
Kahler geometry and diffeomorphism groups: notes for a series of
lectures given in CIMAT, Guanajuato, Mexico, August 2004

Lecture 1.

The theme of these lectures will be the study of Kahler metrics of constant
scalar curvature. We begin with some background. In any co-ordinate system,
the Gauss curvature of a surface in 3-space is given by a complicated formula
involving the coefficients of the first fundamental form (induced Riemannian
metric). A basic theorem asserts that we can always find “isothermal ” coordi-
nates, so the induced metric is

ef (du2 + dv2),

and in these coordinates the Gauss curvature has the simple representation

K = −
e−f

2
(fuu + fvv).

The existence of isothermal coordinates means that any surface in 3-space
can be regarded as a Riemann surface; with an atlas of charts which differ by
conformal, or equivalently holomorphic, maps. In this way, Riemann surfaces
arise as differential geometric objects—i.e 2-dimensional oriented Riemannian
manifolds modulo conformal equivalence. On the other hand, Riemann surfaces
also arise as algebro-geometric objects, for example as complex plane curves given
by equations p(z1, z2) = 0, where p is a polynomial in two variables. Actually
we will consider projective curves in complex projective space CPn. (Recall
that this is the quotient of Cn+1 \ {0} by the action of scalar multiplication,
and may be regarded as Cn compactified by the addition of points at infinity.)
Moving closer to our main theme: the starting point is a fact known from

the end of the 19th. century:
Any compact Riemann surface has a metric of constant Gauss curvature

(and this is essentially unique).
We want to extend these ideas to higher dimensions, in the framework of

Kahler geometry. To explain what this is, recall some linear algebra. On a
real, even dimensional, vector space we can consider three kinds of algebraic
structure

• A complex structure;

• A Euclidean metric;

• A symplectic (i.e. skew-symmetric) form
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Any two of these three structures, which are suitably compatible, define the
third one. A Kahler manifold is an even dimensional manifold with each of
these algebraic structures on its tangent spaces, compatible in a natural way.
There are at least three different routes one can take to motivate the definition.

• In Riemannian geometry, a Kahler manifold is a Riemannian manifold
whose holonomy is contained in the unitary group.

• Kahler metrics naturally occur on complex projective varieties. For ex-
ample there is a standard “Fubini-Study” metric gFS on CP

n and if
X ⊂ CPn is a complex submanifold the restriction of gFS to X is Kahler.

• Starting with a symplectic manifold, a Kahler structure appears as a “com-
plex quantisation”in that we can associate to it a complex vector space
(Hilbert space) HX of holomorphic functions. More precisely, we should
talk about holomorphic sections of a line bundle L→ X and write HX,L.

The scalar curvature S of a Kahler manifold is given, in local complex co-
ordinates za by

S = i
∑

a,b

gab
∂2f

∂za∂zb
,

where gab is the (Hermitian) matrix representing the metric, g
ab is its inverse,

and ef is the volume form (i.e. the determinant of the matrix (gab. ).
We have now set up the background for our problem:

If X is a complex projective manifold, does it have a Kahler metric of con-
stant scalar curvature? If so, is the metric unique?

(Note that a special case of this discussion is the problem of existence of
Kahler-Einstein metrics, where the Ricci tensor is constant. Much more is
known about this, through renowned work of Calabi, Aubin, Yau, Tian,.... .)
More precisely, in our problem, we want to fix the “Kahler class” [ω] ∈

H2(X). In a fixed class, the general Kahler metric is represented by a Kahler
potential φ,

ωφ = ω0 + i
∑ ∂2φ

∂za∂zb
dzadzb.

Thus the scalar curvature of ωφ depends on the first four derivatives of φ
and our problem is asking about the solution of a (highly nonlinear) 4th order
PDE.
While the full solution of the problem above seems a long way off, we will

outline in these lectures:

• A general conceptual scheme in which to fit the problem.

• A conjecture about the correct answer.
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• The uniqueness of solutions

• A partial existence theory in the case of “toric varieties”

• An algorithm for constructing solutions numerically when these exist.

To end this first lecture we will discuss the 4th and 5th items above briefly.
4th item. Consider a convex polytope P ⊂ Rn. Suppose given a positive

measure dσ on the boundary of P and let dμ be standard Lebesgue measure on
Rn. Let u be a convex function on P so the Hessian uij is a positive definite
matrix at each point of P . Put

F(u) = −
∫

P

log det(uij) dμ+

∫

∂P

udσ −A
∫

P

udμ,

where

A =
Mass(∂P, dσ)

Mass(P, dμ)
.

Thus we have defined a functional F on the space of convex functions on P .
Question: when does this functional achieve a minimum ? We will explain later
that this question is equivalent to our problem in the case of toric varieties.
5th. item
Recall the “quantisation” vector space HX,L i.e. H0(X;L). A kahler poten-

tial φ can be thought of more geometrically as a Hermitian metric on the fibres
of L. This defines a Hermitian metric on HX,L by the standard L2 norm:

‖s‖2 =
∫

X

|s|2φω
n
φ .

On the other hand (provided L is “very ample”) we get a projective embed-
ding X → CPn = P(H∗X,L) defined by the sections of L and a metric on HX,L
defines a Fubini-Study metric on CPn and hence on X.
Let MX,L denote the set of Hermitian metrics on HX,L. Putting these

constructions together we get a map

Ψ :MX,L →MX,L.

We an replace L by Lk throughout, where k is large. (This corresponds to the

“classical limit” h → 0.) Thus we get Ψk on MLk,X . We let Ψ
(n)
k denote the

n-fold composite of Ψk.
Proposition Suppose X has a constant scalar curvature metric ω. Then for

large enough k and any initial H the composites Ψ
(n)
k (H) converge as n → ∞

to some limit, which corresponds to a metric ωk. Now

ω = lim
k→∞

ωk

k
.
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Lecture 2

In this lecture we outline how the constant scalar curvature problem can
be fitted into a general formal package, involving “moment maps” for group
actions.
We begin with a simple example. Let V be the set of n-by-n complex ma-

trices and consider the action of GL(n,C) on V by conjugation. We ask: when
does a matrix X ∈ V minimise the norm in its orbit? A little calculation shows
that if this occurs then [X,X∗] = 0. A simple but fundamental observation is
a closed orbit contains a point of minimal norm. This ties in with well-known
facts from elementary matrix theory. Clearly we can extend the ideas to any
representation of GL(n,C).
We will now explain how to fit the above into a more general and abstract

theory. Let (M,Ω) be a symplectic manifold. The basic Hamiltonian construc-
tion starts with a function H on M and constructs the vector field v = vH such
that

iv(Ω) = dH.

Then v generates a flow ft : M → M of Ω-preserving maps, i.e. an action of
the group R on (M,Ω).
Now suppose a Lie group G acts on (M,Ω), so for ξ in Lie(G) we have a

vector field vξ on M . A moment map for the action is a map

μ :M → Lie(G)∗,

with the property that for any ξ

d(ξ, μ) = ivξ(Ω).

We also suppose that μ is G-equivariant.
(An example of this set-up occurs if M = T ∗R3 the symplectic manifold

corresponding to the motion of a particle in 3-space. Then G = SO(3) acts and
the moment map gives the usual notion of angular momentum.)
Given any c ∈ Lie(G)∗ let Γ ⊂ G be the stabiliser of c. A simple fact is that

the space
μ−1(c)/Γ,

has a natural symplectic structure, the “reduced system”, taking account of the
symmetry. We will consider the case when c = 0 so Γ = G. We then have the
Marsden-Weinstein “symplectic quotient”

M//G = μ−1(0)/G.

Now suppose that M is Kahler and G preserves the complex structure. The
Lie algebra homomorphism from Lie(G) to V ect(M) extends to the complex-
ification. If G is compact (say) there is a complexified group Gc and the Lie
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algebra action exponentiates to define an action of Gc, preserving the complex
structure but not the symplectic form.
The basic principle in this situation, very roughly stated, is that the symplec-

tic quotientM//G and complex quotientM/Gc are “approximately equivalent”.
That is to say,“most” Gc-orbits contain a point where μ = 0 and this point is
unique up to the action of G.
To connect this with the example at the beginning, we consider the U(n)

action on the vector space V .
Exercise. The moment map for this action is

μ(X) = i[X,X∗] ∈ u(n) ≡ u(n)∗.

Sometimes we are more interested in the action on P (V ), the moment map
is then given by

μ(X) =
i[X,X∗]

|X|2
.

Thus we see thatthe points of minimal norm appear as the zeros of the mo-
ment map. To understand this more generally we develop a little more theory.
Suppose that L→ M is a complex line bundle with unitary connection having
curvature −iΩ. One interpretation of a moment map is as a lift of the G action
on M to L. We define a vector field ṽξ on the total space of L by

ṽξ = v̂ξ + (μ, ξ)V,

where V is the canonical vector field which generates the U(1) action on the
fibres of L. Now if M is Kahler we get a Gc action on L and likewise L∗. Given
a point x ∈M we choose a point x̂ in L∗ lying over x and we define a function
F on Gc by

F (g) = log |g(x̂)|2.

This is preserved by the action of G so we get an induced function

F : Gc/G→ R.

In the case when M = P (V ) the line bundle L∗ is the tautological bundle so
the complement of the zero section in L∗ is identified with V \ {0}. Then the
function essentially gets back to the (log of) the norms of vectors, as we began.
IfG is a compact Lie group then Gc/G is a “symmetric space”. The geodesics

in Gc/G correspond to 1-parameter subgroups of Gc.

Exercise The function F is convex along geodesics in Gc/G. Minima of F
correspond to zeros of μ.
[In fact, along a geodesic corresponding to a 1-parameter subgroup exp(iξt),

the second derivative F ′′(t) is equal to ‖vξ‖2, evaluated at the appropriate point.]
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There is a good deal more we could say about this theory: relations with
the notion of “stability” in algebraic geometry (closed orbits) etc., etc. But the
above covers the main ideas we need, and we press on.
A well known infinite-dimensional example of this set-up occurs in gauge the-

ory (Atiyah-Bott/ Hitchin-Kobayashi/Narasimhan-Seshadri/Donaldson-Uhlenbeck-
Yau/.....). We want to develop the constant scalar curvature problem in an
analogous way.
Let (X,ω) be a symplectic manifold and J be the set of compatible almost-

complex structures on X. Thus J is the space of sections of a bundle Σ over M
with fibre Sp(2n,R)/U(n), the “Siegel generalised upper half space”. A crucial
fact for us is that this has a Sp(2n,R-invariant Kahler structure. (For example,
if n = 1 the manifold SL(2,R)/U(1) is just the upper half plane and we take
the standard Poincaré metric.) A consequence of this is that J is formally an
(infinite-dimensional) Kahler manifold.
Suppose for simplicity that H1(X) = 0 and let G0 be the group of symplec-

tomorphisms of (X,ω). This group acts in an obvious way on J preserving the
Kahler structure. The Lie algebra of G0 can be identified, by the Hamiltonian
construction, with the functions of integral zero on X.
Restrict attention to the subset Jint consisting of integrable almost complex

structures.

Proposition(Fujiki, Quillen) The scalar curvature is a moment map for the
action of G0 on Jint.

Now turn to the “Gc0-orbits”. The problem here is that there is no group
Gc0. However the orbits, if there were such a group are characterised as integral
submanifolds of a certain distribution in Jint and these integral submanifolds do
exist. Suppose J is a point in Jint, so X can be regarded as a Kahler manifold
with this fixed complex structure. Let K0 be the set of Kahler potentials

K0 = {φ : ωφ = ω + i∂∂φ > 0,
∫
φ = 0}.

Now let K̃0 be the set of pairs (φ, f) where φ ∈ K0 and f : X → X with

f∗(ωφ) = ω.

There is a natural map
ν : K̃0 → Jint,

defined by ν(φ, f) = f∗(J). The image of ν is the desired integral submanifold
through J . Thus the space

Gc0/G0

is identified with K0 and our problem fits into the “standard pattern”.
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Lecture 3

In this lecture we will outline three applications of the ideas discussed the
day before.

I. Reductive automorphism groups.

In our general setting, where groups G,Gc act on a Kahler manifold M ,
suppose x ∈M is a point with μ(x) = 0. Let H be the stabiliser of x in Gc.

Proposition
The Lie group H is “reductive”;i.e. the complexification of a compact group.

The analogue in the infinite dimensional picture is an old theorem of Mat-
sushima.
Theorem
IfX is a compact Kahler manifold of constant scalar curvature and H1(X) =

0 then Aut(X) is reductive.

(Here Aut(X) denotes the group of holomorphic automorphisms of X.)

For example, if X is the “blow-up” of the projective plane at one point then
Aut(X) is the group of projective transformations which fix this point, which
is not reductive; so this X does not have a metric of constant scalar curvature.
This is a convenient place for us to recall a renowned result of Tian. Let X
be the plane blown up at r points. Then the set of Kahler classes is a cone
in H2(X) = Rr+1. For r ≤ 8 there is a distinguished point in the cone given
by c1(X). Tian proved that there is a Kahler-Einstein (and a fortiori constant
scalar curvature) metric on X in this special class if and only if Aut(X) is
reductive.
The proof of the Proposition is elementary. In fact we show that H is the

complexification of H ∩ G. This is the same as saying that if ξ1, ξ2 ∈ Lie(G)
and vξ1 +Jvξ2 vanishes at the given point x then vξ1 , vξ2 each vanish at x. This
will follow if we can show that for any ξ1, ξ2

Ω(vξ1 , vξ2) = 0,

at x. This is easiest to see if we think of an equivariant moment map as a Lie
algebra homomorphism

μ∗ : Lie(G)→ C∞(M),

lifting ξ 7→ vξ. Then

Ω(vξ1 , vξ2) = {μ
∗(ξ1), μ

∗(ξ2)},
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where { , } is the Poisson bracket. By the homomorphism property this is
μ∗([ξ1, ξ2]) which vanishes at x by hypothesis.
The original proof of Matsushima’s Theorem is (probably) identical to this,

when one translates to the infinite dimensional setting. However the general
picture makes the manipulations much more transparent.

II. Uniqueness (i)
Recall that in the general picture we have, associated to each Gc orbit,

a function F on Gc/G, convex along geodesics. In the infinite dimensional
picture we can identify Gc0/G0 with the space K0 of Kahler potentials (modulo
constants). In the infinite dimensional case the analogue of F is the “Mabuchi
functional”M which is characterised (up to a constant) by its variation

δM =
∫

X

(S − Ŝ)δφ
ωnφ

n!
.

Here ωφ = ω0 + i∂∂φ is the Kahler metric determined by φ and S is the scalar
curvature of this metric. We denote the average of S, which is a topological
invariant, by Ŝ. This formula actually defines M on the space K of Kahler
potentials and it will be more convenient to work there in what follows.
We would like to prove uniqueness of constant scalar curvature metrics by

exploiting the fact that M is convex along geodesics in K. But what are the
geodesics in K? These were first studied by Semmes. Let A denote the cylinder
A = S1 × [0, 1], regarded as a Riemann surface with boundary. A geodesic
segment in K corresponds to a function Φ on X × A, which is invariant under
rotations in the S1 variable and which satisfies the equation

(
π∗(ω0) + i∂∂Φ

)n+1
= 0,

where π is the projection to X. This is the homogeneous complex Monge-
Ampère equation. The problem of joining to points in K by a geodesic segment
is equivalent to solving this equation with given boundary values on ∂A × X.
This is a very difficult problem in PDE and analysis. It is perhaps not true that
there is always a smooth solution. However Chen showed that there is a C1,1

solution and used this to deduce uniqueness under some extra hypotheses. In
more recent work, Chen and Tian have studied the singularities that may occur
and removed the extra hypotheses.

Uniqueness (ii)

There is an alternative “finite dimensional” approach, which makes contact
with the construction algorithm described in the first lecture. Suppose for sim-
plicity that H1(X) = 0 and Aut(X) is trivial. We first consider the symplectic
manifold (X,ω) with a line bundle L → X having curvature −iω. It is conve-
nient to work now with the group G of connection and metric preserving bundle
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diffeomorphisms from L to L. These cover symplectomorphisms of X so we
have an extension

S1 → G → G0.

We fix a positive integer k. Define J as before and let Z denote the set of
pairs

(J, (s0, . . . sN ))

where J ∈ J and s0, . . . , sN are sections of Lk. We let Zint be the subset of
data where J ∈ Jint and s0, . . . , sN is a basis of holomorphic sections of Lk

regarded as a holomorphic line bundle over X, with the complex structure J .
There is a natural symplectic form on the space of sections Γ(Lk). Pulling back
under the projection to Γ(Lk)N+1 we get a symplectic form on Zint.
Now we have commuting actions of two groups G and SU(N + 1) on Zint,

preserving the symplectic form. The moment maps are

•
μSU (J, s) = p(i〈sα, sβ〉),

where p is the projection of a matrix to its trace-free part.

•
μG(J, s) = (Δ + k)

(∑
|sα|

2
)
.

Taking G to be any of the three groups SU(N+1),G, SU(N+1)×G, we can
ask our standard question: does a Gc-orbit contain a zero of the G-moment map?
Here we need to give an interpretation to the Gc-orbits. These correspond to
equivalence classes of data under the usual notion of isomorphism of holomorphic
line bundles with holomorphic sections. The quotient Gc/G is identified with
the set of Hermitian metrics on a fixed holomorphic line bundle, and moving in
a Gc orbit is the same as varying this metric, with fixed holomorphic data.

• For G = SU(N + 1) we get a rather trivial question, just a matter of
choosing an orthonormal basis.

• For G = G we also get an easy problem. The question is equivalent to
the following. We are given a holomorphic line bundle L and a basis of
holomorphic sections s and we want to choose a Hermitian metric on L
whose corresponding curvature form is positive and such that

∑
|sα|2 =

1. This condition uniquely determines the metric and the corresponding
Kahler metric is just the metric induced from the Fubini-Study metric by
the embedding X → CPN .

• For G = SU(N + 1) × G we get an interesting problem which can be
thought of in two different ways.
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1. First solve the equation μSU = 0. The remaining condition μG = 0
gives an equation which “converges” to the constant scalar curvature
equation as k →∞.

2. First solve the equation μG = 0. The remaining condition μSU = 0
gives a finite-dimensional problem of the standard form.

We explain a little more about these two points of view.

1. Suppose given a line bundle L over a complex manifold X with a hermitian
metric on L whose curvature is −iω where ω is a Kahler form. Define
functions ρk on X by

ρk =

N∑

0

|salpha|
2,

where sα is any orthonormal basis of H
0(X;Lk). Then ρk is an invariant

of the Kahler structure.

Proposition (Tian, Zelditch, Lu) As k →∞ there is an asymptotic expan-
sion

ρk ∼ k
n +

S

2π
kn−1 + . . . , (∗)

where S is the scalar curvature of ω.

2. The finite dimensional problem has been considered before in different
contexts by Luo and Zhang. It is equivalent to the following, given X ⊂
CPN find a projective transformation g such that ’g(X) has centre of
mass at zero, where we take the standard embedding

CPN → su(N + 1).

Theorem Suppose there is a constant scalar curvature Kahler metric ω on X.
Then for large k there is an ωk with ρk(ωk) = constant and ωk → ω as k →∞.

The uniqueness is a consequence of this and the uniqueness of the solution
to the finite-dimensional problem. The proof the theorem combines arguments
with the asymptotic expansion (*) and analysis of the family of finite dimen-
sional problems as k →∞.
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III. Conjectural answer

Return again to our finite-dimensional set-up, where G acts on M and on
L → M . There is a numerical criterion for an orbit Gc.x to contain a zero of
the moment map. Let λ : C∗ → Gc be a 1-parameter subgroup and let

y = limt→∞λ(t)x.

Then λ maps C∗ to the stabiliser of y in Gc. But this stabiliser acts on the
fibre of L over y, so we get a 1-dimensional representation of C∗ which has an
integer weight Wλ. The condition for finding a zero of μ is that Wλ > 0 for all
λ.
The direct translation of the definition of the weight to the infinite dimen-

sional case leads to the notion of the Futaki invariant. Suppose Y is a compact
Kahler manifold and Aut(Y ) is reductive. Fix a maximal compact subgroup Γ
in Aut(Y ) and consider any Γ invariant Kahler metric. Then we define

Fut : Lie(Γ)→ R

by the integral ∫

Y

(S − Ŝ)H,

where S is the scalar curvature and H is the Hamiltonian function corresponding
to an element of Lie(Γ). This complexifies to a map Lie(Aut(G)) → C which
is a holomorphic invariant independent of the choice of metric.

The answer which we expect to be correct involves generalising this Futaki
invariant to singular spaces. Suppose Y is any variety (or even scheme) with a
C∗ action. For k > 0 we have a C∗ action on the vector space H0(Y ;Lk). Thus
we have a pair of integers, dk the dimension of the vector space and wk the total
weight of the action. By general theory, the ratio wk/kdk has an expansion for
large k

wk

kdk
= F0 + F1k

−1 + F2k
−2 + . . . .

We define the generalised Futaki invariant to be the coefficient F1. Standard
results show that this agrees with the other definition when Y is smooth.

Now, given X, define a test configuration to be a variety X with a C∗ action
and an equivariant map π : X → C, where C∗ acts on C in the standard way,
such that π−1(t) is isomorphic to X for t 6= 0. Then there is a C∗ action on the
central fibre π−1(0) and this has a Futaki invariant W , as above.
We say X is K-stable if W ≥ 0 for all test configurations, with equality if

and only if X = X ×C.
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ConjectureX admits a constant scaalr curvature metric if and only if it is
K-stable.

This extends a conjecture of Tian in the Kahler-Einstein case.
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Lecture 4

In this lecture we get a tighter grip on some of the ideas we have discussed,
in the particular case of toric varieties. This brings us to some “elementary”
questions in convex geometry, which we describe first.
Suppose given the following data.

• A convex polytope P ⊂ Rn.

• A bounded function A on P .

• A measure σ on the boundary of P , equal to a multiple of the Lebesgue
measure on each face. (Note that σ this is completely determined by
specifying the mass of each face.)

Suppose that ∫

P

A dμ =Mass(∂P, σ) (1)

and that
Centre of Mass(P,A dμ) = Centre of Mass(∂P, σ). (2)

Define a functional L = LA,σ by

L(f) =

∫

∂P

f dσ −
∫

P

A f dμ.

Notice that Equations (1) and (2) are equivalent to the condition that L vanishes
on affine-linear functions (i.e. functions of the form λ(x) = λixi + C).
We will consider the restriction of the functional L to convex functions on

P . Fix a base point p0 ∈ P and say that a function f is normalised if f ≥ 0
and f(p0) = 0. We say a function f is a piecewise linear (PL) convex function
if it can be written as

f =Max(λ1, λ2, . . . , λR),

where λi are affine-linear. Finally, we say that a function is a rational piecewise
linear (abbreviated to QPL) convex function if the λi can be chosen to have all
co-efficients rational.
Now we can state three conditions which may or may not be satisfied by our

data.

Condition (*) There is some ε > 0 such that

L(f) ≥ ε
∫

∂P

f dσ,

for all normalised convex functions f on P .
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Condition(**) L(f) > 0 for every PL convex function which is not affine-
linear

Condition (**Q) L(f) > 0 for every QPL convex function which is not
affine-linear.

Clearly
(∗)⇒ (∗∗)⇒ (∗ ∗Q).

Theorem 1 Suppose n = 2, that A is a constant and that the data P, σ is
rational. Then (∗ ∗Q)⇒ (∗).

The lecturers proof of Theorem 1 consists of a sequence of intricate, but
elementary, arguments.

Question What if n > 2 ?

Now return to Kahler geometry. One can show that if a constant scalar
curvature metric on an algebraic variety exists it is an absolute minimum of
the Mabuchi functional M. Thus an interesting question to ask, for any X
is whether the Mabuchi functional is bounded below: we expect this to be
intimately related to the existence of constant scalar curvature metrics. Now
recall that an algebraic variety X of complex dimension n is called a toric variety
if it admits an action of the group (C∗)n with an dense open orbit. In this lecture
we will explain that Theorem 1 above implies

Theorem 2 Suppose X is a (smooth) toric variety of complex dimension 2.
If X is K-stable then the Mabuchi functional is bounded below.

The extension of this to higher dimensions is more-or-less equivalent to an-
swering the “Question” above.

We now recall some background on toric varieties and the correspondence be-
tween these and polytopes inRn. This can be viewed either algebro-geometrically
or differential geometrically.

Algebraic Geometry We consider a polytope P with vertices in Zn. We let
cP be the cone on P in Rn+1 and let R be the commutative ring associated to
the semi-group cP ∩ Zn+1. Then R is a finitely-generated graded ring and so
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corresponds to a projective variety X. There is a positive line bundle L over X
such that H0(X;Lk) has a basis indexed by the points of kP ∩ Zn.

Differential Geometry Starting with an integer polytope P as above, we take
the 2n-manifold P ×Tn, where Tn is the n-torus. There is a way to compactify
this which gives a compact smooth manifold X if P satisfies certain “Delzant”
conditions. The symplectic form

ω =
∑

dxidηi

(where ηi are standard co-ordinates on the circles) and the T
n action both

extend to X. The integral structure induces a canonical measure σ on ∂P and
canonical linear functions dα defining the faces of P . Let

u0 =
∑

α

dα log dα,

(where the index α runs over the faces). Now (Guillemin, Abreu) let u be any
convex function on P such that u−u0 is smooth (plus some other condition we
will not state). Then u defines a Kahler metric on X with metric tensor

g =
∑

uijdx
idxj + uijdηidηj .

Here uij =
∂2u
∂xi∂xj

and uij are the entries of the inverse matrix to (uij).
Let A be the constant given by the ratio of the masses of P and ∂P , so (1)

is satisfied. One can show that the Mabuchi functional is given by

M(u) = −
∫

P

log det(uij) + L(u)

where L = LA,σ with data A, σ specified above.

Proposition 1 If X is K-stable then the data (P, σ,A) satisfies (2) and
(**Q).

Proposition 2 If the data satisfies (*) thenM is bounded below.

Clearly Propositions 1,2 and Theorem 1 imply Theorem 2. Note that one
can prove also that a minimising sequence forM has a convergent subsequence
in a certain (rather weak) sense.
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Outline proof of Proposition 1.
First K-stability implies that the Futaki invariant of X is zero, but one can

show that this Futaki invariant corresponds to the difference of the centre of
masses of (P,Adμ) and (∂P, σ)
The real work involves condition (**Q). Suppose that this fails, so that

there is a QPL function f with L(f) ≤ 0. We think of the graph of C − f ,
for suitable C, as defining a “roof” with P as the floorplan. Thus we construct
a “house” polytope Qf ⊂ Rn+1. After rescaling we can suppose that this
has integer vertices. By the general theory, this corresponds to some (n + 1)-
dimensional toric variety Xf (possibly singular). One shows that this fits into
a “test configuration” as defined in the previous lecture. Let Wf be the Futaki
invariant of the central fibre. The crucial thing then is to show that

sgnWf = sgnL(f).

The proof of this uses the familiar relation between counting lattice points and
volumes. For example if νk denotes the number of points in Z

n ∩ P then we
have

νk = k
n V ol(P ) + kn−1V ol(∂P, σ) +O(kn−2).

Outline proof of Proposition 2
For any function A we can consider the functional

FA(u) = −
∫

P

log det(uij) + LA,σ(u),

(on a suitable set of functions u). One shows that this is a convex functional so
a critical point is an absolute minimum. The Euler-Lagrange equation is

(uij)ij = −A. (3)

In fact −(uij)ij is the scalar curvature of the metric g. Now take an arbitary
function defining a Kahler structure, for example the function u0. Define A0
by the fourth order differential expression in u0, given by the left hand side
of (3) (replacing u by u0). Then, by construction, u0 minimises FA0,σ and in
particular this is bounded below, by C say. Thus for any u

−
∫

P

log det(uij) + LA0,σ(u) ≥ C.

Replacing u by ru, for positive constant r, we get

−
∫

P

log det(uij) + rLA0,σ(u) ≥ Cr, (4)

16



where Cr depends on r. Now for normalised u

LA,σ(u) ≥ ε
∫

∂P

udσ,

by hypothesis. On the other hand it is easy to see that, for normalised u,

|LA,σ(u)− LA0,σ(u)| ≤ K
∫

∂P

udσ,

for suitable K. Combining these we get

|LA,σ(u)− LA0,σ(u)| ≤ K/εLA,σ(u),

for some K ′, hence
LA0,σ(u) ≤ (1 +K/ε)LA,σ(u).

Now taking r = r0 = (1 +K/ε)
−1 in (4) we obtain

M(u) ≥ Cr0 .

This has been proved for normalised u , but M is unchanged by the addition
of an affine-linear function, so the inequality holds in general.

17



Lecture 5

In this lecture we discuss the existence problem on toric varieties from the
point of view of P.D.E. theory. We suppose we have data P,A, σ, as considered
at the beginning of Lecture 4, and we set

L(f) =

∫

∂P

f dσ −
∫

P

A f dμ.

We suppose that L vanishes on affine-linear functions and that

L(f) ≥ λ−1
∫

∂P

f dσ, (!)

for normalised convex functions f . Under this hypothesis, we would like to
prove the existence of a solution to the PDE (“Abreu’s equation”)

(uij)ij = −A (∗)

in P , for a convex function u which behaves like
∑
dα log dα, where dα are the

affine-linear functions defining the faces of P determined by the measure σ.
While we are not able to achieve the goal stated above, we will describe

some progress in that direction. Recall that a very general philosophy of PDE
theory is to deduce existence theorems from a priori estimates. Schematically,
if F(f) = 0 is some PDE we would like to solve then one attempts to show that
if f is a solution then it obeys some appropriate inequality

‖f‖suitable ≤ C

where C depends on the data, not on f . If we can do this then there are various
ways one can attack the existence problem. For example by embedding the
equation in a family

Ft(ft) = 0,

for t ∈ [0, 1], with F1 = F . We suppose that when t = 0 there is a known solution
f0 and consider the set S ⊂ [0, 1] for which a solution exists. We aim to prove
that S is open and closed, hence the whole of [0, 1]: in particular there is then a
solution to our original problem. The proof that S is open usually proceeds via
the implicit function theorem and reduces to understanding the linearisation of
the problem. For elliptic problems this is frequently not difficult. The crux of
the problem then is the proof that S is closed, which follows from suitable a
priori estimates (extended from the original F to the family Ft).
The challenge in proving these estimates for our problem can be seen as

twofold.
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• In Riemannian geometry there are many results about metrics whose Ricci
tensor is controlled, but the scalar curvature is a much weaker object and,
in general, does not give any control of the metric. The question is how to
obtain this control from the scalar curvature under the Kahler hypothesis.

• In PDE theory there is an enormous literature on nonlinear second order
elliptic equations. One of the basic techniques is the use of the maxi-
mum principle, but this does not operate i the same way for fourth order
equations, as we have here.

Following all these preliminaries, the result we prove is an “interior estimate”
in the case when n = 2 and A is constant. We show that if u is a normalised
solution there are estimates, for all p,

|∇pu| ≤ Cp(λ, d
−1, P, σ),

(uij) ≥ K(λ, d
−1, P, σ)−1,

where Cp and K are continuous functions of their arguments. Here d is the
distance to the boundary of P and λ is the constant in (!) above.
Our problem is very much related to the theory of Monge-Ampere equations

det(uij) = F (u,∇u, x),

which has been developed very extensively. For example if we define a linear
elliptic operator by

P (f) =
(
uijfi

)
j
,

then the equation (*) is equivalent to

P (L) = A,

where L = log det(uij). By applying deep results of Caffarelli and Caffarelli and
Gutierrez (dealing with the Monge-Ampere equation and the linear operator P )
one can see that our result follows if one can show three things:

1. The first derivative estimate |∇u| ≤ C1(λ, d−1, P, σ);

2. a 2-sided estimate on L = log det(uij)

L− ≤ L ≤ L+,

where L± = L±(λ, d
−1, P, σ);

3. a “modulus of convexity” estimate.
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The modulus of convexity estimate one would like can be expressed as fol-
lows. For x, y ∈ P set

Hx(y) = u(y)− λx(y),

where λx is the affine-linear function such that u − λx is normalised at x. For
K ⊂ K+ put

HK(K
+) = minx∈K,y∈∂K+Hx(y).

Then one seeks an exhaustion of P by compact subsets K0 ⊂ K1 ⊂ K2 . . . such
that

HKm(Km+1) ≥ εm > 0.

(1)The first derivative bound This is where the hypothesis (!) enters. The
boundary conditions imply the following weak form of the equation

∫

P

χiju
ij = L(χ)

for any test function χ. We take χ = u, then uijuij = n so we have L(u) =
nV ol(P ) and hence, for normalised u,

∫

∂P

udσ ≤ λnV ol(P ).

From here an elementary argument shows that

|∇u| ≤
Const.

dn+1
.

(2) Bounds on L = log det(uij).
Define a vector field v on P by

vj = −uiji .

This can also be written as vj = ujkLk. Then equation (*) asserts that the
divergence of v is A. Thus if

w = v −
A

n
x

the vector field w has divergence 0. Now put

h = u− ujx
j ,

and L̃ = L + A
n
H. Then a short calculation shows that ujkL̃k = wj . When

n = 2 a divergence-free vector field is represented by a Hamiltonian so there is
a function H with wj = εjkHk where ε is the alternating tensor.
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The pair of functions L̃,H are analogous to conjugate harmonic functions
in two dimensions. They satisfy a pair of linear elliptic equations

P (L̃) = 0 , Q(H) = 0,

where P is the operator introduced before and Q is the similar operator

Q(f) =
∑

uijfij .

Moreover the boundary conditions fix the normal component of w which trans-
lates into fixing the tangential derivative of H. Thus the boundary value of H
is fixed, up to an arbitrary additive constant.
Now we can apply a general result for solutions of arbitrary elliptic equations

in two dimensions, with suitable boundary values. We apply this to the equation
Q(H) = 0. The crucial point is that we get an estimate independent of the co-
efficients of the operator Q. From this we deduce that |∇H| ≤ C for some C
depending on P, σ, and hence |w| ≤ C. Now consider the derivative of u as a

∇u : P → R2.

It is easy to see that this is a diffeomorphism. If ξi are the co-ordinates on the
image space we have

∂ξi

∂xj
= uij ,

hence

wi =
∂L̃

∂ξi
.

Finally we deduce

|L̃(x)− L̃(x′)| ≤ C|(∇u)(x)− (∇u)(x′)|.

From this it is straightforward to obtain upper and lower bounds on L.

(3) Modulus of convexity estimate
One approach to this goes via a sharper lower bound on L. We know that

L→∞ on the boundary of P . One chooses a function ψ such that L−ψ →∞
on the boundary and such that the matrix

(ψij − ψiψj) > 0

throughout P . Applying the maximum principle, with a suitable choice of ψ,
one can show that

L ≥ C1(log(d
−1) + C2.
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Combining this with the estimate in the previous paragraph one gets

|∇u| ≥ Const.d−α,

for some α > 0, and this gives a modulus of convexity estimate.
Alternatively one can get this estimate more directly from the lower bound

on L using an old result, special to dimension 2, of E. Heinz. The proof of
Heinz exploits the fact that there are isothermal co-ordinates (as mentioned in
the first lecture) for the Riemannian metric uij on P .
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