## 2nd progress test 24/11/2011

1. Let $f: S^{1} \rightarrow S^{1}$ defined by

$$
f(x)=\left(-2 x+a \cos ^{2}(b x)\right) \bmod 1
$$

with $x \in[0,1) \cong S^{1}$ and parameters $a, b \in \mathbb{R}$.
(a) Determine what conditions on the parameters $a$ and $b$ must be satisfied for $f$ to be an expanding circle map.
Answer: First of all $b=k \pi$ for some $k \in \mathbb{Z}$ so that $f(x+1)=f(x) . f$ is expanding is $\left|f^{\prime}(x)\right|>1$ for all $x \in S^{1} . f^{\prime}(x)=-2-a k \pi \sin (2 k \pi x)$, so we need $|a k| \pi<1$, ie $|a k|<1 / \pi$ (ie $|a b|<1$ ).
(b) Show that if $f$ is of the above form, and an expanding circle map, it has no periodic orbits of period 2. [Hint: derive (or recall without proof) a formula for the number of fixed points of an expanding circle map as a function of its degree.]
Answer: $\operatorname{deg}\left(f^{n}\right)=(\operatorname{deg} f)^{n}$ and $\operatorname{deg} f=-2$, and the number of fixed points $P(f)$ of $f$ is equal to $|\operatorname{deg} f-1|$. Hence we here have $P_{1}(f)=|-2-1|=3$ and $P_{2}(f)=|4-1|=3$, so the number of periodic orbits of period 2 is $P_{2}(f)-P_{1}(f)=0$.
2. Let $\Omega_{3}$ denote the set of bi-infinite sequences $\left\{\omega_{i}\right\}_{i \in \mathbb{Z}}$ whose entries $\omega_{i}$ are taken from a set of three symbols, for instance $\{0,1,2\}$.
(i) Consider the cylinder

$$
C_{\alpha_{1-n}, \ldots, \alpha_{n-1}}:=\left\{\omega \in \Omega_{3}\left|\omega_{i}=\alpha_{i},|i|<n\right\} .\right.
$$

Let

$$
d\left(\omega, \omega^{\prime}\right):=\sum_{m \in \mathbb{Z}} \frac{\delta\left(\omega_{m}, \omega_{m}^{\prime}\right)}{4^{m}},
$$

where $\delta(a, b)=0$ if $a=b$ and $\delta(a, b)=1$ if $a \neq b$.
(a) Show that $d$ is a metric on $\Omega_{3}$.

Answer: All properties follow by comparing components in the sum: (i) $d(x, y)=d(y, x)$ follows from the fact that $\delta(a, b)=\delta(b, a)$. (ii) $d(x, y)=0 \Leftrightarrow x=y$ follows again from the definition of $\delta$ : as soon as two sequences have one different symbol, the distance is positive, and the distance between two equal sequences is equal to zero. (iii) $d(x, y)+d(y, z) \geq d(x, z)$ follows from the fact that $\delta(a, b)+\delta(b, c) \geq \delta(a, c)$. This is obviously satisfied if $a=c$. If $a \neq c$ then $b \neq c$ or $a \neq b$ so that the inequality is also satsified.
(b) Consider $\Omega_{3}$ as a metric space with metric $d$. Show that the cylinder $C_{\alpha_{-1} \alpha_{0} \alpha_{1}}$ is a ball in $\Omega_{3}$ around any point $\alpha$ of the form $\alpha=\ldots \alpha_{-1} \alpha_{0} \alpha_{1} \ldots$ and determine its radius.
Answer: Let $\alpha \in C_{\alpha_{1-n}, \ldots, \alpha_{n-1}}$. If $\omega \in C_{\alpha_{1-n}, \ldots, \alpha_{n-1}}$ then

$$
d\left(\omega, \omega^{\prime}\right):=\sum_{|m| \geq n} \frac{\delta\left(\omega_{m}, \omega_{m}^{\prime}\right)}{4^{m}} \leq \sum_{|m| \geq n} \frac{1}{4^{m}}=\frac{1}{4^{n-1}} \frac{2}{3}<\frac{1}{4^{n-1}} .
$$

On the other hand if $\omega \notin C_{\alpha_{1-n}, \ldots, \alpha_{n-1}}$,

$$
d\left(\omega, \omega^{\prime}\right) \geq \frac{1}{4^{n-1}}
$$

Thus $C_{\alpha_{1-n}, \ldots, \alpha_{n-1}}$ is exactly equal to the ball around $\alpha$ of radius $4^{1-n}$. In the case that $n=2$, as asked, this yields a ball or radius $1 / 4$.
(ii) Give for each of the following, an example of a topological Markov chain on $\Omega_{3}$ (endowed with metric $d$ ), by means of its transition matrix or Markov graph, that has this property:

1. a topological Markov chain that is not transitive
2. a topological Markov chain that is topologically mixing

Answer: For instance, $\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right)$ is a transition matrix for a transitive and topologically mixing Markov chain (full shift) and and $\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$ is a transition matrix for a Markov chain (identity) that is neither transitive nor topologically mixing .
(iii) Show that every topologically transitive topological Markov chain on $\Omega_{3}$ is topologically mixing.
Answer: See [HK] proposition 7.3.12.

