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Section 6; Spinors and the Dirac operator

Let V be a finite-dimensional Euclidean vector space. The
Clifford algebra Cl(V ) is the algebra with unit generated by V
subject to the relations

v1v2 + v2v1 = −2⟨v1, v2⟩,

for v1, v2 ∈ V .
Let e1, . . . .en be an orthonormal basis for V . It is clear that
Cl(V ) has dimension 2n and a basis ei1 . . . eip for i1 < i2 · · · < ip.
There is a canonical vector space isomorphism
σ : C(V ) → Λ∗V . So the Clifford algebra can be regarded as
Λ∗V with a modified product. The Clifford product maps Λp ⊗ Λq

to
Λp+q ⊕ Λp+q−2 ⊕ Λp+q−4 . . . ,

and the highest degree term is the same as the wedge product.
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If ξ1, ξ2 ∈ Λ2 ⊂ C(V ) then, using the Clifford product,
ξ1ξ2 − ξ2ξ1 ∈ Λ2. So the commutator in Cl(V ) defines a bracket
Λ2 ⊗ Λ2 → Λ2. On the other hand Λ2 = so(V ), the Lie algebra of
SO(V ) and one checks that this gives the same bracket.
It follows that any representation of Cl(V ) on a vector space Σ
(i.e. an algebra homomorphism Cl(V ) → End (Σ)) defines a
representation of so(V ) on Σ.
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Defining a representation of C(V ) on Σ is the same as defining
a map γ : V → End Σ such that, if ei is an orthonormal basis of
V and γi = γ(ei), we have

γ2
i = −1 , γiγj = −γjγi i ̸= j
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We will construct a representation for Rn by induction. Suppose
n = 2m is even and we have defined S2m = S+

2m ⊕ S−
2m such

that γ(v) maps S± to S∓ for v ∈ R2m.
Then we define S2m+1 = S+

2m ⊕ S−
2m and

γ2m+1 =

(
i 0
0 −i

)
.

Now given S2m+1 we define S+
2m+2 = S−

2m+2 = S2m+1 with

γ2m+2 =

(
0 −1
1 0

)
.
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Thus for each n we have a representation of son on a complex
vector space S = Sn. This defines a representation of the
double cover Spin(n) of SO(n). If we write c ∈ Spin(n) for the
non-trivial element in the kernel of Spin(n) → SO(n) then c acts
as −1 on S.

Corollary
Suppose we have two orthonormal bases ei ,e′

i for V defining
the same orientation. Then the inductive procedure above
defines vector spaces S,S′ using these bases. Up to sign there
is a canonical isomorphism from S to S′.

Elements of S are called spinors.
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For n even, the action of Cl(V ) on S induces an isomorphism

γ : Cl(V )⊗ C → End S.

We have Spin(V ) 7→ End(S) and this is the composite of γ an
embedding Spin(V ) ⊂ Cl(V ). This is image of the exponential
map

expCl : Λ
2 → Cl(V )

defined by Clifford multiplication. (This statement also holds for
n odd.)
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In dimension 8k ,8k ± 1 the spin space has a real structure.
In dimensions 8k + 3,8k + 4,8k + 5 the spin space has a
quaternionic structure.
In dimensions 8k ± 2 the spaces S+,S− are duals.

In low dimensions there are isomorphisms, defined by the
spinor representations:

Spin(2) = S1.
Spin(3) = SU(2) = Sp(1)
Spin(4) = SU(2)× SU(2) = Sp(1)× Sp(1)
Spin(5) = Sp(2)
Spin(6) = SU(4).

In dimensions 7,8 there are special phenomena, related to
exceptional holonomy G2 ⊂ SO(7),Spin(7) ⊂ SO(8).
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The Dirac operator
Go back to Rn and γi : S → S for i = 1, . . . ,n with
γ2

i = −1, γiγj + γjγi = 0, i ̸= j . Define a differential operator on
S-valued functions on Rn by

D =
∑

γi
∂

∂xi
.

Then

D2 = ∆ = −
∑ ∂2

∂x2
i
.

This is the (Euclidean) Dirac operator.
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A spin structure on an oriented Riemannian n-manifold M is a
principle Spin(n) bundle P → M such that the tangent bundle of
M is associated to the representation of Spin(n) on Rn. The
Levi-Civita connection induces a connection on P.

Given P, we have a complex vector bundle of spinors S → M
associated to the spin representation of Spin(n) and a Clifford
multiplication map γ : TM → End(S) which we can also write as

C : TM ⊗ S → S.

There is a covariant derivative ∇ : Γ(S) → Γ(T ∗M ⊗ S).
The Dirac operator is the composite D = C ◦ ∇ (identifying TM
with T ∗M using the metric) which gives

D : Γ(S) → Γ(S).
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Since all the bundles involved have metrics, there is an adjoint
operator

∇∗ : Γ(T ∗M ⊗ S) → Γ(S).

The Lichnerowicz formula is

D2 = ∇∗∇+
scal
4

,

where scal is the scalar curvature of M.
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To derive the formula, choose a local orthonormal frame ei of
tangent vectors. At a given point p ∈ M we can arrange that
∇ei = 0. Write ∇i for the covariant derivative in the direction ei
and γi : S → S for Clifford multiplication with ei .
Then ∇ =

∑
∇i ⊗ ei and ∇∗

i = −∇i + div(ei). So, at the point p,

∇∗∇ = −
∑

∇2
i .
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We have D =
∑

γi∇i so at the point p

D2 =
∑

γiγj∇i∇j

This is (at p):

D2 = −
∑

∇2
i +

∑
i<j

γiγj [∇i ,∇j ].

Using again that ∇ei vanishes at p we have

[∇i ,∇j ] = ρ(Fij)

where F is the curvature of P and ρ is the Lie algebra action on
S.
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In terms of the curvature Rijkl , this is

D2 = ∇∗∇+
1
8

∑
Rijklγiγjγkγl .

Another way of saying this is that we have the curvature
Riem ∈ Λ2 ⊗ Λ2 and the algebraic term is the image of this
under Clifford multiplication.
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Clifford multiplication on Λ2 ⊗ Λ2 has three components:
The wedge product Λ2 ⊗ Λ2 → Λ4. This vanishes on Riem
by the Bianchi identity.
A component Λ2 ⊗ Λ2 → Λ2. This is skew-symmetric so
also vanishes on Riem ∈ s2(Λ2).
A component Λ2 ⊗ Λ2 → Λ0. Up to a factor 2, this is the
contraction of Riem giving the scalar curvature.
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More generally, let E → M be a Hermitian vector bundle with
connection. Then we have

DE : Γ(E ⊗ S) → Γ(E ⊗ S)

and a formula (schematically)

D2
E = ∇∗∇+

scal
4

+ FE .

Author Differential Geometry, Part 3



Section 7: The index of the Dirac operator
Subsection 7.1
From now on, suppose that M is compact and has even
dimension 2m. Then S = S+ ⊕ S− and the Dirac operator is
the sum of

D+ : Γ(S+) → Γ(S−)

and its adjoint D−. More generally we can couple to a
Hermitian vector bundle E giving D+

E .
This is an elliptic operator and by general theory has an index

ind D+
E = dim ker D+

E − dim ker D−
E .

which is a deformation invariant, independent of the choice of
metric on M and connection on E .
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The Atiyah-Singer Index Theorem gives a formula

ind D+
E =

∫
M

Â(M)ch (E),

where
Â(M) is a certain power series in the Pontrayagin classes
pi of the manifold M, beginning with

1 − 1
24

p1 +

(
−4p2 + 7p2

1
5760

)
+ . . .

ch (E) is a power series in the Chern classes ci(E),
beginning with

1 + c1 +

(
c2

1
2

− c2

)
+ . . . .
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Taking suitable bundles E , this leads to a number of other
famous formulae:

The Gauss-Bonnet formula, for the index of the operator

d + d∗ : Ωeven(M) → Ωodd(M).

The Hirzebruch signature formula, expressing the
signature of a manifold of dimension 4k in terms of
Pontrayagin classes.
The Riemann-Roch formula, for the holomorphic Euler
Characteristic of a holomorphic vector bundle over a
compact complex manifold.
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Subsection 7.2: Applications to scalar curvature

Combined with the Lichnerowicz formula, the index theorem
gives information about manifolds with positive scalar curvature.
Most simply:
If M4k has a spin structure and a Riemannian metric with
scal > 0 then ∫

M
Â = 0.

Note that CP2 has p1 ̸= 0 and scal > 0 but does not have a spin
structure.
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A more subtle argument (Gromov and Lawson 1980) gives a
proof of the nonexistence of metrics of positive scalar curvature
on T n.
By taking a product with S1 we can suppose that n is even. For
example take n = 4.
The tangent bundle of T 4 is trivial, so the Pontrayagin classes
vanish.

Let L → T 4 be a complex line bundle with c2
1(L) ̸= 0. Then the

index of D+
L is non zero.

Author Differential Geometry, Part 3



Let α1, . . . α4 be a standard basis of closed 1-forms on T 4. If
[αi ] ∈ H1(T 4) are integral classes then there is a Hermitian line
bundle L with connection having curvature

(2π)−1(α1α2 + α3α4),

and the index of D+
L is non-zero.

For ν >> 0 let π : T 4 → T 4 be the ν4 covering map so that the

π∗(ν−1αi)

define integral classes.

Author Differential Geometry, Part 3



Suppose that T 4 has a metric g with scal ≥ ϵ > 0.

Then π∗(g) also has scal ≥ ϵ and there is a line bundle
L̃ = π∗(L)ν

−2
with |F | ≤ Cν−2 such that indD+

L̃
̸= 0.

Taking ν >> ϵ−1/2 we get a contradiction to the Lichnerowicz
formula.
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7.3 The heat equation and the index theorem: background
The appearance of the Chern character in the index formula

ind D+
E =

∫
M

Â(M)ch (E),

is not surprising. By general results in algebraic topology, for a
fixed compact manifold M any map I from complex vector
bundles over M to the integers such that

I(E1 ⊕ E2) = I(E1) + I(E2)

can be expressed as

I(E) =

∫
M

a(M)ch E ,

for some a(M) ∈ H∗(M).
We will focus attention on the case of trivial bundles and the
class Â(M).
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Recall the definition on Â. Let f (z) be the function

f (z) =
(

z/2
sinh(z/2)

)1/2

.

This is an even function with f (0) = 1. Take variables λa and
consider ∏

a

f (λa)
2.

This can be written as a function A(σ1, σ2, . . . ) of the
elementary symmetric functions of the λ2

a:

σ1 =
∑

λ2 , σ2 =
∑

λ2
aλ

2
b . . . .

Now set Â = A(p1,p2, . . . ) where pi are the Pontrayagin
classes.
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Thus we have

f (z)2 = 1 − z2

24
+ cz4 + . . . ,

where c = 1
(24)2 − 1

245! , which gives

∏
a

f (λa)
2 = 1− 1

24

∑
λ2

a+c(
∑

λ2
a)

2+

(
1

(24)2 − 2c
)∑

λ2
aλ

2
b+. . .

which gives

Â = 1 − p1

24
−

(
−4p2 + 7p2

1
5760

)
+ . . . .
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Chern-Weil theory expresses Â(M) in terms of curvature. Given
a Riemannian metric, we define a differential form

Â = det f
(

R
4πi

)
, (∗ ∗ ∗)

where R is the curvature tensor. This formula is understood in
the following way. For ξ ∈ so(n) we can form det f (ξ/4πi) as an
invariant function on the Lie algebra.
Now think of R as a 2-form with values in a bundle of Lie
algebras and define (***) by using multiplication on 2-forms.

Then it is a fact that Â is a closed form representing Â.
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Now we make a digression to review some theory of the heat
equation on a compact Riemannian manifold M. This is the
equation

∂t f = −∆f .

The solution can be written as f = exp(−t∆)f0 where f0 is teh
initial value.
This has an integral representation

f (x , t) =
∫

kt(x , y)f0(y)dy

where kt( , y) is the fundamental solution of the heat equation
with limit δy as t → 0.
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There is an orthonormal basis ϕλ of eigenfunctions for ∆ on M

∆ϕλ = λϕλ

and
kt(x , y) =

∑
e−λtϕλ(x)ϕλ(y)

The fundamental solution of the heat equation on Rn is

Kt(|x − y |) = 1
(4πt)n/2 e−|x−y |2/4t .

This can be used as a starting point in the construction of an
asymptotic solution on the manifold M.
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Given y ∈ M, let r(x) = d(x , y). Then Kt(r) is a solution of the
heat equation on M if it happened that ∆r2 = −2n.

In fact, writing E = ∆r2 + 2n, one computes

(∂t +∆)Kt(r) = − 1
4t

EKt .

So in general we have

(∂t +∆)Kt(r) = O(t−(n/2+1)).
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We seek to improve this by considering uKt , for a function u on
M.
Then

(∂t +∆)uKt = ∆u Kt −
u
4t

EKt − 2∇u.∇Kt .

Working in polar coordinates,

∇Kt = − rKt

2t
∂r

so
−2∇u.∇Kt =

rKt

t
∂u
∂r

.
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If we can solve the equation for u,

r
∂u
∂r

=
u E
4

, (∗ ∗ ∗ ∗ ∗)

then
(∂t +∆)(uKt) = O(t−n/2).

The geometry of the exponential map gives a solution to the
equation (*****)
The formula for the Laplacian in a general coordinate system is

∆f = − 1
√

g

∑
∂i(g ij∂j f ),

where
√

g is the volume form in these coordinates.
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Using geodesic polar coordinates we get

−∆r2 = 2 + 2r
1
√

g
∂r
√

g.

Set J =
√

g
rn−1 . Then

∂J
∂r

= J
(

g−1/2∂r g1/2 − n − 1
r

)
.

This leads to the formula

∂r J =
J E
2

.

Finally we see that u = J−1/2 is a solution to (*****).
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The function J = J(x , y) is the determinant of the exponential
map expy with respect to the volume form on TMy and the
Riemannian volume form on M, at the point v ∈ TMy with
expy (v) = x.

Our improved approximation to kt(x , y) is

J(x , y)1/2Kt = J(x , y)−1/2 1
(4πt)n/2 e−d(x ,y)2/4t .
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We can continue in the same way to find functions up(x , y),
such that (

u0 + tu1 + t2u2 + . . .
)

Kt

is a formal solution of the heat equation.

At stage p we choose up to cancel the O(t−n/2+p−1) error term.

This involves solving a radial ODE, as for u0 = J1/2. Any finite
jet of the up can be found, in principle, by a mechanical
algebraic procedure in terms of pointwise invariants of the
Riemannian manifold (curvature and iterated covariant
derivatives of curvature).

Some analysis shows that these formal solutions do give
asymptotic descriptions of the true solution kt(x , y).
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The trace of exp(−∆t) has a spectral description∑
e−λt ,

and an integral description∫
M

kt(x , x)dx .

In particular

Tr exp(−t∆) ∼ (4πt)−n/2(I0 + t I1 + t2 I2 . . . )

where Ip =
∫

M up(x , x)dx .

These two descriptions were used by Weyl to get an asymptotic
formula for the distribution of eigenvalues λ.

This concludes our digression on the heat equation.
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Now go back to our Dirac operator

D+ : Γ(S+) → Γ(S−),

over a compact manifold M2m. The adjoint is D− and
D = D+ + D−. Write ∆± for the restrictions of D2 to Γ(S±).

These are operators of the Laplace type and the same theory
applies to the associated heat operators exp(t∆±).

If ∆+ϕ = λϕ then ∆−D+ϕ = λD+ϕ and if λ is not zero D+ϕ ̸= 0.

It follows that the strictly positive spectra of ∆+,∆− are the
same.
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This means that for any t > 0

Tr(exp(−∆+t))− Tr(exp(−∆−t)) = index D+.

On the other hand the operators exp(−∆±t) have integral
representations with kernels k±

t (x , y) where now

k±
t (x , y) ∈ Hom (S±

y ,S±
x )

and
Tr(exp(−∆±t) =

∫
M

tr k±
t (x , x)dx .

The right hand side has an asymptotic description in terms of
local invariants.
We conclude that

indD+ =

∫
M
Θ(x)dx ,

where the index density Θ(x) is the difference of the t0 terms in
the asymptotics of trk+(x , x), trk−(x , x).
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The Local Index theorem is the statement that Θ dx = [ Â ]2m.

Here dx is shorthand for the Riemannian volume form and [ ]2m
is the component in Λ2m. This is only interesting when m is
even. For m odd the index of the Dirac operator is zero because
the kernel of D− is the complex conjugate of the kernel of D+.

Example On a Riemann surface the Dirac operator is the ∂
operator on K 1/2 and the vector spaces H0(K 1/2),H1(K 1/2) are
Serre duals.

The local version implies the global Atiyah-Singer formula, but
is a stronger statement.
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The first proof of the index theorem was announced by Atiyah
and Singer in 1963. That used cobordism theory.

The heat equation approach goes back to McKean and Singer
(1967). It was developed into proofs by Patodi (1971), Gilkey
(1973), Atiyah-Bott-Patodi (1973). These proofs were rather
long and indirect.

A shorter proof, with new insights, was found by Getzler (1986),
related to ideas from quantum field theory and supersymmetry.

We will discuss the proof from Chapter 5 of the book Heat
Kernels and Dirac operators Berline, Getzler, Vergne Springer
2004, which uses an idea of Berline and Vergne (1986).

A new insight is that the function f (z) =
(

z/2
sinh(z/2)

)1/2
arises

from the classical differential geometry of the frame bundle of M
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Section 8: Proof of the local index theorem

Set up
M2m is a Riemannian manifold with spin structure.

π : P → M is the Spin(2m) frame bundle.

S2m is the spin space (complex dimension 2m) and
ρ : Spin(2m) → End S2m is the spin representation.

We have a bundle S → M given by P ×Spin(2m) S2m.
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A linear map L : S2m → S2m has four components S±
2m → S±.

The supertrace Str(L) is the trace of L : S+
2m → S+

2m minus the
trace of L : S−

2m → S−
2m.

Similarly for a bundle endomorphism of S → M.
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The operator exp(−tD2) on Γ(S) is represented by a heat kernel

kS
t (x , y) ∈ Hom(Sy ,Sx).

The index density Θ(x) is the t0 term in the asymptotic
expansion of Str kS

t (x , x).

Lifting to P, this heat kernel defines, for p,q ∈ P,
k̃S

t (p,q) ∈ End(S2m) with the transformation property

k̃S
t (pg1,qg2) = ρ(g−1

1 ) ◦ k̃S
t ◦ ρ(g2),

and for any p ∈ π−1(x) we have Str kS
t (x , x) = Str k̃S

t (p,p).
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The connection on P defines a standard Riemannian metric on
the total space, hence a Laplace operator ∆P on functions on P
and a heat kernel kP

t (p,q).

For simplicity, we will make the assumption that M has constant
scalar curvature 4b.
Write ν = m(2m − 1), the dimension of Spin(2m).

Proposition

k̃S
t (p,q) = e−ct

∫
Spin(2m)

kP
t (p,qg) ρ(g−1) dg,

where c = ν − b.

Author Differential Geometry, Part 3



Proof of the Proposition
Step 1 The Lichnerowicz formula gives D2 = ∇∗

S∇S + b.

Step 2 Write the derivative ∇ on the functions on the total
space of P as ∇H +∇V . We get ∆P = ∇∗

H∇H +∇∗
V∇V .

Step 3 Identify sections s of S → M with equivariant
S2m-valued functions

s̃ : P → S2m s̃(pg) = ρ(g)−1s̃(p).

Under this identification ∇∗
S∇S corresponds to ∇∗

H∇H ,
restricted to equivariant functions.

Author Differential Geometry, Part 3



Step 4
∇∗

V∇V = ν on equivariant functions.

To see this, let Xij be the left-invariant vector fields on Spin(2m)
corresponding to the standard orthonomal basis ei ∧ ej of the
Lie algebra. Then, identifying a fibre of P with the group,

∆V = −
∑

∇2
Xij
.

The action of ∇Xij on an equivariant function is just the Lie
algebra action of (dρ)(ei ∧ ej) on S2m. This is γiγj . So the
action of ∇2

Xij
is γiγjγiγj = −1.

(This is an instance of the general theory of the Casimir
operator associated to any compact Lie group.)
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Step 5

So the operator D2 on Γ(S) corresponds to
∆P + b − ν = ∆P + c acting on equivariant functions and
exp(−tD2) corresponds to e−tc exp(−t∆P).
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Step 6

Let s be a section of S supported on a set on which P has a
local section y 7→ q(y). Let s̃ be the equivariant function on P
corresponding to s and σ̃ the equivariant function
corresponding to σ = exp(−tD2)s.

Then
σ̃(p) =

∫
M

k̃S
t (p,q(y)) s̃(q(y)) dy , (∗∗)

(and this is independent of the choice of q(y)).
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The result in Step 5 implies that

σ̃(p) = e−ct
∫

P
kP

t (p,q) s̃(q) dq.

Writing q = q(y)g, this is

σ̃(p) = e−ct
∫

M

∫
Spin(2m)

kP
t (p,q(y)g) s̃(q(y)g) dg dy .

Using the equivariance of s̃ we get

σ̃(p) = e−ct
∫

M

(∫
Spin(2m)

kP
t (p,q(y)g)ρ(g−1)dg

)
s̃(q(y)) dy ,

and, comparing with (**), this establishes the Proposition.
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Fix x ∈ M and p ∈ π−1(x).

Corollary to Proposition

Θ(x) is the t0 term in the asymptotic expansion of∫
Spin(2m)

e−ct kP
t (p,pg) Str

(
ρ(g−1)

)
dg.
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Define Θ0(x) by replacing kP
t by its approximation, so Θ0(x) is

the t0 term in the expansion of∫
Spin(2m)

e−ct J−1/2(p,pg)Kt(r(g)) Str
(
ρ(g−1)

)
dg, (∗)

where r(g) is the distance from p to pg.

We will calculate Θ0 and then explain why it is equal to Θ.
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For any fixed δ > 0, the contribution to the integral (*) from the
region where r > δ is o(tµ) for all µ so does not affect the
asymptotic expansion. Thus we can pull the integral back to the
Lie algebra, writing g = exp(ξ). We will show below that the
fibres of P are totally geodesic so r(exp(ξ)) = |ξ|. Write j(ξ) for
the determinant of the derivative of the exponential map at ξ
and J(ξ) = J(p,p exp(ξ)). So now we are considering

e−ct

(4πt)m+ν/2

∫
Λ2

e−|ξ|2/4tJ(ξ)−1/2j(ξ) Str (ρ exp(−ξ)) dξ (∗∗)
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Consider an integral

I(f , t) =
∫

RN
e−|x |2/4t f (x)dx .

Then
1 If f is a polynomial of pure degree d then

I(f , t) = I(f ,1)tN/2+d/2;
2 If f (x) = O(|x |d) then I(f , t) = O(tN/2+d/2).

It follows that we can find the asymptotic expansion of (∗∗) by
replacing the functions in the integrand by suitable truncations
of their Taylor series. So we are reduced to calculating integrals
I(f , t) for polynomials f , and hence to algebra.
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The geometry of the manifold M only enters (in the formula for
Θ0) through the function J(ξ).
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We now consider the term Str (ρ exp(−ξ)).
For a Euclidean vector space V the exterior square Λ2 is
contained in three different algebras:

The exterior algebra Λ∗V ;
The Clifford algebra Cl(V ):
The endomorphism algebra End(V )

Each of these will play a role in our discussions. We will write

τ : Λ2 → s0(V ) ⊂ End(V ),

normalised so that in dimension 2

τ(e1 ∧ e2) =
1
2

(
0 −1
1 0

)
.
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Recall that we have γ : Cl(V ) → End(S). We fix the vector
space identification of Cl(V ) with Λ∗. Define

T : Λ∗ → R

to be the projection onto the top-dimensional component,
normalised by

T (e1 ∧ · · · ∧ e2m) = 1.

Then one finds that , for α ∈ Cl(V ) = Λ∗,

Str(γ(α)) = (−2i)mT (α).
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Hence
Str (ρ exp(−ξ)) = (−2i)mT (expCl(−ξ)),

where expCl is the exponential series computed in the Clifford
algebra.

We want to relate this to the simpler expΛ(−ξ), where expΛ is
the exponential series computed in the exterior algebra.
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The relation we need is the formula

T (expCl(ξ)) = T (expΛ(ξ)) f (τ(ξ))1/2, (∗ ∗ ∗)

where, for an endormorphism A;

f (A) = det
(
sinh(A)

A

)
.

To establish this formula it suffices, by SO(2m)-invariance, to
consider

ξ = ξ1 + ξ2 + · · ·+ ξm,

where ξ1 = λ1e1 ∧e2, ξ2 = λ2e3 ∧e4, . . . . The ξi commute in the
Clifford algebra so expCl(ξ) = expCl(ξ1) expCl(ξ2) . . . expCl(ξm)
and similarly for the exterior algebra.
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This reduces the problem to the case m = 1 and ξ = λe1 ∧ e2.
Then, in the Clifford algebra, ξ2 = −λ2 and
expCl(ξ) = cosλ+ sinλ e1∧2 so

T (expCl(ξ)) = sinλ,

while T (expΛ(ξ)) = T (1 + ξ) = λ.
Now τ = τ(ξ) = λJ for

J =

(
0 −1
1 0

)
,

with J2 = −1. So

sinh(τ)

τ
= 1+τ2/3!+τ4/5!+· · · = 1−λ2/3!+λ4/5!+· · · = sinλ

λ
,

and

det

(
sinh(τ)

τ

)
=

(
sinλ

λ

)2

.
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Notice that T (expΛ(ξ)) = T (ξm/m!) is the Pfaffian Pfaff(ξ).

For a function F (ξ) on Λ2 define

It(F ) =
1

(4πt)m+ν/2

∫
Λ2

e−|ξ|2/4tF (ξ)Pfaff(ξ)dξ .

So if F0(ξ) = J(ξ)−1/2j(ξ)f (ξ)1/2 the number Θ0 is the t0 term in
the expansion of (−2i)me−ct It(F0).

The Pfaffian has degree m so if F is a polynomial of degree d
then It(F ) = O(td−m/2). Thus for a general function F only
terms of order ≤ m contribute to the t0 term in It(F ).
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Observation 1
In standard co-ordinates xi on RN , if G is a polynomial of
degree < µ then∫

RN
e−|x |2/4G(x) x1 . . . xµ dx = 0.

On Λ2 we have co-ordinates ξij for i < j . The Pfaffian is a sum
of monomials

±ξi1j1ξi2j2 . . . ξim jm ,

over partitions (i1j1)(i2j2) . . . (imjm) of (1 . . . 2m).
It follows that It(F ) = 0 for polynomials F of degree < m.

So for any F the expansion of It(F ) has no terms in negative
powers of t.
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Thus
Θ0 = lim

t→0
(−2i)m It(F0).

Now go back to the statement: Θ(x) is the t0 term in the
asymptotic expansion of∫

Spin(2m)
e−ct kP

t (p,pg) Str
(
ρ(g−1)

)
dg.

We have an asymptotic expansion of kP
t (p,pg) in powers of t :(

J−1/2(p,pg) + tU1(g) + t2U2(g) + . . .
)

Kt(r(g)).

The whole discussion above can be applied to each term and
we see that the higher terms Ui do not contribute to the t0 term
in expansion of the integral.

So Θ(x) = Θ0(x).
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To summarise progress so far, we have a formula

Θ =
(−2i)m

(4π)ν/2+m

∫
Λ2

e−|ξ|2/4Fi(ξ)Pfaff(ξ)dξ,

where F1(ξ) is the degree m term in the Taylor series of
F0(ξ) = J−1/2(ξ)j(ξ)f 1/2(ξ).
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Observation 2
In standard co-ordinates xi on RN , if G is a standard monomial
of degree µ then ∫

RN
e−|x |2/4G(x) x1 . . . xµ dx

is zero unless G = x1 . . . xµ in which case the integral is
2µ(4π)N/2.

The polynomial functions on Λ2 can be identified with the
symmetric powers s∗(Λ2). On the other hand we have a ring
homomorphism induced by wedge product

s∗(Λ2) → Λeven.

So for any polynomial function F (ξ) we have a Q(F ) ∈ Λeven.
This extends in an obvious way to general smooth functions on
Λ2.
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Explicitly, we have standard coordinates ξij on Λ2 and Q is
defined by substituting ei ∧ ej for ξij .
For example

Q(ξ2
12) = 0.

Q(ξ12ξ13) = 0
Q(ξ12ξ34) = e1 ∧ e2 ∧ e3 ∧ e4
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Now Observations 1,2 and a little thought show that for a
polynomial F∫

Λ2
e−|ξ|2/4F (ξ)Pfaff(ξ)dξ = Const.TQ(F ), (∗ ∗ ∗∗)

(which only involves the degree m part of F ).
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For example consider the case m = 2. Then

Pfaff = ξ12ξ34 − ξ13ξ24 + ξ14ξ23.

If F is a degree 2 polynomial, in multi-index notation∑
I

aIξ
I

then the integral in (****) is

a12,34 − a13,24 + a14,23

the 4-form Q(F ) is

a12,34(e1∧e2)∧(e3∧e4)+a13,24(e1∧e3)∧(e2∧e4)+a14,23(e1∧e4)∧(e2∧e3),

which is (a12,34 − a13,24 + a14,23)e1 ∧ e2 ∧ e3 ∧ e4.
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So now we have
Θ = Const.T Q(F )

where F (ξ) = J(ξ)−1/2j(ξ)f 1/2(ξ).

This is simplified by the following observation. The group
O(2m) acts on Λ2 and preserves the functions j , f 1/2. So
Q(j),Q(f 1/2) are forms in Λ∗ invariant under O(2m). But the
only such forms are multiples of 1 (easy proof by induction on
dimension). It follows that Q(j) = Q(f 1/2) = 1 and since Q is a
ring homomorphism we have

Θ = Const.T
(

Q(J−1/2)
)
.

Our problem is reduced to finding the function J(ξ) on Λ2 and
computing Q(J−1/2).
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The Riemannian geometry of the frame bundle P
The connection gives a decomposition TP = V ⊕ H where
H = π∗(TM).

Recall the formula for the Levi-Civita connection on a
Riemannian manifold in terms of orthonormal vector field
X ,Y ,Z :

∇X Y .Z =
1
2
([X ,Y ].Z − [X ,Z ].Y + [Y ,Z ].X ) .

On the bundle P we consider orthonormal vector fields
vertical fields v generating the group action, corresponding
to elements ξ ∈ g = s0(2m);
horizontal field h̃; horizontal lifts of vector fields h on M,
with respect to the connection
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Then we have
[v1, v2] is vertical, given by the bracket in the Lie group g;
[v , h̃] = 0;
[h̃1, h̃2] has a horizontal component equal to the horizontal
lift of [h1,h2] and a vertical component given by the
curvature R.
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In this way one can compute the Levi-Civita connection on the
total space P.

One finds that for any such vertical field v the covariant
derivative ∇v v is zero, which shows that the fibres are totally
geodesic submanifolds, as we mentioned earlier.
Fix p ∈ P as before and ξ ∈ g corresponding to a vertical vector
field v .
The derivative of the Riemannian exponential map is a linear
map

Lξ : TPp → TPp exp(ξ).

The totally geodesic property of the fibres implies that Lξ

preserves the horizontal and vertical subspaces.
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The determinant of Lξ in the vertical component is the function
j(ξ) that we saw before.

We need to compute the determinant JH of the horizontal
component of Lξ.
The Riemann curvature RM of M lies in g⊗ Λ2.
The inner product RM .ξ lies in Λ2. Let A = Aξ be the
corresponding element τ(RM .ξ) ∈ g ⊂ End TM.
One finds that

∇v h̃ = A(h̃).
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Write RiemP for the Riemann curvature tensor of the total space
P.
We have

RiemP(v , h̃)v = [∇v ,∇h̃]v ,

because [v , h̃] = 0.
Since ∇v v = 0 and, again, [h̃, v ] = 0 this gives

RiemP(v , h̃)v = ∇v∇v h̃,

which implies that

RiemP(v , h̃)v = A2(h̃).
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Conclusion The Jacobi equation along the geodesic p exp(tξ)
in P, restricted to horizontal variations and with respect to a
covariant constant frame along the geodesic is

d2

dt2 w = A2 w ,

where A = RM .ξ
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This is a constant co-efficient ODE and we have explicit
solutions. One finds that

JH(ξ) = det

(
sinhA

A

)
,

with A = Aξ = τ(RM .ξ).
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Last step

For the same reason as before we can drop the vertical
component j(ξ) in J(ξ) and we have

Θ = Const. T Q(J−1/2
H )

where

JH(ξ) = det

(
sinhAξ

Aξ

)
,

and Aξ = τ(RM .ξ).
We want to show that Θ = [ Â ]2m (∗).
Th equality follows from the symmetry of the Riemann
curvature tensor RM ∈ Λ2 ⊗ Λ2.
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Let σ(ξ) be the degree m polynomial function on Λ2 defined by
the order m term in the Taylor series of the function

det1/2
(

A
sinhA

)
,

where A(ξ) = τ(ξ). Then given ρ ∈ Λ2 ⊗ Λ2 we can form
σ1(ρ) ∈ R ⊗ Λ2m by applying σ to the first factor and wedge
product in the second factor. Or we can form σ2(ρ) ∈ Λ2m ⊗ R
by switching the factors.

With ρ = RM the two constructions give the two sides of (*).

Since RM is in s2(Λ2) they give the same result.
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