodic orbit with period 2 . We consider the lift $F(x)=x+\frac{1}{8} \sin (2 \pi x)+\frac{1}{2}$. First we note that f has no fixed point since $\frac{1}{8} \sin (2 \pi x)+\frac{1}{2} \neq$ $0 \bmod \mathbb{Z}$ for all x. We compute that $F^{2}(x)=x+\frac{1}{8} \sin (2 \pi x)+1+\frac{1}{8} \sin \left(2 \pi\left(x+\frac{1}{8} \sin (2 \pi x)+\frac{1}{2}\right)\right)$ so that $F^{2}(0)=1$ and hence that 0 is a fixed point of f^{2}. It then immediately follows that $\rho(f)=1 / 2$.
(d) Show that the circle map in part (c) is NOT topologically conjugate to the rigid rotation $R_{\frac{1}{2}}: x \rightarrow x+\frac{1}{2} \bmod 1$.
Answer: All $x \in S^{1}$ are periodic points of $R_{1 / 2}$ of period 2. It thus suffices to show that f has a point that does not have period 2. For instance $F^{2}\left(\frac{1}{4}\right)=\frac{5}{4}+\frac{1}{8} \frac{\sqrt{2}}{2}+\frac{1}{8} \sin \left(2 \pi\left(\frac{3}{4}+\frac{1}{8} \frac{\sqrt{2}}{2}\right)\right)$. Since $\frac{3}{4}>\frac{1}{8} \frac{\sqrt{2}}{2}+\frac{1}{8} \sin \left(2 \pi\left(\frac{3}{4}+\frac{1}{8} \frac{\sqrt{2}}{2}\right)\right)>\frac{1}{4}$. Alternatively, one could also verify that 0 is a hyperbolic fixed point (and hence isolated): $D f^{2}(0)>1$.
2. (a) Show that if the rotation number of an orientation preserving circle homeomorphism is equal to zero, then f has a fixed point.
Answer: Without loss assume $F(0) \in(0,1)$. Suppose f has no fixed point then $\delta \leq F(x)-x \leq$ $1-\delta$ for some $\delta>0$ and all x (since F is continuous). Some simple manipulation yields $F^{n}(0)=\sum_{k=1}^{n} F^{k}(0)-F^{k-1}(0)$ implying that for all n we have $\delta \leq \frac{F^{n}(0)}{n} \leq 1-\delta$ so that $\rho(f) \neq 0$. Hence if $\rho(f)=0, f$ must have a fixed point.
(b) Show that if F is the lift of an orientation preserving circle homeomorphism, then for all $x, y \in \mathbb{R}$ the following implication holds

$$
|x-y|<1 \Rightarrow|F(x)-F(y)|<1 .
$$

Answer: First we note that if f is invertible, then $|x-y|=1$ implies $|F(x)-F(y)|=1$. Also if $y=x$ then the latter expression is trivially equal to 0 . By strict monotinicity of F (implied by invertibility of f), $|F(x)-F(y)|$ is also a strictly monotonous function of y and when y increases from x to $x+1,|F(x)-F(y)|$ increases (monotonically) from 0 to 1 , and thus if $|x-y|<1$ then $|F(x)-F(y)|<1$. The argument when $y \in x+(-1,0)$ is similar.
(c) Let f be a continuous circle map and suppose that the $\operatorname{limit}_{\lim }^{n \rightarrow \infty} f^{n}(x)$ exists for some point $x \in S^{1}$. Show then that this limit point $z=\lim _{n \rightarrow \infty} f^{n}(x)$ is a fixed point of f.
Answer: $f(z)=f\left(\lim _{n \rightarrow \infty} f^{n}(x)\right)=\lim _{n \rightarrow \infty} f^{n+1}(x)=z$.

