Factors Logic Puzzle 2-26 Walkthrough

[Note: for anyone wishing a hint rather than the full solution, the position of the numbers can be deduced in the following order: (21), $2,25,3,22,23,24,26,6,12,9,15,18,5,4,8,16,14,7,10,20$, $13,19,11,17$.

A1	A2	A3	A4	A5
B1	B2	B3	B4	B5
C1	C2	C3	C4	C5
21	D2	D3	D4	D5
E1	E2	E3	E4	E5

We are told all the prime numbers are in the top 3 rows. There are 9 primes $2,3,5,7,11,13,17,19$, 23 and hence 6 non-primes in the top 3 rows. There are a total of 12 even numbers other than 2 which have to align with 2 . Six of these may be in the top 3 rows, so at least six must be in the bottom two rows. To have six in the bottom two rows requires C3 =2. Note that the six squares aligned with 2 in the bottom two rows must be even and that the six non-primes in the top three rows must be even.

		2		
21	even	even	even	
even		even		even

The odd composite numbers $9,15,21,25$ must be in the bottom two rows. Three of these must be aligned with the cell containing 3 . Given where 21 is and the cells constrained to be even this is only possible if 9 and 15 are in the bottom row and C2=3. This requires D5=25.

	3	2		
21	even	even	even	25
even	$9 / 15$	even	$15 / 9$	even

We are told there are 5 consecutive numbers in a line. Trial and error and the positions of $2 \& 3$ and the odd composite numbers shows that the only possibility is 22-26 in the fifth column, $\mathbf{A 5}=\mathbf{2 2}$, $B 5=23, C 5=24, E 5=26$

				22
				23
	3	2		24
21	even	even	even	25
even	$9 / 15$	even	$15 / 9$	26

24 has many factors, in particular 6 and 12 have to be in C1 and C4 (in some order) to see $2 \& 3$ also. If E4 were 15 , the only available square for 5 would be $C 4$ which is occupied by 6 or 12 . We conclude that $E 4=9$ and $E 2=15$. Then 18 must see $2,3,6,9$ and so must be at $D 3$. This requires $\mathbf{C 4}=\mathbf{6}, \mathbf{A 1 = 1 2}$, D3=18. This also fixes A2=5.

	5			22
				23
12	3	2	6	24
21	even	18	even	25
even	15	even	9	26

There are now four even numbers other than 2 in the top three rows, and there must be precisely two more. Now 4 must be A3 or E3 to see 12 and 24 . If $A 3=4$, we can only have one other even number in the top three rows. This would have be 20 to see $4 \& 5$. But 8 or 16 would also have to be in the top. We conclude E3=4, so that 8 must be D4 or A 3 . $\mathrm{A} 3=8$ requires $\mathrm{B} 3=16$. But at least one if 10, 20 must be the top rows, which would again be too many even numbers in the top rows. We conclude D4=8, which also requires D2=16

	5			22
				23
12	3	2	6	24
21	16	18	8	25
even	15	4	9	26

10 \& 20 have to be in the top rows, so that the remaining even number, 14 , must be E1, E1=14. This informs us that column one sums to an exact square. Column one must contain 7 , and $14+21+12+7+10=64$. So we infer that $\mathbf{A 1}=10$ and $B 1=7$. This fixes $\mathbf{A} \mathbf{3}=\mathbf{2 0}$ and $\mathbf{B 2}=\mathbf{1 3}$, giving

10	5	20		22
7	13			23
12	3	2	6	24
21	16	18	8	25
14	15	4	9	26

Finally, we are told that the sum of row one is divisible by a number in row one. Now $57+(11,17$, 19) is divisible by a row one number only if $\mathbf{A 4}=19$. To see $22, B 4=11$ and $B 3=17$, giving the solution:

10	5	20	19	22
7	13	17	11	23
12	3	2	6	24
21	16	18	8	25
14	15	4	9	26

