3rd progress test $14 / 12 / 2011$

Consider the piecewise linear map $F:[0,1] \rightarrow[0,1]$ given by

$$
F(x)= \begin{cases}3 x & \text { if } x \in \Delta_{0} \\ 2-3 x & \text { if } x \in \Delta_{1} \\ x-\frac{2}{3} & \text { if } x \in \Delta_{2}\end{cases}
$$

where $\Delta_{1}=\left[0, \frac{1}{3}\right], \Delta_{2}=\left[\frac{1}{3}, \frac{2}{3}\right]$, and $\Delta_{3}=\left[\frac{2}{3}, 1\right]$. [It may be useful to draw the graph of F] We consider a coding of orbits by means of (half-)inifinite sequences of the form $\omega=\omega_{0} \omega_{1} \ldots \in \Omega_{3}^{R}$, where Ω_{3}^{R} denotes the metric space of (half-)infinite sequences with symbols $\omega_{i} \in\{0,1,2\}$ and distance

$$
d\left(\omega, \omega^{\prime}\right):=\sum_{m \in \mathbb{N}} \frac{\delta\left(\omega_{m}, \omega_{m}^{\prime}\right)}{4^{m}}
$$

where $\delta(a, b)=0$ if $a=b$ and $\delta(a, b)=1$ if $a \neq b$.
We propose the coding $h: \Omega_{3}^{R} \rightarrow[0,1]$ to be such that if $x=h(\omega)$, with $\omega=\omega_{0} \omega_{1} \omega_{2} \ldots$ and $y:=f^{n}(x)$ then $y \in \Delta_{\omega_{n}}$.
(i) Show that the distance d satisfies the triangle inequality.

Answer: $d(x, y)+d(y, z) \geq d(x, z)$ follows from the fact that $\delta(a, b)+\delta(b, c) \geq \delta(a, c)$. This is obviously satisfied if $a=c$. If $a \neq c$ then $b \neq c$ or $a \neq b$ so that the inequality is also satsified.
(ii) Let $\Delta_{\omega_{0} \ldots \omega_{n}}:=\bigcap_{i=0}^{\infty} f^{-i}\left(\Delta_{\omega_{i}}\right)$. Determine $\Delta_{a b}$ for all $a, b \in\{0,1,2\}$.

Answer: $\Delta_{00}=\left[0, \frac{1}{9}\right], \Delta_{01}=\left[\frac{1}{9}, \frac{2}{9}\right], \Delta_{02}=\left[\frac{2}{9}, \frac{1}{3}\right], \Delta_{12}=\left[\frac{1}{3}, \frac{4}{9}\right], \Delta_{11}=\left[\frac{4}{9}, \frac{5}{9}\right], \Delta_{10}=\left[\frac{5}{9}, \frac{2}{3}\right]$, $\Delta_{20}=\left[\frac{2}{3}, 1\right], \Delta_{21}=\emptyset, \Delta_{22}=\emptyset$.
(iii) Determine the codes representing the points $0, \frac{1}{3}, \frac{2}{3}$ and 1 , and point out whether or not these codes are unique (and why).
Answer: $h^{-1}(0)=\overline{0}(=00000 \ldots), h^{-1}\left(\frac{1}{3}\right)=\{\overline{02}, 1 \overline{20}\}, h^{-1}\left(\frac{2}{3}\right)=\{1 \overline{0}, 2 \overline{0}\}$ and $h^{-1}(1)=\overline{20}$.
(iv) Show that the map F is semi-conjugate to a three-state topological Markov chain determined by the matrix $A=\left(\begin{array}{ccc}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 0 & 0\end{array}\right)$.
Answer: A represents the admissible transitions between the labelling regions. Main item to prove is that h is surjective function, where $h(\omega)=\Delta_{\omega}$. We note that F is expanding on $\left[0, \frac{2}{3}\right]$ and nonexpanding (translation) on $\left[\frac{2}{3}, 1\right]$. We note that F^{2} is expanding so that $\lim _{n \rightarrow \infty} \Delta_{\omega_{0} \ldots \omega_{n}}$ is indeed a single point. Taking into account the fact that F does not expand on Δ_{3} (and that $F\left(\Delta_{3}\right)=\Delta_{1}$) we obtain uniform expansion with rate 3 for F^{2}, so that $\left|\Delta_{\omega_{0} \ldots \omega_{n}}\right| \leq \frac{1}{3}\left(\frac{1}{\sqrt{3}}\right)^{n-1}$.
(iv) Discuss if it can be concluded from the result in (iv), perhaps augmented with some further observations, that F is chaotic.
Answer: The Markov chain $\sigma_{A}: \Omega_{A}^{R} \rightarrow \Omega_{A}^{R}$ is transitive and thus chaotic. The semi-conjugacy is such that h is one-to-one except where codes end on $\overline{0}$ and $\overline{20}$, marking precisely the pre-images of the boundary points analysed in Part (iii). Hence F is transtive and periodic points are dense, so F is chaotic.

