2nd progress test 24/11/2011

1. Let $f: S^1 \to S^1$ defined by

$$f(x) = (-2x + a\cos^2(bx)) \mod 1$$

with $x \in [0, 1) \cong S^1$ and parameters $a, b \in \mathbb{R}$.

- (a) Determine what conditions on the parameters a and b must be satisfied for f to be an <u>expanding</u> circle map. Answer: First of all $b = k\pi$ for some $k \in \mathbb{Z}$ so that f(x + 1) = f(x). f is expanding is |f'(x)| > 1 for all $x \in S^1$. $f'(x) = -2 - ak\pi \sin(2k\pi x)$, so we need $|ak|\pi < 1$, ie $|ak| < 1/\pi$ (ie |ab| < 1).
- (b) Show that if f is of the above form, and an expanding circle map, it has no periodic orbits of period 2. [Hint: derive (or recall without proof) a formula for the number of fixed points of an expanding circle map as a function of its degree.]
 Answer: deg(fⁿ) = (deg f)ⁿ and deg f = -2, and the number of fixed points P(f) of f is equal to |deg f − 1|. Hence we here have P₁(f) = | − 2 − 1| = 3 and P₂(f) = |4 − 1| = 3, so the number of periodic orbits of period 2 is P₂(f) − P₁(f) = 0.

- 2. Let Ω_3 denote the set of bi-infinite sequences $\{\omega_i\}_{i\in\mathbb{Z}}$ whose entries ω_i are taken from a set of three symbols, for instance $\{0, 1, 2\}$.
 - (i) Consider the cylinder

$$C_{\alpha_{1-n},\dots,\alpha_{n-1}} := \{ \omega \in \Omega_3 \mid \omega_i = \alpha_i, \ |i| < n \}.$$

Let

$$d(\omega, \omega') := \sum_{m \in \mathbb{Z}} \frac{\delta(\omega_m, \omega'_m)}{4^m},$$

where $\delta(a, b) = 0$ if a = b and $\delta(a, b) = 1$ if $a \neq b$.

(a) Show that d is a <u>metric</u> on Ω_3 .

Answer: All properties follow by comparing components in the sum: (i) d(x,y) = d(y,x)follows from the fact that $\delta(a,b) = \delta(b,a)$. (ii) $d(x,y) = 0 \Leftrightarrow x = y$ follows again from the definition of δ : as soon as two sequences have one different symbol, the distance is positive, and the distance between two equal sequences is equal to zero. (iii) $d(x,y) + d(y,z) \ge d(x,z)$ follows from the fact that $\delta(a,b) + \delta(b,c) \ge \delta(a,c)$. This is obviously satisfied if a = c. If $a \ne c$ then $b \ne c$ or $a \ne b$ so that the inequality is also satsified. (b) Consider Ω_3 as a metric space with metric d. Show that the cylinder $C_{\alpha_{-1}\alpha_0\alpha_1}$ is a ball in Ω_3 around any point α of the form $\alpha = \ldots \alpha_{-1} \alpha_0 \alpha_1 \ldots$ and determine its radius.

Answer: Let $\alpha \in C_{\alpha_{1-n},...,\alpha_{n-1}}$. If $\omega \in C_{\alpha_{1-n},...,\alpha_{n-1}}$ then

$$d(\omega, \omega') := \sum_{|m| \ge n} \frac{\delta(\omega_m, \omega'_m)}{4^m} \le \sum_{|m| \ge n} \frac{1}{4^m} = \frac{1}{4^{n-1}} \frac{2}{3} < \frac{1}{4^{n-1}}.$$

On the other hand if $\omega \notin C_{\alpha_{1-n},\dots,\alpha_{n-1}}$,

$$d(\omega, \omega') \ge \frac{1}{4^{n-1}}.$$

Thus $C_{\alpha_{1-n},\dots,\alpha_{n-1}}$ is exactly equal to the ball around α of radius 4^{1-n} . In the case that n = 2, as asked, this yields a ball or radius 1/4.

- Give for each of the following, an example of a topological Markov chain on Ω_3 (endowed (ii) with metric d), by means of its transition matrix or Markov graph, that has this property:
 - 1. a topological Markov chain that is not transitive
 - 2. a topological Markov chain that is topologically mixing

Answer: For instance, $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ is a transition matrix for a transitive and topologically mixing Markov chain (full shift) and and $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ is a transition matrix for a Markov chain (identity) that is neither transitive nor topologically mixing

chain (identity) that is neither transitive nor topologically mixing

(iii) Show that every topologically transitive topological Markov chain on Ω_3 is topologically mixing. Answer: See [HK] proposition 7.3.12.