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Abstract. We state a general conjecture about the existence of Kahler met-

rics of constant scalar curvature, and discuss the background to the conjecture

1. The equations

In this article we discuss some well-known problems in Kahler geometry. The
general theme is to ask whether a complex manifold admits a preferred Kahler
metric, distinguished by some natural differential-geometric criterion. A paradigm
is the well-known fact that any Riemann surface admits a metric of constant Gauss
curvature. Much of the interest of the subject comes from the interplay between, on
the one hand, the differential geometry of metrics, curvature tensors etc. and, on
the other hand, the complex analytic or algebraic geometry of the manifold. This
is, of course, a very large field and we make no attempt at an exhaustive account,
but it seems proper to emphasise at the outset that many of these questions have
been instigated by seminal work of Calabi.
Let (V, ω0) be a compact Kahler manifold of complex dimension n. The Kahler

forms in the class [ω0] can be written in terms of a Kahler potential ωφ = ω0+i∂∂φ.
In the case when 2π[ω0] is an integral class, e

φ has a geometrical interpretation
as the change of metric on a holomorphic line bundle L → V . The Ricci form
ρ = ρφ is −i times the curvature form of K

−1
V , with the metric induced by ωφ, so

[ρ] = 2πc1(V ) ∈ H2(V ). In the 1950’s, Calabi [C1] initiated the study of Kahler-
Einstein metrics, with

(1) ρφ = λωφ,

for constant λ. For these to exist we need the topological condition 2πc1(V ) = λ[ω].
When this condition holds we can write (by the ∂∂ Lemma)

ρ0 − λω0 = i∂∂f,

for some function f . The Kahler-Einstein equation becomes the second order, fully
nonlinear, equation

(2) (ω0 + i∂∂φ)
n = ef−λφωn0 .
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More explicitly, in local co-ordinates zα and in the case when the metric ω0 is
Euclidean, the equation is

(3) det

(

δαβ +
∂2φ

∂zα∂zβ

)

= ef−λφ.

This is a complex Monge-Ampere equation and the analysis is very much related
to that of real Monge-Ampere equations of the general shape

(4) det

(
∂2u

∂xi∂xj

)

= F (x, u),

where u is a convex function on an open set in Rn. There is a tremendous body
of work on these real and complex Monge-Ampere equations. In the Kahler set-
ting, the decisive contributions, dating back to the 1970’s are due to Yau [Y] and
Aubin[A2]. The conclusion is, roughly stated, that PDE techniques reduce the
problem of finding a solution to that of finding a priori bounds for ‖φ‖L∞ . In the
case when λ < 0 this bound is easily obtained from the maximum principle; in the
case when λ = 0 the bound follows from a more sophisticated argument of Yau.
This leads, of course, to the renowned Calabi-Yau metrics on manifolds with van-
ishing first Chern class. When λ is positive, so in algebro-geometric language we
are considering a Fano manifold V , the bound on ‖φ‖L∞ , and hence the existence
of a Kahler-Einstein metric, may hold or may not, depending on more subtle prop-
erties of the geometry of the manifold V and, in a long series of papers, Tian has
made enormous progress towards understanding precisely when a solution exists.
Notably, Tian made a general conjecture in [T], which we will return to in the next
section.
In the early 1980’s, Calabi initiated another problem [C2]. His starting point

was to consider the L2 norm of the curvature tensor as a functional on the met-
rics and seek critical points, called extremal Kahler metrics. The Euler-Lagrange
equations involve the scalar curvature

S = (ρ ∧ ωn−1)/ωn.

The extremal condition is the equation

(5) ∂(grad S) = 0.

On the face of it this is a very intractable partial differential equation, combining
the full nonlinearity of the Monge-Ampere operator, which is embedded in the
definition of the curvature tensor, with high order: the equation being of order six
in the derivatives of the Kahler potential φ. Things are not, however, quiet as bad
as they may seem. The extremal equation asserts that the vector field gradS on V
is holomorphic so if, for example, there are no non-trivial holomorphic vector fields
on V the equation reduces to the constant scalar curvature equation

(6) S = σ,

where the constant σ is determined by V through Chern-Weil theory. This reduction
still leaves us with an equation of order four and, from the point of view of partial
differential equations, the difficulty which permeates the theory is that one cannot
directly apply the maximum principle to equations of this order. From the point
of view of Riemannian geometry, the difficulty which permeates the theory is that
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control of the scalar curvature—in contrast to the Ricci tensor—does not give much
control of the metric.
In the case when [ρ] = λ[ω] the constant scalar curvature and Kahler-Einstein

conditions are equivalent. Of course this is a global phenomenon: locally the equa-
tions are quite different. Obviously Kahler-Einstein implies constant scalar curva-
ture. Conversely, one has an identity

∂S = ∂∗ρ,

so if the scalar curvature is constant the Ricci form ρ is harmonic. But λω is also
a harmonic form so if ρ and λω are in the same cohomology class they must be
equal, by the uniqueness of harmonic representatives.

There are two parabolic evolution equations associated to these problems. The
Ricci flow

(7)
∂ω

∂t
= ρ− λω.

and the Calabi flow

(8)
∂ω

∂t
= i∂∂S.

Starting with an extremal metric, the Calabi flow evolves the metric by diffeomeor-
phims (the one-parameter group generated by the vector field grad S): the geometry
is essentially unchanged. The analogues of general extremal metrics (nonconstant
scalar curvature) for the Ricci flow are the “Ricci solitions”

(9) ρ− λω = Lvω,

where Lv is the Lie derivative along a holomorphic vector field v.

2. Conjectural picture

We present a precise algebro-geometric condition which we expect to be equiv-
alent to the existence of a constant scalar curvature Kahler metric. This conjecture
is formulated in [D2]; in the Kahler-Einstein/Fano case the conjecture is essen-
tially the same as that made by Tian in [T]. An essential ingredient is the notion
of the “Futaki invariant”. Suppose L → V is a holomorphic line bundle with
c1(L) = 2π[ω0] and with a hermitian metric whose induced connection has cur-
vature −iω. Suppose we have a C∗-action α on the pair V,L. Then we get a
complex-valued function H on V by comparing the horizontal lift of the vector
field generating the action on V with that generating the action on L. In the case
when S1 ⊂ C∗ acts by isometries H is real valued and is just the Hamiltonian in
the usual sense of symplectic geometry. The Futaki invariant of the C∗-action is

∫

V

(S − σ)H,

where σ is the average value of the scalar curvature S (a topological invariant).
There is another, more algebro-geometric, way of describing this involving deter-
minant lines. For large k we consider the line

ΛmaxH0(V ;Lk).
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The C∗-action on (V,L) induces an action on this line, with some integer weight wk.
Let dk be the dimension of H

0(V ;Lk) and F (k) = wk/kdk. By standard theory,
this has an expansion for large k:

F (k) = F0 + F1k
−1 + F2k

−2 + . . . .

The equivariant Riemann-Roch formula shows that the Futaki invariant is just the
co-efficient F1 in this expansion. Turning things around, we can define the Futaki
invariant to be F1, the advantage being that this algebro-geometric point of view
extends immediately to singular varieties, or indeed general schemes.
Given (V,L), we define a “test configuration” of exponent r to consist of

(1) a scheme V with a line bundle L → V ;
(2) a map π : V → C with smooth fibres Vt = π−1(t) for non-zero t, such that
Vt is isomorphic to V and the restriction of L to Lr;

(3) a C∗-action on L → V covering the standard action on C.

We define the Futaki invariant of such a configuration to be the invariant of
the action on the central fibre π−1(0), (with the restriction of L): noting that
this may not be smooth. We say that the configuration is “destabilising” if the
Futaki invariant is bigger than or equal to zero and, in the case of invariant zero the
configuration is not a product V×C. Finally we say that (V,L) is “K-stable” (Tian’s
terminology) if there are no destabilising configurations. Then our conjecture is:

Conjecture 1. Suppose (V, ω0) is a compact Kahler manifold and [ω0] =
2πc1(L). Then there is a metric of constant scalar curvature in the class [ω0] if and
only if (V,L) is K-stable.

The direct evidence for the truth of this conjecture is rather slim, but we will
attempt to explain briefly why one might hope that it is true.
The first point to make is that “K-stability”, as defined above, is related to

the standard notion of “Hilbert-Mumford stability” in algebraic geometry. That
is, we consider for fixed large k, the embedding V → CPN defined by the sections
of Lk which gives a point [V,L]k in the appropriate Hilbert scheme of subschemes
of CPN . The group SL(N + 1,C) acts on this Hilbert scheme, with a natural
linearisation, so we have a standard notion of Geometric Invariant Theory stability
of [V,L]k. Then K-stability of (V,L) is closely related to the stability of [V,L]k for
all sufficiently large k. (The notions are not quite the same: the distinction between
them is analogous to the distinction between “Mumford stability” and “Gieseker
stability” of vector bundles.)
The second point to make is that there is a “moment map” interpretation of the

differential geometric set-up. This is explained in more detail in [D1] , although
the main idea seems to be due originally to Fujiki [F]. For this, we change our
point of view and instead of considering different metrics (i.e. symplectic forms)
on a fixed complex manifold we fix a symplectic manifold (M,ω) and consider the
set J of compatible complex structures on M . Thus a point J in J gives the same
data–a complex manifold with a Kahler metric–which we denoted previously by
(V, ω). The group G of “exact” symplectomorphisms of (M,ω) acts on J and one
finds that the map J 7→ S − σ is a moment map for the action. In this way, the
moduli space of constant scalar curvature Kahler metrics appears as the standard
symplectic quotient of J . In such situations, one anticipates that the symplectic
quotient will be identified with a complex quotient, involving the complexification
of the relevant group. In the case at hand, the group G does not have a bona fide
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complexification but one can still identify infinite-dimensional submanifolds which
play the role of the orbits of the complexification: these qare just the equivalence
classes under the equivalence relation J1 ∼ J2 if (M,J1) and (M,J2) are isomorphic
as complex manifolds. With this identification, and modulo the detailed notion of
stability, Conjecture 1 becomes the familiar statement that a stable orbit for the
complexified group contains a zero of the moment map. Of course all of this is
a formal picture and does not lead by itself to any kind of proof, in this infinite-
dimensional setting. We do however get a helpful and detailed analogy with the
better understood theory of Hermitian Yang-Mills connections. In this analogy
the constant scalar curvature equation corresponds to the Hermitian Yang-Mills
equation, for a connection A on a holomorphic bundle over a fixed Kahler manifold,

FA.ω = constant.

The extremal equation ∂(grad S) = 0 corresponds to the Yang-Mills equation

d∗AFA = 0,

whose solutions, in the framework of holomorphic bundles, are just direct sums of
Hermitian-Yang-Mills connections.
Leaving aside these larger conceptual pictures, let us explain in a down-to-earth

way why one might expect Conjecture 1 to be true. Let us imagine that we can
solve the Calabi flow equation (8) with some arbitrary initial metric ω0. Then,
roughly, the conjecture asserts that one of four things should happen in the limit
as t → ∞. (We are discussing this flow, here, mainly for expository purposes.
One would expect similar phenomena to appear in other procedures, such as the
continuity method. But it should be stressed that, in reality, there are very few
rigorous results about this flow in complex dimension n > 1: even the long time
existence has not been proved.)

(1) The flow converges, as t → ∞, to the desired constant scalar curvature
metric on V .

(2) The flow is asymptotic to a one-parameter family of extremal metrics
on the same complex manifold V , evolving by diffeomeorphisms. Thus
in this case V admits an extremal metric. Transforming to the other
setting, of a fixed symplectic form, the flow converges to a point in the
equivalence class defined by V . In this case V cannot be K-stable, since
the diffeomorphisms arise from a C∗-action on V with non-trivial Futaki
invariant and we get a destabilising configuration by taking V = V × C
with this action.

(3) The manifold V does not admit an extremal metric but the transformed
flow Jt on J converges. In this case the limit of the transformed flow lies in
another equivalence class, corresponding to another complex structure V ′

on the same underlying differentiable manifold. The manifold V ′ admits
an extremal metric. The original manifold V is not K-stable because there
is a destabilising configuration where V is diffeomorphic to V ×C but the
central fibre has the different complex structure V ′ (“jumping” of complex
structure).

(4) The transformed flow Jt on J does not converge to any complex structure
on the given underlying manifold but some kind of singularities develop.
However, one can still make sufficient sense of the limit of Jt to extract a
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scheme from it, and this scheme can be fitted in as the central fibre of a
destabilising configuration, similar to case (3).

We stress again that this is more of a programme of what one might hope
eventually to prove, rather than a summary of what is really known. In the Kahler-
Einstein/Fano situation one can develop a parrallel programme (as sketched by
Tian in [T]) for the Ricci flow (about which much more is known), where Ricci
solitons take the place of extremal metrics. In any event we hope this brings out
that point that one can approach two kinds of geometric questions, which on the
face of it seem quite different.

(1) ALGEBRAIC GEOMETRY PROBLEM. Describe the possible destabil-
ising configurations and in particular the nature of the singularities of the
central fibre (e.g does one need schemes as opposed to varieties?).

(2) PDE/DIFFERENTIAL GEOMETRY PROBLEM. Describe the possible
behaviour of the Calabi flow/Ricci flow (or other continuity methods),
and the nature of the singularities that can develop.

The essence of Conjecture 1 is that these different questions should have the same
answer.

3. Toric varieties and a toy model

One can make some progress towards the verification of Conjecture 1 in the
case when V is a toric variety [D2]. Such a variety corresponds to an integral
polytope P in Rn and the metric can be encoded in a convex function u on P . The
constant scalar curvature condition becomes the equation (due to Abreu [A1])

(10)
∑

i,j

∂2uij

∂xi∂xj
= −σ,

where (uij) is the inverse of the Hessian matrix (uij) of second derivatives of u.
This formulation displays very well the way in which the equation is an analogue,
of order 4, of the real Monge-Ampere equation (4). The equation is supplemented by
boundary conditions which can be summarised by saying that the desired solution
should be an absolute minimum of the functional

(11) F(u) =
∫

P

− log det(uij) + L(u),

where

(12) L(u) =
∫

∂P

u dρ− σ
∫

P

u dμ.

Here dμ is Lebesgue measure on P and dρ is a natural measure on ∂P . (Each
codimension-1 face of ∂P is defined by a linear form, which we can normalise to
have coprime integer co-efficients. This linear form and the volume element on Rn

induce a volume element on the face.) We wish to draw attention to one interesting
point, which can be seen as a very small part of Conjecture 1. Suppose there is
a non-trivial convex function g on P such that L(g) ≤ 0. Then one can show
that there is F does not attain a minimum so there is no constant scalar curvature
metric. Suppose on the other hand that f is a piecewise linear, rational convex
function. (That is, the maxiumum of a finite set of rational affine linear functions.)
Then one can associate a canonical test configuration to f and show that this is
destabilising if L(f) ≤ 0. Thus we have
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Conjecture 2. If there is a non-trivial convex function g on P with L(g) ≤ 0
then there is a non-trivial piecewise-linear, rational convex function f with L(f) ≤
0.

This is a problem of an elementary nature, which was solved in [D2] in the case
when the dimension n is 2, but which seems quite difficult in higher dimensions.
(And one can also ask for a more conceptual proof than that in [D2] for dimension
2.) On the other hand if this Conjecture 2 is false then very likely the same is
true for Conjecture 1: in that event one probably has to move outside algebraic
geometry to capture the meaning of constant scalar curvature.

Even in dimension 2 the partial differential equation (10) is formidable. We
can still see some interesting things if we go right down to dimension 1. Thus is
this case V is the Riemann sphere and P is the interval [−1, 1] in R. The equation
(10) becomes

(13)
d2

dx2
((u′′)−1) = −σ,

which one can readily solve explicitly. This is no surprise since we just get a
description of the standard round metric on the 2-sphere. To make things more
interesting we can consider the equation

(14)
d2

dx2
((u′′)−1) = −A,

where A is a function on (−1, 1). This equation has some geometric meaning, cor-
responding to a rotationally invariant metric on the sphere whose scalar curvature
is a given function A(h) of the Hamiltonian h for the circle action. The boundary
conditions we want are, in this case, u′′ ∼ (1 ± x)−1 as x → ±1. But if we have a
solution with

(15) u′′(x)→∞

as x→ ±1, these are equivalent to the normalisations

(16)

∫ 1

−1
A(x)dx = 1,

∫ 1

−1
xA(x)dx = 0,

which we suppose hold.
We now consider the linear functional

(17) LA(u) = u(1) + u(−1)−
∫ 1

−1
u(x)A(x)dx.

and

(18) FA(u) =
∫ 1

−1
− log(u′′(x))dx+ LA(u).

Then we have

Theorem 1. There is a solution to equations (14), (15) if and only if LA(f) >
0 for all (non-affine) convex functions g on [−1, 1]. In this case the solution is an
absolute minimum of the functional FA.
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To prove this we consider the function φ(x) = 1/u′′(x). This should satisfy the
equation φ′′ = −A with φ → 0 at ±1. Thus the function φ is given via the usual
Green’s function

φ(x) =

∫ 1

−1
gx(y)A(y)dy,

where gx(y) is a linear function of y on the intervals (−1, x) and (x, 1), vanishing
on the endpoints ±1 and with a negative jump in its derivative at y = x. Thus
−gx(y) is a convex function on [−1, 1] and

LA(−gx) =
∫ 1

−1
A(y)gx(y)dy = φ(x).

Thus our hypothesis (LA(g) > 0 on convex g) implies that the solution φ is positive
throughout (−1, 1) so we can form φ−1 and integrate twice to solve the equation

u′′ = φ−1

thus finding the desired solution u. The converse is similar. The fact that the
solution is an absolute minimum follows from the convexity of the functional FA.
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