AC, $7^{\text {th }}$ December 2006

M3P14 Elementary Number Theory Assessed Coursework 3: Solutions.

(2) From the way we did things in class, it is natural to take these assertions in the order (i), (iii), (iv), (ii); I am sorry if this has caused you some difficulty. (i) We want to show that

$$
\frac{n^{2}-1}{8} \text { is }\left\{\begin{array}{lll}
\text { even if } & n \equiv 1,7 & \bmod 8 \\
\text { odd if } & n \equiv 3,5 & \bmod 8
\end{array}\right.
$$

There are four small calculations to do. For example, if $n=8 k+1$, then

$$
n^{2}=64 k^{2}+16 k+1
$$

and $\frac{n^{2}-1}{8}=2 k(4 k+1)$ is even. Similarly, if $n=8 k+3$, then

$$
n^{2}=64 k^{2}+48 k+9
$$

and $\frac{n^{2}-1}{8}=2 k(4 k+3)+1$ is odd. The cases $n=8 k+5$ and $n=8 k+7$ are similar.
(iii) Let us write $a=2 k+1$ and $b=2 h+1$. Then

$$
a^{2} b^{2}-a^{2}-b^{2}-1=\left(a^{2}-1\right)\left(b^{2}-1\right)=16 k h(k-1)(h-1)
$$

is divisible by 16 , therefore

$$
\frac{a^{2} b^{2}-a^{2}-b^{2}-1}{8}=\frac{a^{2} b^{2}-1}{8}-\frac{a^{2}-1}{8}-\frac{b^{2}-1}{8} \equiv 0 \quad \bmod 2 .
$$

(iv) Follows almost immediately from (iii).
(ii) We know that if p is an odd prime then

$$
\left(\frac{2}{p}\right)=\left\{\begin{array}{llll}
1 & \text { if } & p \equiv 1,7 & \bmod 8 \\
-1 & \text { if } & p \equiv 3,5 & \bmod 8
\end{array}\right.
$$

By what we did in part (i) then

$$
\begin{equation*}
\left(\frac{2}{n}\right)=(-1)^{\frac{n^{2}-1}{8}} \tag{1}
\end{equation*}
$$

if p is prime. The result follows for all n by factorizing n into primes, because boths sides of Equation 1 are multiplicative in n.
(3) Here we go:

$$
\begin{aligned}
\left(\frac{5}{13}\right) & =\left(\frac{13}{5}\right)=\left(\frac{3}{5}\right)=\left(\frac{2}{3}\right)=-1 ; \\
\left(\frac{13}{13}\right) & =0 \\
\left(\frac{456}{123}\right) & =\left(\frac{-36}{123}\right)=\left(\frac{-1}{123}\right)\left(\frac{6}{123}\right)^{2}=\left(\frac{-1}{123}\right) 0^{2}=0 ; \\
\left(\frac{11}{10001}\right) & =\left(\frac{10001}{11}\right)=\left(\frac{2}{11}\right)=-1 .
\end{aligned}
$$

(8) (i) This always happense if $\operatorname{hcf}(a, n)=1$ and a is a square mod n. Indeed then a is a square $\bmod p$ for every prime p that divides n, so $\left(\frac{a}{p}\right)=1$ for every prime that divides n, and then $\left(\frac{a}{n}\right)=1$ by definition of the Jacobi symbol. (ii) This can happen if $\operatorname{hcf}(a, n) \neq 1$; for example if $n=p$ is prime, and $p \mid a$, then by definition $\left(\frac{a}{p}\right)=0$ but $a \equiv 0 \bmod p$ is certainly a square $\bmod p$.
(iii) This can happen and we saw an example in class; take $n=15$ and $a=-1$; then $\left(\frac{-1}{15}\right)=1$ but -1 is not a square $\bmod 15$.
(iv) This can also happen; for example every time that $n=p$ is prime and $p \nmid a$.
(10) This is fun: first, we look at

$$
y^{2}=x^{3}+23
$$

modulo $4 ; y^{2} \equiv 0$ or $1 \bmod 4$; correspondingly, $x^{3} \equiv 1$ or $2 \bmod 4$; but only the first case is possible with $x \equiv 1 \bmod 4$ and y even.

Now we have

$$
y^{2}+4=x^{3}+27=(x+3)\left(x^{2}-3 x+9\right)
$$

and the factor $x^{2}-3 x+9 \equiv 3 \bmod 4$, so it is the product of odd primes and at least one of them, say $p \equiv 3 \bmod 4$. From

$$
y^{2}+4 \equiv 0 \quad \bmod p
$$

we get $\left(\frac{-1}{p}\right)=1$, a contradiction.

