M4A33: Flow in curved pipes: the Dean equations

Consider flow down a slowly curved pipe. In terms of cylindrical polar coordinates
(r, ¢, z) we shall model this as a portion of a torus, (r — b)2 + 22 = a? where b > a, and
seek solutions independent of ¢, driven by a pressure gradient in the ¢-direction.

The velocity u = (u,, uy, u,) satisfies the Navier Stokes equations
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where the material derivative D/Dt = 0/0t + u,0/0r + u,0/0z. Here G is the downpipe
pressure gradient, G = —1/rdp/0¢. We shall seek steady solutions to these equations.
Let us first see if there is a unidirectional solution, as for the straight pipe. If we substitute
U, = 0 = u,, we find

U
% =0 and -~ = = % =0. (2)
So such a solution is only possible if uy is constant on cylinders. Such a flow would be
consistent with a no-slip condition only for flows between concentric cylinders. Any curved
pipe-flow cannot be unidirectional.
However, if the pipe is almost straight, we might expect the flow to be almost unidi-
rectional. Now r and z vary over the scale a and we assume
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We scale z = az* and let Uj be a typical scale of us. Then we expect a suitable scale for
the pressure to be p ~ pUZa/b and if we scale
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We therefore write

Up = Uou;; ur, = Uy (—




and neglecting terms of order (a/b), equations (1) become
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We choose the scale Uy and define
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a parameter K such that
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From now on we drop the * from all the dimensionless variables to obtain the Dean
equations.
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These equations are essentially the two-dimensional Navier-Stokes equations with a body
force ui acting towards the inside of the bend. If we write u = (u, v, w) in Cartesian
coordinates (z, y, z), and introduce a stream function, ¥ (z, z) where u = u, = OY/0z
and w = u, = —0¢/0z, and v(z, 2) = uy, then (8) reduce to

where ) = —V? is the downpipe vorticity and suffices now denote partial derivatives.
These equations are to be solved for v(z, z) and ¥ (x, z) subject to the no-slip conditions

_ g%

3 + Vu,

=1+ V3uy
Op

+ V3u,

Vs

K(,v, —v,) =1+ V2v

e _ w2 (9)
(V20 — Q) = VQ — 2Kvv,

Vi =0, v=20 on the pipe boundary. (10)

There is one parameter in the problem, K, which is known as the Dean number and defined
in (7). It is a Reynolds number modified by the pipe curvature, (a/b).




