

Mathematics

As lectured by Professor Alexei Skorobogatov and humbly typed by as1005@ic.ac.uk.

Contents

1 Basic Properties Of Rings 1
2 Factorizing In Integral Domains 5
3 Euclidean domains and principal ideal domains 11
4 Homomorphisms and factor rings 19
5 Field extensions 29
6 Ruler and Compass Constructions 33
7 Finite fields 43

Chapter 1

Basic Properties Of Rings

Definition 1.1. A $\operatorname{ring} R$ is a set with two binary operations, + and \cdot, satisfying:
ring
(1) $(R,+)$ is an abelian group,
(2) R is closed under multiplication, and $(a b) c=a(b c)$ for all $a, b, c \in R$,
(3) $a(b+c)=a b+a c$ and $(a+b) c=a c+b c$ for all $a, b, c \in R$.

Example 1.2 (Examples of rings). $\quad 1 . \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$.

2. $2 \mathbb{Z}$ - even numbers. Note that $1 \notin 2 \mathbb{Z}$.
3. $\operatorname{Mat}_{n}(\mathbb{R})=\{n \times n$-matrices with real entries $\}$

In general $A B \neq B A$.

A ring R is called commutative if $a b=b a$ for all $a, b \in R$.
4. Fix m, a positive integer. Consider the remainders modulo m : $\overline{0}, \overline{1}, \ldots, \overline{m-1}$.

Notation. Write \bar{n} for the set of all integers which have the same remainder as
commutative n when divided by m. This is the same as $\{n+m k \mid k \in \mathbb{Z}\}$. Also, $\overline{n_{1}}+\overline{n_{2}}=$ $\overline{n_{1}+n_{2}}$, and $\overline{n_{1}} \cdot \overline{n_{2}}=\overline{n_{1} n_{2}}$. The classes $\overline{0}, \overline{1}, \ldots, \overline{m-1}$ are called residues modulo m.
The set $\{\overline{0}, \overline{1}, \ldots, \overline{m-1}\}$ is denoted by \mathbb{Z}_{m} or by \mathbb{Z} / m or by $\mathbb{Z} / m \mathbb{Z}$.
5. The set of polynomials in x with coefficients in $\mathbb{Q}($ or in \mathbb{R} or $\mathbb{C})$

$$
\left\{a_{0}+a_{1} x+\ldots+a_{n} x^{2} \mid a_{i} \in \mathbb{Q}\right\}=\mathbb{Q}[x]
$$

with usual addition and multiplication. If $a_{n} \neq 0$ then n is the degree of the polynomial.

Definition 1.3. A subring of a ring R is a subset which is a ring under the same subring addition and multiplication.

Proposition 1.4. Let S be a non-empty subset of a ring R. Then S is a subring of R if and only if, for any $a, b \in S$ we have $a+b \in S, a b \in S$ and $-a \in S$.

Proof. A subring has these properties. Conversely, if S is closed under addition and taking the relevant inverse, then $(S,+)$ is a subgroup of $(R,+)$ (from group theory). S is closed under multiplication.
Associativity and distributivity hold for S because they hold for R.

Definition 1.5. Let d be an integer which is not a square. Define $\mathbb{Z}[\sqrt{m}]=$

$$
\mathbb{Z}[\sqrt{m}]
$$

Gaussian integers $\{a+b \sqrt{m} \mid a, b \in \mathbb{Z}\}$.
Call $\mathbb{Z}[\sqrt{-1}]=\{a+b \sqrt{-1}, a, b \in \mathbb{Z}\}$ the ring of Gaussian integers.

Proposition 1.6. $\mathbb{Z}[\sqrt{d}]$ is a ring. Moreover, if $m+n \sqrt{d}=m^{\prime}+n^{\prime} \sqrt{d}$, then $m=m^{\prime}$ and $n=n^{\prime}$.

Proof. Clearly $\mathbb{Z}[\sqrt{d}] \subset \mathbb{C}$. Consider $m, n, a, b \in \mathbb{Z}$. Then we have:
Closure under addition: $(m+n \sqrt{d})+(a+b \sqrt{d})=(m+a)+(n+b) \sqrt{d}$.
Closure under multiplication: $(m+n \sqrt{d})(a+b \sqrt{d})=m a+n b d+(m b+n a) \sqrt{d}$.
Also, $-(m+n \sqrt{d})=(-m)+(-n) \sqrt{d}$.
Hence $\mathbb{Z}[\sqrt{d}] \subset \mathbb{C}$ is a subring by Proposition 1.4.
Finally, if $m+n \sqrt{d}=m^{\prime}+n^{\prime} \sqrt{d}$, then if $n \neq n^{\prime}$ we write $\sqrt{d}=\frac{m-m^{\prime}}{n^{\prime}-n}$ which is not possible since d is not a square. Therefore, $n=n^{\prime}$ hence $m=m^{\prime}$.

Proposition 1.7. For any two elements r, s of a ring, we have
(1) $r 0=0 r=0$,
(2) $(-r) s=r(-s)=-(r s)$.

Proof.
(1) $r 0=r(0+0)=r 0+r 0$. Adding $-(r 0)$ to both sides, we get:

$$
0=r 0-(r 0)=r 0+r 0-r 0=r 0
$$

(2) $0=0 s$ by (1) and $0=0 s=(-r+r) s=(-r) s+r s$. Add $-(r s)$ to both sides to get $-(r s)=(-r) s$. Similarly, $r(-s)=-(r s)$.
zero divisor
integral domain

An element $a \neq 0$ of a ring R is called a zero divisor if there exists $b \neq 0 \in R$ such that $a b=0$

For example, consider residues $\bmod 4: \overline{0}, \overline{1}, \overline{2}, \overline{3}$. Take $\overline{2} \times \overline{2}=\overline{2 \times 2}=\overline{4}=\overline{0}$. Hence $\overline{2}$ is a zero divisor in $\mathbb{Z} / 4$.

Definition 1.8. A ring R is called an integral domain if
(1) R is commutative, i.e. $a b=b a$ for all $a, b \in R$,
(2) R has an identity under multiplication (written as 1),
(3) R has no zero divisors,
(4) $0 \neq 1$.

Note. If $0=1$, then $x \cdot 1=x$ and so $x=x \cdot 1=x \cdot 0=0$. Hence if $0=1$ then $R=\{0\}$.

For example $\mathbb{Z}, \mathbb{Z}[\sqrt{d}], \mathbb{Q}, \mathbb{Q}[x]$ are integral domains.

Notation. If R is an integral domain (or any ring), then $R[x]$ denotes the set of polynomials in x with coefficients from R with usual addition and multiplication. Clearly $R[x]$ is a commutative ring.

Proposition 1.9. If R is an integral domain, then so is $R[x]$.

Proof. The only non-obvious thing to check is that there are no zero divisors. For contradiction, assume that $f(x)=a_{0}+a_{1} x+\ldots+a_{m} x^{m}, g(x)=b_{0}+\ldots+b_{n} x^{n}$ are elements of $R[x]$ such that $f(x) g(x)$ is the zero polynomial. Without loss of generality assume that $a_{m} \neq 0, b_{n} \neq 0$ (i.e. $\left.m=\operatorname{deg} f(x), n=\operatorname{deg} g(x)\right)$. Then $f(x) g(x)=a_{0} b_{0}+\ldots+a_{m} b_{n} x^{m+n}$.
Since R is an integral domain $a_{m} b_{n} \neq 0$. Therefore we get a contradiction, hence $f(x) g(x)$ can't be the zero polynomial.

Proposition 1.10. Let m be a positive integer. Then \mathbb{Z} / m is an integral domain if and only if m is prime.

Proof. If $m=1$ then $\mathbb{Z} / 1=\{0\}$; it is not an integral domain because $0=1$ in this ring.
If $m>1$ and $m=a b, a>1, b>1$, then $\bar{a}, \bar{b} \in \mathbb{Z} / m$ are non-zero elements.
But $\bar{a} \bar{b}=\overline{a b}=\bar{m}=\overline{0}$, so \bar{a} and \bar{b} are zero divisors, hence \mathbb{Z} / m is not an integral domain. Now assume $m=p$ is prime. Assume that $1 \leq a<m, 1 \leq b<m$ such that $\bar{a} \bar{b}=\overline{a b}=\overline{0}$ in \mathbb{Z} / p. Visibly $\bar{a} \neq 0, \bar{b} \neq \overline{0}$.
This means that $p \mid a b$, but then $p \mid a$ or $p \mid b$. Then $\bar{a}=0$ or $\bar{b}=0$. Contradiction.
Proposition 1.11. Every integral domain R satisfies the cancellation property - if $a x=a y$ and $a \neq 0$ then $x=y$ for all $x, y, a \in R$.

Proof. If $a x=a y$ then $a(x-y)=0$. Since R has no zero divisors and $a \neq 0$, we conclude that $x-y=0$, so that $x=y$.

Definition 1.12. A ring F is a field if the set of non-zero elements of F forms an

Note. The key thing is the existence of x^{-1}, the multiplicative inverse. Also, $x y=y x$ and $1 \in F$.
$\mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{Z} / 2, \mathbb{Z} / 3$ are fields. $\mathbb{Z} / 2=\{\overline{0}, \overline{1}\} . \mathbb{Z} / 3=\{\overline{0}, \overline{1}, \overline{2}\}=\{\overline{0}, \overline{1},-\overline{1}\}$.
Is $\mathbb{Z}[\sqrt{d}]$ a field? Of course not, since $\frac{1}{2} \notin \mathbb{Z}[\sqrt{d}]$.
Define $\mathbb{Q}[\sqrt{d}]=\{x+y \sqrt{d} \mid x, y \in \mathbb{Q}\}$. This is a field.
Indeed (assuming $x \neq 0, y \neq 0$):

$$
\begin{aligned}
\frac{1}{x+y \sqrt{d}} & =\frac{x-y \sqrt{d}}{(x-y \sqrt{d})(x+y \sqrt{d})} \\
& =\frac{x-y \sqrt{d}}{x^{2}-y^{2} d}
\end{aligned}
$$

Note that $x^{2}-y^{2} d \neq 0$ since d is not a square of a rational number.
subfield
$F\left(\alpha_{1}, \ldots, \alpha_{n}\right)$

Definition 1.13. A subset S of a field F is a subfield if S is a field with the same addition and multiplication.
To check that S is a subfield, it is enough to check that for any $a, b \in S, a+b,-a$ and $a b \in S$, and for any $a \in S, a \neq 0, a^{-1} \in S$.

Definition 1.14. Let F be a subfield of K and $\alpha_{1}, \ldots, \alpha_{n} \in K$. Then $F\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$ is the smallest subfield of K containing F and $\alpha_{1}, \ldots, \alpha_{n}$.

Example 1.15. This notation agrees with $\mathbb{Q}(\sqrt{d})=\{a+b \sqrt{d} \mid a, b \in \mathbb{Q}\}$.
Let's check that $\mathbb{Q}(\sqrt{d})$ is indeed the smallest subfield of \mathbb{C} containing \mathbb{Q} and \sqrt{d}. The smallest subfield must contain all numbers like $a \sqrt{d}, a \in \mathbb{Q}$, since it is closed under \cdot, and hence also all numbers like $a+a^{\prime} \sqrt{d}, a, a^{\prime} \in \mathbb{Q}$, since closed under + . We also know that $\{a+b \sqrt{d} \mid a, b \in \mathbb{Q}\}$ is a field.

Similarly we can consider $\mathbb{Q}\left(\sqrt{d_{1}}, \sqrt{d_{2}}\right)$, and more complicated fields.

Proposition 1.16.

(1) Every field is an integral domain.
(2) Every finite integral domain is a field.

Proof.
(1) Must check that there are no zero divisors. Suppose that $a b=0, a \neq 0, b \neq 0$. Then a^{-1} exists, $a^{-1} a b=a^{-1} 0=0$, so $b=0$, a contradiction.
(2) The only thing to check is that every non-zero element is invertible. Let $R=$ $\left\{r_{1}, \ldots, r_{n}\right\}$ (distinct elements) be our integral domain. Take any $r \in R, r \neq 0$. Consider $\left\{r r_{1}, r r_{2}, \ldots, r r_{n}\right\}$. If for some i and j we have $r r_{i}=r r_{j}$ then $r_{i}=r_{j}$ by the cancellation property.
Therefore $\left\{r r_{1}, r r_{2}, \ldots, r r_{n}\right\}$ is a set of n distinct elements of R. Since R has n elements, $\left\{r r_{1}, r r_{2}, \ldots, r r_{n}\right\}=R=\left\{r_{1}, \ldots, r_{n}\right\}$. Thus any r_{i} can be written as $r r_{j}$ for some j.
In particular, $1=r \cdot r_{j}$ for some j, hence $r_{j}=r^{-1}$.
Corollary 1.17. The ring $\mathbb{Z} / m=\{\overline{0}, \overline{1}, \ldots, \overline{m-1}\}$ is a field if and only if m is prime.

Proof.
\Rightarrow If m is not prime then we know that \mathbb{Z} / m has zero divisors, hence is not a field.
\Leftarrow If m is a prime, then \mathbb{Z} / m is a finite integral domain, hence a field by the previous proposition.

Chapter 2

Factorizing In Integral Domains

Let R be an integral domain.
Definition 2.1. If $r, s \in R$ and $s=r t$ for some $t \in R$, then we say that r divides s.
divides $r \mid s$

This is written as $r \mid s$.

Example 2.2.

1. If $R=\mathbb{Z}$, this is the usual concept of divisibility.
2. If $R=\mathbb{Z}[i]$, then $(2+i) \mid(1+3 i)$. Divide $\frac{1+3 i}{2+i}=\frac{(1+3 i)(2-i)}{(2+i)(2-i)}=\frac{2+3+6 i-i}{5}=$ $1+i \in \mathbb{Z}[i]$.
3. $R=\mathbb{Z}[\sqrt{d}]$. Take $r \in \mathbb{Z}$. If $r \mid x+y \sqrt{d}$, then $r \mid x$ and $r \mid y$.

Indeed, $r \mid x+y \sqrt{d}$ is equivalent to the existence of $a+b \sqrt{d} \in \mathbb{Z}[\sqrt{d}]$ such that $r(a+b \sqrt{d})=x+y \sqrt{d}$ iff $r a=x$ and $r b=y$.
4. If R is a field, e.g. $R=\mathbb{Q}$ or \mathbb{R}, then for any $a, b \in R, a \neq 0$, we can write $b=a c$ for some $c \in R$ by taking $c=a^{-1} b$, so that $a \mid b$.
5. If F is a field, and R is a ring of polynomials $R=F[x]$, then $f(x) \mid g(x)$ if $g(x)=f(x) h(x)$ for some $h \in F[x]$. This is the usual notion of divisibility of polynomials.

Definition 2.3. If $a \in R$ then $a R=\{a r \mid r \in R\}$.
Note (*). The following are equivalent:
(1) $a \mid b$,
(2) $b \in a R$,
(3) $b R \subset a R$.

Definition 2.4. Element $u \in R$ is a unit (or an invertible element) if $u v=1$ for some $v \in R$, i.e. there exists $u^{-1} \in R$.

Example 2.5. The units in \mathbb{Z} are ± 1.
Notation. If R is a ring, we denote by R^{*} the set of units of R.

In general, R^{*} is not the same as $R \backslash\{0\}$.

Example 2.6 (of units).

1. $\mathbb{Z}^{*}=\{ \pm 1\}$.
2. Clearly, an integral domain F is a field iff $F^{*}=F \backslash\{0\}$.
3. $\mathbb{Z}[i]^{*}=\{1,-1, i,-i\}$: Suppose that $a+b i \in \mathbb{Z}[i]^{*}$ is a unit, so $(a+b i)(c+d i)=1$ for some $c, d \in \mathbb{Z}$. Then also $(a-b i)(c-d i)=1$. So

$$
\begin{aligned}
(a+b i)(c+d i)(a-b i)(c-d i) & =1 \\
\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right) & =1
\end{aligned}
$$

hence $a^{2}+b^{2}=1$, so clearly $a+b i \in\{1,-1, i,-i\}$.
4. Consider $\mathbb{Z}[\sqrt{d}]$ where $d<-1$. Suppose $a+b \sqrt{d} \in \mathbb{Z}[\sqrt{d}]^{*}$. Then for some $c, e \in \mathbb{Z}$,

$$
\begin{aligned}
& (a+b \sqrt{d})(c+e \sqrt{d})=1, \\
& (a-b \sqrt{d})(c-e \sqrt{d})=1, \\
& \left(a^{2}-d b^{2}\right)\left(c^{2}-d e^{2}\right)=1 .
\end{aligned}
$$

This implies that $a^{2}-d b^{2}=1$. If $b=0$, then $a= \pm 1$. If $b \neq 0$, then $b^{2} \geq 1$ and $-d b^{2} \geq 2$, hence $a^{2}-d b^{2}=1$ has no solutions for $b \neq 0$. Conclude that if $d<-1$, then $\mathbb{Z}[\sqrt{d}]^{*}=\{ \pm 1\}$.
5. Let $R=F[x]$ be the ring of polynomials with coefficients in a field F. We claim that $F[x]^{*}=F^{*}$. Let us show that a polynomial of degree ≥ 1 is never invertible in $F[x]$. Indeed, if $f(x) \in F[x], \operatorname{deg} f \geq 1$, and $g(x) \in F[x](g(x) \neq 0)$ then $\operatorname{deg} f(x) g(x)=\operatorname{deg} f(x)+\operatorname{deg} g(x) \geq 1$. But $\operatorname{deg} 1=0$, hence $f(x) g(x)$ is never the polynomial 1 .
irreducible
Definition 2.7. An element r of an integral domain R is called irreducible if
(1) $r \notin R^{*}$,
(2) if $r=a b$, then a or b is a unit.
reducible \quad Note. An element $r \in R$ is reducible if $r=s t$ for some $s, t \in R$ where neither s nor t is a unit. Therefore $r \in R$ is irreducible if it is not reducible and is not a unit.

Example 2.8.

1. The irreducible elements in \mathbb{Z} are $\pm p$, where p is a prime number.
2. Let $R=\mathbb{Z}[i]$. Then 3 is irreducible, whereas $2=(1+i)(1-i)$ and $5=$ $(1+2 i)(1-2 i)$ are not. Indeed, $1+i, 1-i, 1+2 i, 1-2 i$ are not units. If 3 is reducible, then $3=(a+b i)(c+d i)$ and also $3=(a-b i)(c-d i)$, then

$$
\begin{aligned}
9 & =(a+b i)(a-b i)(c+d i)(c-d i) \\
& =\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right) .
\end{aligned}
$$

Consider the possibilities

$$
\begin{aligned}
9 & =9 \times 1 \\
& =1 \times 9 \\
& =3 \times 3
\end{aligned}
$$

Therefore either $a^{2}+b^{2}=1$ and then $a+b i$ is a unit, or $c^{2}+d^{2}=1$ and then $c+d i$ is a unit. Therefore $a^{2}+b^{2}=3$, which has no solutions in \mathbb{Z}. Therefore 3 cannot be written as a product of non-units. Since 3 is not a unit, it is by definition irreducible.
3. We claim that 2 is an irreducible element of $\mathbb{Z}[\sqrt{-3}]$. If $2=(a+b \sqrt{-3})(c+$ $d \sqrt{-3})$, then $4=\left(a^{2}+3 b^{2}\right)\left(c^{2}+3 d^{2}\right)$. If, say $a^{2}+3 b^{2}=1$, then $a+b \sqrt{-3}= \pm 1$. Otherwise $2=a^{2}+3 b^{2}$, which has no solutions in \mathbb{Z}. Therefore 2 is irreducible.
4. In $\mathbb{R}[x]$ the polynomial $x^{2}+1$ is irreducible. But in $\mathbb{C}[x], x^{2}+1=(x+i)(x-i)$, and $x+i, x-i$ are not units, hence $x^{2}+1$ is reducible in $\mathbb{C}[x]$. An irreducible element of a polynomial ring $F[x]$, where F is a field, is the same as the irreducible polynomial.

Definition 2.9. Two elements $a, b \in R$ are called associates if $a=b u$ for some $u \in R^{*}$.

For example, a, b are associates in \mathbb{Z} iff $a= \pm b, a$ and b are associates in $\mathbb{Z}[i]$ iff $a= \pm b$ or $a= \pm i b$.

Proposition 2.10. Elements a and b are associates in an integral domain R iff (the following are equivalent)
(1) $a=b u$ for some $u \in R^{*}$,
(2) $b=a v$ for some $v \in R^{*}$,
(3) $a \mid b$ and $b \mid a$,
(4) $a R=b R$.

Proof. (1) is the definition. Since $a=b u$ implies $b=a u^{-1}$ with $u^{-1} \in R^{*}$, (1) implies (2) and (3). For (3) implies (1), consider $b=s a$ for some $s \in R$ and $a=t b$ for some $t \in R$. Then by the cancellation property, if $a \neq 0$ we have that $t s=1$. If $a=0$ then $b=0$ and clearly a and b are associates. Otherwise t, s are units, hence again a and b are associates. Finally, (3) iff (4) by Note $(*)$.

Definition 2.11. An integral domain R is called a unique factorization domain $(U F D)$ if the following hold:
(1) Every non-zero element of R is either unit or a product of finitely many irreducibles.
(2) If $a_{1} \cdots a_{m}=b_{1} \cdots b_{n}$, where the a_{i}, b_{j} are irreducibles, then $n=m$ and after reordering of factors, a_{i} and b_{i} are associates for $1 \leq i \leq n$.

Note. The product of an irreducible element and a unit is irreducible. Indeed, let $u \in R^{*}$ and p be an irreducible. Check that $u p$ is not a unit (otherwise p is a unit since $\left.p=u^{-1}(u p)\right)$ and that if $u p=a b$ then in $p=\left(u^{-1} a\right) b, u^{-1} a$ or b is a unit (since p is irreducible) and therefore a or b is a unit. Hence $u p$ is irreducible.

Example 2.12 (Examples of (non) UFD's).

1. The \mathbb{Z}, by the Fundamental Theorem of Arithmetic.
2. The $\mathbb{C}[x]$. Every polynomial is uniquely written as a product of linear factors, up to order and multiplication by non-zero numbers. For example $x^{2}+1=$ $(x-i)(x+i)=2(x+i) \frac{1}{2}(x-i)$.
3. The integral domain $\mathbb{Z}[\sqrt{-3}]=\{a+b \sqrt{-3} \mid a, b \in \mathbb{Z}\}$ is not a UFD. Indeed, $4=2 \times 2=(1+\sqrt{-3})(1-\sqrt{-3})$. Recall that $\mathbb{Z}[\sqrt{-3}]^{*}=\{ \pm 1\}$. The elements 2 and $1+\sqrt{-3}, 1-\sqrt{-3}$ are irreducible elements in $\mathbb{Z}[\sqrt{-3}]$ since

$$
\begin{aligned}
1+\sqrt{-3} & =(\alpha+\beta \sqrt{-3})(\gamma+\delta \sqrt{-3}) \\
4 & =\left(\alpha^{2}+3 \beta^{2}\right)\left(\gamma^{2}+3 \delta^{2}\right)
\end{aligned}
$$

implies that either $\alpha^{2}+3 \beta^{2}=1$ or $\gamma^{2}+3 \delta^{2}=1$ and hence $\alpha+\beta \sqrt{-3}$ or $\gamma+\delta \sqrt{-3}$ is a unit.
Also 2 is not associate of $1 \pm \sqrt{-3}$. Hence $\mathbb{Z}[\sqrt{-3}]$ does not have unique factorization.
properly divides
Definition 2.13. An element a properly divides b if $a \mid b$ and a and b are not associates.

Proposition 2.14. Let R be a UFD. Then there is no infinite sequence of elements r_{1}, r_{2}, \ldots of R such that r_{n+1} properly divides r_{n} for each $n \geq 1$.

Proof. Write $r_{1}=a_{1} \cdots a_{m}$, where a_{1}, \ldots, a_{m} are irreducibles (possible since R is a UFD). The number of factors m does not depend on the factorization, m only depends on r_{1}. Write $m=l\left(r_{1}\right)$. If r_{2} properly divides r_{1}, then $l\left(r_{2}\right)<l\left(r_{1}\right)$. Hence $l\left(r_{1}\right)>l\left(r_{2}\right) \cdots$ and so on. This cannot go forever. Hence no infinite sequence r_{1}, r_{2}, \ldots exists.

Example 2.15 (Example of a non-UFD). Let

$$
R=\left\{a_{0}+a_{1} x+\cdots+a_{n} x^{n} \mid a_{0} \in \mathbb{Z}, a_{i} \in \mathbb{Q} \text { for } i \geq 1\right\}
$$

Clearly $R \subset \mathbb{Q}[x]$ and R is a subring of $\mathbb{Q}[x]$ and also an integral domain. Consider $r_{1}=x, r_{2}=\frac{1}{2} x, r_{3}=\frac{1}{4} x, \cdots \in R$ and so $r_{n}=2 r_{n+1}$ but $\frac{1}{2} \notin R$ and hence $2 \notin R^{*}$ and $x \notin R^{*}$ since $\frac{1}{x} \notin \mathbb{Q}[x]$. Thus r_{n+1} properly divides r_{n}. By the previous proposition 2.14, R is not a UFD.

Proposition 2.16. Let R be a UFD. If p is irreducible and $p \mid a b$ then $p \mid a$ or $p \mid b$.

Proof. If a is a unit, then $p \mid b$ (since $p \mid a b$ implies $a b=p c$ and then $b=p c a^{-1}$ for some $c \in R$). So assume that a, b are not units. Then $a=a_{1} \cdots a_{m}, b=b_{1}, \cdots b_{n}$ for some irreducible elements a_{i} and b_{j}. Write $a_{1} \cdots a_{m} \cdots b_{1} \cdots b_{n}=p c$ for some $c \in R$. If $c \in R^{*}$, write $\left(c^{-1} a_{1}\right) a_{2} \cdots a_{m} b_{1} \cdots b_{n}=p$. Otherwise $c=c_{1} \cdots c_{s}$ for some irreducibles $c_{1}, \ldots, c_{s} \in R$. Then we have two ways of writing $a b$ as a product of irreducibles

$$
a_{1} \cdots a_{m} b_{1} \cdots b_{n}=p c_{1} \cdots c_{s}
$$

Thus p is associated with some a_{i} or b_{j}, hence $p \mid a$ or $p \mid b$.
Example 2.17. Let $R=\mathbb{Z}[\sqrt{d}], d<-1$ and odd. Then $\mathbb{Z}[\sqrt{d}]$ is not a UFD. Note that 2 is irreducible (the same proof as before). Also

$$
1-d=(1-\sqrt{d})(1+\sqrt{d})
$$

and $(1-d)$ is even. But $2 \nmid 1 \pm \sqrt{d}$ (recall that if $a \in \mathbb{Z}, a \mid \alpha+\beta \sqrt{d}$ then $a|\alpha, a| \beta)$. Then (2.16) says that if R is a UFD and irreducible p divides $a b$, then $p \mid a$ or $p \mid b$. Therefore R is not a UFD.

Theorem 2.18. Let R be an integral domain. Then R is a UFD if and only if the following hold:
(1) There is no infinite sequence r_{1}, r_{2}, \ldots of elements of R such that r_{n+1} properly divides r_{n} for all $n \geq 1$.
(2) For every irreducible element $p \in R$, if $p \mid a b$, then $p \mid a$ or $p \mid b$.

Proof. By Propositions 2.14 and 2.16 the condition (1) and (2) are satisfied for any UFD.
Conversely, suppose R satisfies (1) and (2). For contradiction, suppose that there is an element r_{1} in R, not 0 , not a unit, which cannot be written as a product of irreducibles. Note that r_{1} is not irreducible, hence $r_{1}=r_{2} s_{2}$, for some $r_{2}, s_{2} \in R$ which are not units. At least one of the factors cannot be written as a product of irreducibles, say r_{2}. For the same reason as before, we can write $r_{2}=r_{3} s_{3}$, with r_{3}, s_{3} non-units in R. Continuing in this way, we obtain an infinite sequence $r_{1}, r_{2}, r_{3}, \ldots$. Moreover, in this sequence, r_{n+1} properly divides r_{n} because s_{n+1} is never a unit. This contradicts condition (1). Hence every non-unit, non-zero element of R can be written as a product of irreducibles.
Now assume that $a_{1} \cdots a_{m}=b_{1} \cdots b_{n}$, where the a_{i} and b_{j} are irreducibles. Since $a_{1} \mid b_{1} b_{2} \cdots b_{n}$, by (2) we see that a_{1} divides b_{j} for some j. Reorder the b_{j} 's so that $a_{1} \mid b_{1}$. Thus $b_{1}=a_{1} u$ for some $u \in R, u \neq 0$. If u is not a unit, then b_{1} cannot be irreducible. Therefore u is a unit and hence a_{1} and b_{1} are associates and we can write

$$
\begin{aligned}
a_{1} a_{2} \cdots a_{m} & =a_{1} u b_{2} \cdots b_{n} \\
a_{2} \cdots a_{m} & =\left(u b_{2}\right) \cdots b_{n}
\end{aligned}
$$

by the cancellation property in R. Continue in this way until we get 1 in the left hand side or in the right hand side. To fix ideas, assume $m \geq n$, then we arrive at the situation when a product of $m-n$ irreducibles equals 1 . This can never happen
unless $m=n$. Hence $m=n$ and, possibly after reordering, a_{i} and b_{i} are associates for $i \geq 1$.

Chapter 3

Euclidean domains and principal ideal domains

Consider \mathbb{Z}. The absolute value, or modulus, of $n \in \mathbb{Z}$ is a non-negative number $|n|$. Given $a, b \in \mathbb{Z}, b \neq 0$, we can write $a=q b+r$. If $b>0$, then $0 \leq r<b$. For general non-zero b, we can still write $a=q b+r$, where r is such that $|r|<|b|$.

Definition 3.1. An integral domain R is called a Euclidean domain if there exists a function $\varphi: R \backslash\{0\} \rightarrow \mathbb{Z}_{\geq 0}$ satisfying the following conditions:

Euclidean

 domain(1) for all non-zero $a, b \in R$, we have $\varphi(a) \leq \varphi(a b)$,
(2) given $a, b \in R, b \neq 0$, there exist $q, r \in R$ such that $a=q b+r$ and $r=0$ or $\varphi(r)<\varphi(b)$.

Call the function φ a norm.
For example, \mathbb{Z} with norm $\varphi(n)=|n|$ is an Euclidean domain.
Example 3.2 (of Euclidean domains). Let F be a field, $F[x]$ the ring of polynomials with coefficients in F. For $f(x) \in F[x], f(x) \neq 0$, define $\varphi(f(x))=\operatorname{deg} f(x)$. Clearly

$$
\operatorname{deg} f(x) \leq \operatorname{deg} f(x) g(x)
$$

If $g(x)$ is non-zero polynomial, then $f(x)=q(x) g(x)+r(x)$ for some $q(x), r(x) \in F[x]$, where either $r(x)$ is the zero polynomial, or $\operatorname{deg} r(x)<\operatorname{deg} g(x)$. For example if

$$
\begin{aligned}
& f(x)=x^{4}+5 x^{2}+2 x+1 \\
& g(x)=x^{2}-3 x+1
\end{aligned}
$$

then

$$
\begin{aligned}
& q(x)=x^{2}+3 x+13 \\
& r(x)=38 x-12
\end{aligned}
$$

Sketch of proof of (2) in definition of Euclidean domain: Let

$$
\begin{aligned}
f(x) & =a_{n} x^{n}+\cdots+a_{0} \\
g(x) & =b_{m} x^{m}+\cdots+b_{0}
\end{aligned}
$$

with $a_{n} \neq 0, b_{m} \neq 0$ so that $\operatorname{deg} f(x)=n$ and $\operatorname{deg} g(x)=m$. If $n<m$, then $q(x)=0$ and $f(x)=r(x)$. If $n \geq m$, then write

$$
f_{1}(x)=f(x)-b_{m}^{-1} a_{n} x^{n-m} g(x)
$$

a polynomial of degree $\leq n-1$. By induction, $f_{1}(x)=q_{1}(x) g(x)+r(x)$ hence

$$
f(x)=\left(b_{m}^{-1} a_{n} x^{n-m}+q_{1}(x)\right) g(x)+r(x) .
$$

Definition 3.3. Let $f(x) \in F[x]$. Then $\alpha \in F$ is a root of $f(x)$ if $f(\alpha)=0$.
Proposition 3.4. Element $\alpha \in F$ is a root of $f(x) \in F[x]$ if and only if $(x-\alpha)$ divides $f(x)$.

Proof. If $(x-\alpha)$ divides $f(x)$, then $f(x)=(x-\alpha) b(x)$, hence $f(\alpha)=(\alpha-\alpha) b(\alpha)=$ 0 . Conversely, suppose $f(\alpha)=0$ and write $f(x)=q(x)(x-\alpha)+r(x)$. Clearly $\operatorname{deg} r(x)<\operatorname{deg}(x-\alpha)=1$ and hence $\operatorname{deg} r(x)=0$, i.e. $r(x)=r \in F$. This implies

$$
0=f(\alpha)=q(\alpha) \cdot 0+r
$$

that is $r=0$.
Theorem 3.5. Let $f(x) \in F[x]$, where F is a field and $\operatorname{deg} f(x)=n \geq 1$. Then $f(x)$ has at most n roots in F.

Proof. By induction on n. If $n=1$, then $f(x)=a x+b, a \neq 0$, hence $f(x)$ has only one root, namely $\frac{-b}{a}$. Now suppose that the statement is true for all degrees up to $n-1$. If $f(x)$ has no roots in F, we are done. Otherwise, $f(x)$ has at least one root, say α. Write $f(x)=(x-\alpha) g(x)$ by proposition 3.4. By the induction assumption, $g(x)$ has at most $n-1$ roots. Finally, if β is a root of $f(x)$, i.e. $f(\beta)=0$, then

$$
0=f(\beta)=(\beta-\alpha) g(\beta)
$$

If $\beta-\alpha \neq 0$, then $g(\beta)=0$ since F has no zero divisors. Thus $f(x)$ has at most $1+(n-1)=n$ roots.

Example 3.6.

1. The polynomial $x^{6}-1 \in \mathbb{Q}[x]$ has only two roots in \mathbb{Q}, namely 1 and -1 .
2. The polynomial $x^{6}-1 \in \mathbb{C}[x]$ has 6 roots in \mathbb{C}.
3. Let $\mathbb{Z} / 8$ be the ring of residues modulo 8 and let $\mathbb{Z} / 8[x]$ be the ring of polynomials with coefficients in $\mathbb{Z} / 8$. Consider $x^{2}-1 \in \mathbb{Z} / 8[x]$. The roots are $\alpha \in \mathbb{Z} / 8$ such that $\alpha^{2}=1$. Observe that

$$
\begin{aligned}
\overline{1}^{2} & =\overline{1} \\
\overline{3}^{2} & =\overline{1} \\
\overline{5}^{2} & =\overline{1} \\
\overline{7}^{2} & =\overline{1}
\end{aligned}
$$

since $n^{2} \equiv 1 \bmod 8$ for any odd $n \in \mathbb{Z}$. Hence $x^{2}-1$ has 4 roots in $\mathbb{Z} / 8$. In fact, this does not contradict 3.5 since $\mathbb{Z} / 8$ is not a field because $\overline{2} \times \overline{4}=\overline{0}$.

Definition 3.7. Suppose $F \subset K$ are fields. An element $\alpha \in K$ is called algebraic over F if there exists a non-zero polynomial $f(x) \in F[x]$ such that $f(\alpha)=0$.

Example 3.8.

1. Numbers $\sqrt{2}, \sqrt[3]{3}, \sqrt{-1} \in \mathbb{C}$ are algebraic over \mathbb{Q} with corresponding polynomials $x^{2}-2, x^{3}-3, x^{2}+1$.
2. Any $\alpha \in \mathbb{C}$ is algebraic over \mathbb{R}. Indeed, for $\alpha=a+b i$, consider

$$
(t-\alpha)(t-\bar{\alpha})=t^{2}-2 a t+\left(a^{2}+b^{2}\right) \in \mathbb{R}[x]
$$

with complex roots α and $\bar{\alpha}$.
3. Any $\alpha \in F$ is algebraic over F - consider the linear polynomial $t-\alpha$.
4. Numbers $e, \pi \in \mathbb{R}$ are not algebraic over \mathbb{Q}.

Proposition 3.9. Suppose $F \subset K$ are fields, $\alpha \in K$ is algebraic over F. Then
(1) there exists an irreducible polynomial $p(x) \in F[x]$ such that $p(\alpha)=0$,
(2) if $f(x) \in F[x], f(\alpha)=0$, then $p(x) \mid f(x)$.

Proof.
(1) Take $p(x)$ to be a polynomial of the least degree such that $p(\alpha)=0$. Suppose then $p(x)=a(x) b(x)$ where $a(x), b(x)$ are not units, i.e. $\operatorname{deg} a(x) \geq 1$, $\operatorname{deg} b(x) \geq 1$. Now $0=a(\alpha) b(\alpha)$ and hence α is a root of polynomial of degree less than $\operatorname{deg} p(x)$, a contradiction. So $p(x)$ is irreducible.
(2) Write $f(x)=q(x) p(x)+r(x)$, where $p(x)$ is from part (1). If $r(x)$ is the zero polynomial, we are done. Otherwise, $\operatorname{deg} r(x)<\operatorname{deg} p(x)$. But $0=f(\alpha)=$ $q(\alpha) p(\alpha)+r(\alpha)$ implies $r(\alpha)=0$. This contradicts the minimality of $\operatorname{deg} p(x)$. Hence $f(x)=q(x) p(x)$.

Recall that a polynomial $a_{0}+a_{1} x+\cdots a_{n} x^{n}$ is called monic if $a_{n}=1$.
monic
Corollary 3.10. If $F \subset K$ are fields, $\alpha \in K$ algebraic over F, then there exists a unique irreducible monic polynomial $p(x) \in F[x]$ such that $p(\alpha)=0$.

Proof. Consider $p(x)$ defined as in Proposition 3.9 and divide it by its highest degree coefficient. Then $p(x)$ is irreducible, monic and $p(\alpha)=0$. If $p_{1}(x)$ is another monic, irreducible polynomial with $p_{1}(\alpha)=0$, then $\operatorname{deg} p(x)=\operatorname{deg} p_{1}(x)$. Then either p and p_{1} coincide, or $p(x)-p_{1}(x)$ is a nonzero polynomial. If $p(x)-p_{1}(x)$ is a non-zero polynomial, it vanishes at α and $\operatorname{deg}\left(p(x)-p_{1}(x)\right)<\operatorname{deg} p(x)$, a contradiction.

Definition 3.11. The polynomial $p(x)$ from the Corollary 3.10 is called the minimal polynomial of α over F.
minimal polynomial

Example 3.12 (of Euclidean domains).

1. Claim: The rings $\mathbb{Z}[i]$ and $\mathbb{Z}[\sqrt{-2}]$ are Euclidean domains.

Proof. Define $\varphi(z)=z \bar{z}$, i.e. if $z=a+b \sqrt{d}$, then $\varphi(z)=a^{2}-d b^{2}$, where $d=-1$ or -2 . Hence $\varphi(z)$ is a non-negative integer. We must check that
(1) $\varphi(\alpha) \leq \varphi(\alpha \beta)$, for $\beta \neq 0$ and
(2) for any $\alpha, \beta \in \mathbb{Z}[\sqrt{d}], \beta \neq 0$, there exist $q, r \in \mathbb{Z}[\sqrt{d}]$ such that $\alpha=q \beta+r$ with $r=0$ or $\varphi(r)<\varphi(\beta)$.

For (1), note that $\varphi(\alpha \beta)=\alpha \bar{\alpha} \beta \bar{\beta}$. Note that $\varphi(\beta) \in \mathbb{Z}, \varphi(\beta) \geq 0$ and $\varphi(\beta)=0$ if $\beta=0$. Hence $\varphi(\alpha \beta) \geq \varphi(\alpha)$.
For (2), we look for q and r such that $\alpha=q \beta+r$. We write this as $\frac{\alpha}{\beta}=q+\frac{r}{\beta}$. Idea is to define q as the best possible integer approximation to $\frac{\alpha}{\beta}$. Write

$$
\frac{\alpha}{\beta}=\mu+\nu \sqrt{d}
$$

for some $\mu, \nu \in Q$ (this is possible since $\mathbb{Q}[\sqrt{d}]$ is a field). Take $m \in \mathbb{Z}$ such that $|m-\mu| \leq \frac{1}{2}$, take $n \in \mathbb{Z}$ such that $|n-\nu| \leq \frac{1}{2}$. Define $q=m+n \sqrt{d}$ and let $r=\alpha-q \beta$. Then

$$
\begin{aligned}
\varphi(r) & =\varphi(\alpha-q \beta)=\varphi(\beta) \varphi\left(\frac{\alpha}{\beta}-q\right) \\
& =\varphi(\beta)\left((\mu-m)^{2}+(\nu-n)^{2}(-d)\right) \\
& =\varphi(\beta)\left(\frac{1}{4}+\frac{1}{4}(-d)\right) \leq \frac{3}{4} \varphi(\beta)<\varphi(\beta)
\end{aligned}
$$

2. Claim: The rings $\mathbb{Z}[\sqrt{2}]$ and $\mathbb{Z}[\sqrt{3}]$ are Euclidean domains.

Proof. Note that if we define $\varphi(a+b \sqrt{d})$ as $a^{2}-d b^{2}, \varphi$ is not a norm (since it can be negative). So we define

$$
\varphi(a+b \sqrt{d})=\left|a^{2}-d b^{2}\right|
$$

This is clearly a non-negative integer. Moreover, since d is not a square of an integer, $a^{2}-d b^{2} \neq 0$ if $a \neq 0$ or $b \neq 0$. So $\varphi(\alpha)>0$ if $\alpha \neq 0$.
The proof of (1) in the definition of Euclidean domain is the same as in the previous example.
For (2), following the same pattern, take $\alpha, \beta \in \mathbb{Z}[\sqrt{d}]$. Keep the same notation and define q and r as before, with $d=2$ or 3 . Then

$$
\begin{aligned}
\varphi(r) & =\varphi(\alpha-q \beta)=\varphi(\beta) \varphi\left(\frac{\alpha}{\beta}-q\right) \\
& =\varphi(\beta)\left|(\mu-m)^{2}-d(\nu-n)^{2}\right|
\end{aligned}
$$

Note that $\left|x^{2}-y^{2} d\right| \leq \max \left(x^{2}, y^{2} d\right)$ and $d>0$. Therefore

$$
\left|(\mu-m)^{2}-d(\nu-n)^{2}\right| \leq \max \left(\frac{1}{4}, \frac{d}{4}\right)
$$

hence $\varphi(r) \leq \frac{3}{4} \varphi(\beta)<\varphi(\beta)$.

Definition 3.13. Let R be a commutative ring and $I \subset R$ be its subring. Then $I \subset R$ is called an ideal if for any $r \in R$ and $x \in I$ we have $r x \in I$.

Example 3.14 (of ideals).

1. The ring $n \mathbb{Z}$ (multiples of a fixed integer n) is an ideal of \mathbb{Z}.
2. If R is any commutative ring and $a \in R$, then $a R \subset R$ is an ideal.
3. Let $R=\mathbb{Z}[x]$, the ring of polynomials with integer coefficients. Let I be the set of polynomials $a_{0}+a_{1} x+\cdots+a_{n} x^{n}$ such that a_{0} is even. This is clearly an ideal, since for $\left(a_{0}+\cdots+a_{n} x^{n}\right) \in I$,

$$
\left(a_{0}+\cdots+a_{n} x^{n}\right)\left(b_{0}+\cdots+b_{m} x^{m}\right)=a_{0} b_{0}+\cdots
$$

and $a_{0} b_{0}$ is even for any $b_{0} \in \mathbb{Z}$.
4. Let R be a field. Claim: Rings $\{0\}$ and R are the only ideals in the field R.

Proof. Suppose $I \subset R$ is a nonzero ideal. Then there exists $x \in I, x \neq 0$. Since R is a field, $x^{-1} \in R$. But I is an ideal, so $1=x^{-1} x \in I$. Let r be any element of R, then $r=r \cdot 1 \in I$. Hence $I=R$.

Definition 3.15. An ideal of R of the form $a R$ (the multiples of a given element $a \in R$) is called a principal ideal. An integral domain R is called a principal ideal domain (PID) if every ideal of R is principal.
principal ideal PID

Example 3.16 (of principal ideals).

1. We claim that \mathbb{Z} is a PID. We need to show that every ideal $I \subset \mathbb{Z}$ has the form $a \mathbb{Z}$. If $I \neq\{0\}$, choose $a \in I, a \neq 0$, such that $|a|$ is minimal among the elements of I. Then $a \mathbb{Z} \subset I$. Let $n \in I$. Write $n=q a+r$, where $r=0$ or $|r|<|a|$. If $r \neq 0$, can write $r=n-q a$ and since $n, q a \in I$, so does $r, r \in I$. A contradiction since $|r|<|a|$. Thus $r=0$ and therefore $I \subset a \mathbb{Z}$, so $I=a \mathbb{Z}$.
2. Let $R=\mathbb{Z}[x]$ and $I=\left\{a_{0}+a_{1} x+\cdots+a_{n} x^{n} \in \mathbb{Z}[x] \mid a_{0}\right.$ is even $\}$.

Claim: I is not a principal ideal.

Proof. For contradiction assume that there is $a(x) \in \mathbb{Z}[x]$, such that $I=$ $a(x) \mathbb{Z}[x]$. Note that $2 \in I$. Then $2=a(x) b(x)$ for some $b(x) \in \mathbb{Z}$. Then $a(x)$ and $b(x)$ are constant polynomials, i.e. $a(x)=a \in \mathbb{Z}, a$ is even. Also note that $x \in I$. Hence $x=a \cdot c(x)$ for some $c(x) \in \mathbb{Z}[x]$. But all coefficients of $a c(x)$ are even, a contradiction. Hence no generator exists, i.e. I is not principal.

Theorem 3.17. Every Euclidean domain is a PID.
Proof. Let R be a Euclidean domain with norm φ. Given a non-zero ideal I, we choose $a \in I, a \neq 0$, such that $\varphi(a)$ is the smallest possible. Let $n \in I$. Write $n=q a+r$ and either $r=0$ or $\varphi(r)<\varphi(a)$. If $r \neq 0$, write $r=n-q a$. Since $n, q a \in I$, so does $r, r \in I$. A contradiction to the minimality of $\varphi(a)$. So $r=0$ and thus $n=q a$. This proves that $I=a R$ is a principal ideal.

Example 3.18 (of PID's).

1. $\mathbb{Z}, F[x]$ if F is a field, $\mathbb{Z}[i], \mathbb{Z}[\sqrt{-2}], \mathbb{Z}[\sqrt{2}], \mathbb{Z}[\sqrt{3}]$.
2. There do exist PID's which are not Euclidean domains.
(For example $\mathbb{Z}[(1+\sqrt{-19}) / 2]$; the proof that it is not ED is too technical).
3. If d is odd, $d<-1$, then $\mathbb{Z}[\sqrt{d}]$ is not a PID (and hence by 3.17 not an Euclidean domain). In fact, every PID is a UFD (see further). Hence this follows from example 2.17

Proposition 3.19. Suppose R is a PID and $I_{1} \subset I_{2} \subset \cdots$ are ideals in R. Then eventually, $I_{n}=I_{n+1}=\cdots$ for some n (the sequence of ideals stabilizes).

Proof. Define

$$
I=\bigcup_{n \geq 1} I_{n}
$$

This is a subset of R. We claim that I is an ideal. First, $I \subset R$ is a subring: given $x, y \in I$ we must show that $x+y,-x, x y$ are in I. Any $x \in I$ belongs to some I_{n}. Similarly, any $y \in I$ is in some I_{m}. Suppose $n \geq m$. Then $I_{m} \subset I_{n}$. So $x, y \in I_{n}$ and thus $x+y,-x, x y \in I_{n}$. Therefore $x+y,-x, x y \in I$. Let $r \in R$ and $x \in I_{n}$. Then $r x \in I_{n}$ and therefore $r x \in I ; I$ is an ideal in R.
By assumption, $I=a R$ for some $a \in R$. Clearly, $a \in I$. Hence, for some $l \geq 1$, we have $a \in I_{l}$. But then $I=a R \subset I_{l}$. On the other hand, $I_{l} \subset I$, so $I=I_{l}$.
For any $i \geq 1$, we have $I=I_{l} \subset I_{l+1} \subset I$, therefore $I_{l}=I_{l+1}=\cdots=I$.
Example 3.20. Assume $R=\mathbb{Z}$. Then $60 \mathbb{Z} \subset 30 \mathbb{Z} \subset 15 \mathbb{Z} \subset \cdots \subset \mathbb{Z}$.

Proposition 3.21. Suppose that R is a PID. Let $p \in R$ be an irreducible element, such that $p \mid a b$. Then $p \mid a$ or $p \mid b$.

Proof. We claim that the subring

$$
I=a R+p R=\left\{a r_{1}+p r_{2} \mid r_{1}, r_{2} \in R\right\}
$$

is an ideal: if $r \in R$, then $r\left(a r_{1}+p r_{2}\right)=a\left(r r_{1}\right)+p\left(r r_{2}\right) \in I$. Then $I=d R$ for some $d \in R$.
We have $p=a \cdot 0+p \cdot 1 \in I$ and so can write $p=d r$ for some $r \in R$. Since p is irreducible, r or d is a unit in R.
If r is a unit, say $r r^{-1}=1$ for some $r^{-1} \in R$, then $d=p r^{-1}$. But $a \in I$, so $a=d r_{1}$ for some $r_{1} \in R$. Thus $a=d r_{1}=p\left(r^{-1} r_{1}\right)$ so $p \mid a$.
If d is a unit, $I=d R$ contains $1=d d^{-1}$, hence $I=R$. Therefore

$$
1=a t+p u
$$

for some $t, u \in R$. This implies that

$$
b=a b t+b p u
$$

By assumption, $p \mid a b$, thus $p \mid a b t+b p u$, thus $p \mid b$.
Theorem 3.22. Every PID is a UFD.

Proof. We will apply Theorem [2.18] - we need to prove that there does not exist an infinite sequence r_{1}, r_{2}, \ldots such that r_{n+1} properly divides r_{n} for $n=1,2, \ldots$ (second condition of 2.18 follows from 3.21). Indeed, if r_{1}, r_{2}, \ldots is such a sequence, we can write $r_{1}=r_{2} s_{2}$ with s_{2} not a unit. Similarly $r_{2}=r_{3} s_{3}$ and so on, $r_{n}=r_{n+1} s_{n+1}$. This implies that $r_{n} R \subset r_{n+1} R$ for $n=1,2, \ldots$ By Proposition 3.19 there exists $l \geq 1$ such that $r_{l} R=r_{l+1} R=r_{l+2} R=\cdots$. But then $r_{l+1} R \subset r_{l} R$ so $r_{l+1}=r_{l} t$ for some $t \in R$. Then $r_{l+1} \mid r_{l}$ and $r_{l} \mid r_{l+1}$. This contradicts the assumption that r_{l+1} properly divides r_{l}. Thus by Theorem 2.18, R is a UFD.

Corollary 3.23. If R is an Euclidean domain, then R is a PID and then R is a UFD.

Example 3.24.

1. These rings are UFD's: $\mathbb{Z}, F[x], \mathbb{Z}[i], \mathbb{Z}[\sqrt{-2}], \mathbb{Z}[\sqrt{2}], \mathbb{Z}[\sqrt{3}]$.
2. Can prove that if R is a UFD, then so is $R[x]$, for example $\mathbb{Z}[x]$ is a UFD. But this is not a PID.

Applications

In number theory, Diophantine equations are very important, These are polynomial equations in \mathbb{Z} or \mathbb{Q}. For example, $x^{n}+y^{n}=z^{n}$ has no solutions in positive integers for $n>2^{\star}$.

Example 3.25. Claim: The only solutions to $x^{2}+2=y^{3}$ with x, y integers is

* This margin is too small for a complete proof of this statement. $x= \pm 5$ and $y=3$.

Proof. Write as $(x-\sqrt{2})(x+\sqrt{-2})=y^{3}$. Work in the UFD $\mathbb{Z}[\sqrt{-2}]$. Let p be an irreducible common factor of $x-\sqrt{-2}$ and $x+\sqrt{-2}$. Then $p \mid(x+\sqrt{-2})-(x-$ $\sqrt{-2})=2 \sqrt{-2}=-(\sqrt{-2})^{3}$. Note that $\sqrt{-2}$ is irreducible in $\mathbb{Z}[\sqrt{-2}]$. Indeed, for $\alpha, \beta, \gamma, \delta \in \mathbb{Z}$,

$$
\begin{aligned}
\sqrt{-2} & =(\alpha+\beta \sqrt{-2})(\gamma+\delta \sqrt{-2}) \\
-\sqrt{-2} & =(\alpha-\beta \sqrt{-2})(\gamma-\delta \sqrt{-2}) \\
2 & =\left(\alpha^{2}+2 \beta^{2}\right)\left(\gamma^{2}+2 \delta^{2}\right)
\end{aligned}
$$

Say $\alpha^{2}+2 \beta^{2}=1$, then $\alpha+\beta \sqrt{-2}= \pm 1$. Thus $p=\sqrt{-2}$ or $p=-\sqrt{-2}$ since $\mathbb{Z}[\sqrt{-2}]$ is a UFD $(\pm 1$ are the only units in $\mathbb{Z}[\sqrt{-2}])$. Then $\sqrt{-2} \mid x+\sqrt{-2}$ and so $\sqrt{-2} \mid x$ and thus $2 \mid x^{2}$. Thus x^{2} is even and therefore x is even. Also $y^{3}=x^{2}+2$ is even and thus y is even. Hence get $2=y^{3}-x^{2}$, a contradiction since the RHS is divisible by 4.

Hence $x+\sqrt{-2}$ and $x-\sqrt{-2}$ have no irreducible common factors. Therefore $(x+$ $\sqrt{-2})(x-\sqrt{-2})$ is uniquely written as $y_{1}^{3} \cdots y_{n}^{3}$, where y_{i}^{\prime} 's are irreducible. Therefore $x+\sqrt{-2}=(a+b \sqrt{-2})^{3}$ for some $a, b \in \mathbb{Z}$. Solve

$$
\begin{aligned}
x+\sqrt{-2} & =(a+b \sqrt{-2})^{3} \\
& =a^{3}-6 a b^{2}+\left(3 a^{2} b-2 b^{3}\right) \sqrt{-2}
\end{aligned}
$$

Hence, equating the real and imaginary parts,

$$
\begin{aligned}
x & =a^{3}-6 a b^{2} \\
1 & =b\left(3 a^{2}-2 b^{2}\right)
\end{aligned}
$$

Therefore $b= \pm 1$ and $3 a^{2}-2= \pm 1$, hence $a= \pm 1$. Also $3 a^{2}-2 b^{2}=1$, so $b=1$. Substitute into $x=a^{3}-6 a b^{2}$ to get $x= \pm 5$. Finally, $y^{3}=x^{2}+2=27$ and so $y=3$. Hence $x= \pm 5$ and $y=3$ are the only solutions.

Theorem 3.26 (Wilson's Theorem). If p is prime, then $(p-1)!\equiv-1 \bmod p$.
Proof. Since $\mathbb{Z} / p \backslash\{0\}$ is a group under multiplication, for $0<a<p$, there exists a unique inverse element a^{\prime} such that $a a^{\prime} \equiv 1 \bmod p$. In case $a=a^{\prime}$, we have $a^{2} \equiv 1 \bmod p$ and hence $a=1$ or $a=p-1$. Thus the set $\{2,3, \ldots, p-2\}$ can be divided into $\frac{1}{2}(p-3)$ pairs a, a^{\prime} with $a a^{\prime} \equiv 1 \bmod p$. Hence

$$
\begin{aligned}
(p-1)! & =(p-1) \cdot 2 \cdot 3 \cdots(p-2) \\
& \equiv(p-1) \bmod p \\
& \equiv-1 \quad \bmod p
\end{aligned}
$$

Theorem 3.27. Let p be an odd prime. Then p is a sum of two squares iff $p \equiv 1$ $\bmod 4$.

Proof.

\Rightarrow Clearly $a^{2} \equiv 0 \bmod 4$ or $a^{2} \equiv 1 \bmod 4$ for any $a \in \mathbb{Z}$. Therefore, for $a, b \in \mathbb{Z}$, $a^{2}+b^{2}=0,1,2 \bmod 4$. Hence an integer congruent to $3 \bmod 4$ is never sum of two squares. Since p is an odd prime, $p \equiv 1 \bmod 4$.
\Leftarrow Choose p such that $p=1 \bmod 4$. Write $p=1+4 n, n \in \mathbb{Z}$. Then

$$
\begin{aligned}
(p-1)! & =(1 \cdot 2 \cdots 2 n)((2 n+1)(2 n+2) \cdots 4 n) \\
& =(1 \cdot 2 \cdots 2 n)((p-2 n) \cdots(p-1))
\end{aligned}
$$

Therefore

$$
\begin{aligned}
(p-1)! & \equiv(1 \cdot 2 \cdots 2 n)((p-2 n) \cdots(p-1)) \quad \bmod p \\
& \equiv(1 \cdot 2 \cdots 2 n)((-2 n) \cdots(-1)) \quad \bmod p \\
& \equiv(1 \cdot 2 \cdots 2 n)^{2}(-1)^{2 n} \quad \bmod p .
\end{aligned}
$$

By Wilson's theorem, $(p-1)!\equiv-1 \bmod p$, therefore $-1=x^{2} \bmod p$ for $x=$ $(1 \cdot 2 \cdots 2 n)(-1)^{2 n}$. Thus $p \mid x^{2}+1$. Now since $\mathbb{Z}[\sqrt{-1}]$ is a UFD, $p \mid(x+i)(x-i)$. Note that $p \nmid x+i, p \nmid x-i$ since $p(a+b i)=p a+p b i$, but $p b \neq \pm 1$. Therefore p is not irreducible in $\mathbb{Z}[i]$ (by Theorem(2.18) and therefore there are $a, b, c, d \in \mathbb{Z}$, $a+b i, c+d i$ not units, such that

$$
\begin{aligned}
p & =(a+b i)(c+d i) \\
p^{2} & =\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)
\end{aligned}
$$

Hence $p^{2}=p \cdot p$ and therefore $p=a^{2}+b^{2}=c^{2}+d^{2}$.

Chapter 4

Homomorphisms and factor rings

Definition 4.1. Let R and S be rings. A function $f: R \rightarrow S$ is called a homomorphism if $f(x+y)=f(x)+f(y)$ and $f(x y)=f(x) f(y)$ for all $x, y \in R$.
A bijective homomorphism is called an isomorphism.
isomorphism
Example 4.2 (of homomorphisms).

1. Let $f: \mathbb{Z} \rightarrow \mathbb{Z} / m, f(n)=\bar{n}$, the residue class of $n \bmod m$. Then f is a homomorphism.
2. Consider $f: \mathbb{Q}[x] \rightarrow \mathbb{R}$ defined by $p(x) \mapsto p(\alpha)$ for $\alpha \in \mathbb{R}$; the value of p at α. Clearly f is a homomorphism.
3. Let $F \subset K$ be fields. Then the map $f: F \rightarrow K, f(x)=x$, is a homomorphism.

Proposition 4.3. If $f: R \rightarrow S$ is a homomorphism, then $f(0)=0$ and $f(-r)=$ $-f(r)$ for any $r \in R$.

Proof. We have

$$
\begin{aligned}
f(0) & =f(0+0)=f(0)+f(0), \\
0 & =f(0) .
\end{aligned}
$$

Also

$$
\begin{aligned}
0=f(0) & =f(r-r) \\
& =f(r)+f(-r), \\
f(-r) & =-f(r) .
\end{aligned}
$$

Observe the relationship between \mathbb{Z} and \mathbb{Q} :

$$
\mathbb{Q}=\left\{\left.\frac{n}{m} \right\rvert\, m \neq 0, n, m \in \mathbb{Z}\right\} .
$$

Generalize this construction:

Theorem 4.4. Let R be an integral domain. Then there exists a field F containing a subring \tilde{R} isomorphic to R and every element in F has the form $a b^{-1}$, for some $a, b \in \tilde{R}, b \neq 0$.

Proof.

- Consider $\{(a, b) \mid a, b \in R, b \neq 0\}$. Define $(a, b) \sim(c, d)$ iff $a d=b c$. Check that \sim is an equivalence relation: $(a, b) \sim(a, b)$ since $a b=b a,(a, b) \sim(c, d)$ then also $(c, d) \sim(a, b)$. Finally if $(a, b) \sim(c, d)$ and $(c, d) \sim(e, f)$ then

$$
\begin{aligned}
a d & =b c \\
a c f & =a(d e)=(a d) e=b c e \\
a f & =b e
\end{aligned}
$$

and so $(a, b) \sim(e, f)$. Denote the equivalence class of (a, b) by $\frac{a}{b}$. Let F be the set of all such equivalence classes.

- Define

$$
\frac{a}{b}+\frac{c}{d}=\frac{a d+b c}{b d}
$$

that is, the equivalence class of the pair $(a d+b c, b d)$. Also define

$$
\frac{a}{b} \cdot \frac{c}{d}=\frac{a c}{b d}
$$

Check that addition is well defined, that is for $(a, b) \sim(A, B)$ and $(c, d) \sim$ (C, D), we have $(a d+b c, b d) \sim(A D+B C, B D)$. We have

$$
\begin{aligned}
a B & =b A \\
a d B D & =A D b d, \\
c D & =d C \\
b c B D & =B C b d
\end{aligned}
$$

Thus $(a d+b c) B D=(A D+B C) b d$. We leave to the reader to check that the multiplication is well defined.

- Check that F is a field. The class $\frac{0}{1}$ is the zero element, $\frac{1}{1}$ is the identity for multiplication.
- Define $\tilde{R}=\left\{\left.\frac{r}{1} \right\rvert\, r \in R\right\} \subset F$. Consider the map $R \rightarrow \tilde{R}$ with $r \mapsto \frac{r}{1}$. This is an isomorphism, since, for example

$$
\begin{aligned}
\frac{a}{1}+\frac{b}{1} & =\frac{a+b}{1} \\
\frac{a}{1} \frac{b}{1} & =\frac{a b}{1}
\end{aligned}
$$

so $a+b \mapsto \frac{a}{1}+\frac{b}{1}$ and $a \cdot b \mapsto \frac{a}{1} \frac{b}{1}$. Also if $a \mapsto 0$ then $(a, 1) \sim(0,1)$ iff $a \cdot 1+0 \cdot 1=0$. Hence the map is a bijection.

- All elements of F have the form $\frac{a}{b}=\frac{a}{1} \frac{1}{b}$. Also $\frac{b}{1}=\left(\frac{1}{b}\right)^{-1}$. Therefore, $\frac{a}{b}=$ $\frac{a}{1}\left(\frac{b}{1}\right)^{-1}$.

Definition 4.5. Call F from the proof of the previous theorem the field of fractions
field of fractions

Example 4.6 (of field of fractions).

Ring	Field of fractions
\mathbb{Z}	\mathbb{Q}
$\mathbb{Z}[\sqrt{d}]$	$\mathbb{Q}[\sqrt{d}]=\{x+y \sqrt{d} \mid x, y \in \mathbb{Q}\}$
$\mathbb{R}[x]$	the field of rational functions $\left\{\left.\frac{f(x)}{g(x)} \right\rvert\, f, g \in \mathbb{R}[x], g \neq 0\right\}$

Definition 4.7. Let I be an ideal of a ring R. Let $r \in R$. The coset of r is the set $I+r=\{r+x \mid x \in I\}$.

Proposition 4.8. For any $r, s \in R$ we have $I+r \cap I+s=\emptyset$ or $I+r=I+s$. Also, $I+r=I+s$ if and only if $r-s \in I$.

Proof. Same as for group theory.
Let R / I be the set of cosets.
Theorem 4.9. Define + and \cdot on R / I as follows:

- $(I+r)+(I+s)=I+(r+s)$,
- $(I+r)(I+s)=I+r s$.

Then R / I is a ring.
Proof. See M2P2 for the proof that R / I is a group under addition (note that a subring I is a normal subgroup of R).
Let us check that - is well defined, i.e. the result doesn't depend on the choice of r and s in their respective cosets. Indeed, if $I+r^{\prime}=I+r, I+s^{\prime}=I+s$, then we need to check that $I+r^{\prime} s^{\prime}=I+r s$. We have $r^{\prime}=r+x, s^{\prime}=s+y$ for $x, y \in I$ and

$$
r^{\prime} s^{\prime}=(r+x)(s+y)=r s+x s+r y+x y .
$$

Now $x, y \in I$ and therefore $x s, r y, x y \in I$, since I is an ideal. Therefore $r^{\prime} s^{\prime}-r s \in I$ hence $I+r^{\prime} s^{\prime}=I+r s$. All the axioms of a ring hold in R / I because they hold in R.

Call the ring R / I the factor ring (or quotient ring).
Definition 4.10. Let $\varphi: R \rightarrow S$ be a homomorphism of rings. Then the kernel of φ is

$$
\operatorname{Ker} \varphi=\{r \in R \mid \varphi(r)=0\} .
$$

The image of φ is

$$
\operatorname{Im} \varphi=\{s \in S \mid s=\varphi(r) \text { for } r \in R\} .
$$

factor ring
kernel Ker
image Im

Theorem 4.11. For rings R, S and homomorphism $\varphi: R \rightarrow S$
(1) $\operatorname{Ker} \varphi$ is an ideal of R,
(2) $\operatorname{Im} \varphi$ is a subring of S,
(3) $\operatorname{Im} \varphi$ is naturally isomorphic to the factor ring $R / \operatorname{Ker} \varphi$.

Proof.
(1) By M2P2 $\operatorname{Ker} \varphi \subset R$ is a subgroup under addition. Let $x \in \operatorname{Ker} \varphi, r \in R$. Then we need to check that $r x \in \operatorname{Ker} \varphi$. Indeed,

$$
\varphi(r x)=\varphi(r) \varphi(x)=\varphi(r) \cdot 0=0 .
$$

(2) By M2P2 it is enough to show that $\operatorname{Im} \varphi$ is closed under multiplication. Take any $r_{1}, r_{2} \in R$. Then

$$
\varphi\left(r_{1}\right) \varphi\left(r_{2}\right)=\varphi\left(r_{1} r_{2}\right) \in \operatorname{Im} \varphi
$$

(3) M2P2 says that the groups under addition $R / \operatorname{Ker} \varphi$ and $\operatorname{Im} \varphi$ are isomorphic. The map is $\operatorname{Ker} \varphi+r \mapsto \varphi(r)$. So we only need to check that this map respects multiplication. Suppose $r_{1}, r_{2} \in R$. Then $\operatorname{Ker} \varphi+r_{1} \mapsto \varphi\left(r_{1}\right)$ and $\operatorname{Ker} \varphi+r_{2} \mapsto \varphi\left(r_{2}\right)$. Also $\operatorname{Ker} \varphi+r_{1} r_{2} \mapsto \varphi\left(r_{1} r_{2}\right)$. Now

$$
\left(\operatorname{Ker} \varphi+r_{1}\right)\left(\operatorname{Ker} \varphi+r_{2}\right)=\operatorname{Ker} \varphi+r_{1} r_{2}
$$

But since φ is a homomorphism, $\varphi\left(r_{1} r_{2}\right)=\varphi\left(r_{1}\right) \varphi\left(r_{2}\right)$. Hence our map $R / \operatorname{Ker} \varphi \rightarrow \operatorname{Im} \varphi$ sends the product of $\operatorname{Ker} \varphi+r_{1}$ and $\operatorname{Ker} \varphi+r_{2}$ to $\varphi\left(r_{1}\right) \varphi\left(r_{2}\right)$, hence is a homomorphism of rings. Because the map is bijective, it is an isomorphism of rings.

Example 4.12.

1. Let $R=\mathbb{Z}, S=\mathbb{Z} / 5$ and $\varphi: \mathbb{Z} \rightarrow \mathbb{Z} / 5, \varphi(n)=\bar{n}$. We have $\operatorname{Im} \varphi=\mathbb{Z} / 5$, $\operatorname{Ker} \varphi=5 \mathbb{Z}=\{5 n \mid n \in \mathbb{Z}\}$. Then cosets are $5 \mathbb{Z}, 1+5 \mathbb{Z}, \ldots, 4+5 \mathbb{Z}$. Clearly $\mathbb{Z} / \operatorname{Ker} \varphi=\operatorname{Im} \varphi$ since $\mathbb{Z} / 5 \mathbb{Z}=\mathbb{Z} / 5$.
2. Let $R=\mathbb{Q}[x], S=\mathbb{R}$ and $\varphi: \mathbb{Q}[x] \rightarrow \mathbb{R}$ defined as

$$
\varphi(f(x))=f(\sqrt{2}) .
$$

Then

$$
\begin{aligned}
\operatorname{Ker} \varphi & =\{f(x) \mid f(\sqrt{2})=0\} \\
& =\{f(x) \text { such that } x-\sqrt{2} \text { divides } f(x)\} .
\end{aligned}
$$

If $a_{0}+a_{1} \sqrt{2}+a_{2}(\sqrt{2})^{2}+\cdots+a_{n}(\sqrt{2})^{n}=0$ for $a_{i} \in \mathbb{Q}$, then $a_{0}-a_{1}(-\sqrt{2})+$ $a_{2}(-\sqrt{2})^{2}-\cdots+a_{n}(-\sqrt{2})^{n}=0$. Hence

$$
\begin{aligned}
\operatorname{Ker} \varphi & =\left\{\left(x^{2}-2\right) g(x) \mid g(x) \in \mathbb{Q}[x]\right\} \\
\operatorname{Im} \varphi & =\mathbb{Q}(\sqrt{2}) .
\end{aligned}
$$

Thus $\mathbb{Q}[x] /\left(x^{2}-2\right) \mathbb{Q}[x]=\mathbb{Q}(\sqrt{2})$.
Definition 4.13. Let I be an ideal in R. Then $I \subset R$ is a maximal ideal if $I \neq R$ and there is no ideal $J \subset R$, such that $I \nsubseteq J$.

Example 4.14 (of maximal ideals).

1. We claim that $5 \mathbb{Z} \subset \mathbb{Z}$ is a maximal ideal. If there is an ideal J such that $5 \mathbb{Z} \varsubsetneqq J \subset \mathbb{Z}$, then $J=\mathbb{Z}$: we show that $1 \in J$. Since $5 \mathbb{Z} \varsubsetneqq J$, there is $a \in J$ not divisible by 5 . Hence a and 5 are coprime and $5 n+a m=1$ for some $n, m \in \mathbb{Z}$. Hence $1 \in J$.
2. On the other hand, $6 \mathbb{Z}$ is not a maximal ideal since $6 \mathbb{Z} \subset 2 \mathbb{Z} \subset \mathbb{Z}$ and also $6 \mathbb{Z} \subset 3 \mathbb{Z} \subset \mathbb{Z}$.

Theorem 4.15. Let R be a ring with 1 and let $I \subset R$ be an ideal. Then R / I is a field if and only if I is maximal.

Proof.

\Rightarrow Assume that R / I is a field. Then $I \neq R$ (since $0 \neq 1$ in $R / I)$. Assume there exists an ideal J such that $I \varsubsetneqq J \subset R$. Choose $a \in J, a \notin I$. Then $I+a \in R / I$ is not the zero coset I. Since R / I is a field, every non-zero element is invertible, e.g. $I+a$ is invertible. Thus for some $b \in R$, we have

$$
(I+a)(I+b)=I+a b=I+1
$$

Therefore $a b-1 \in I \subset J$ and thus $1=a b+x$ for some $x \in J$. But $a b \in J$ since $a \in J$. Therefore $1 \in J$ and so $J=R$ and hence I is maximal.
\Leftarrow Conversely, assume that $I \subset R$ is a maximal ideal. Any non-zero element of R / I can be written as $I+a$ with $a \notin I$. Consider

$$
I+a R=\{x+a y \mid x \in I, y \in R\} .
$$

This is an ideal. Indeed, for any $z \in R$, we have

$$
z(x+a y)=\underset{\in I}{x z}+\underset{\in R}{a y z} \in I+a R .
$$

Since I is maximal and $I \subset I+a R$, we must have $I+a R=R$, in particular $1=x+a y$ for some $x \in I, y \in R$. We claim that $I+y$ is the inverse of $I+a$. Indeed,

$$
\begin{aligned}
(I+a)(I+y) & =I+a y \\
& =I+1-x=I+1
\end{aligned}
$$

since $x \in I$.
Proposition 4.16. Let R be a PID and $a \in R, a \neq 0$. Then $a R$ is maximal if and only if a is irreducible.

Proof.
\Rightarrow Assume that $a R \subset R$ is a maximal ideal. Since $a R \neq R, a$ is not a unit. Thus either a is irreducible or $a=b c$ for $b, c \in R$ not units. Then $a R \subset b R \nsubseteq R$ since b is not a unit. Since $a R$ is maximal we have $a R=b R$ and so $b=a m$ for $m \in R$. Therefore a and b are associates and $b=a m=b c m$ and so $1=c m$, hence c is a unit; contradiction. Therefore a is irreducible.
\Leftarrow Now assume that a is irreducible. In particular, a is not a unit, so $a R \neq R$. Assume that there exists an ideal J such that $a R \nsubseteq J \varsubsetneqq R$. Since R is a PID, $J=b R$ for some $b \in R$. Since $a R \subset b R, a \in b R$ and we can write $a=b c$ for some $c \in R$. Have that b is not a unit because $b R \neq R$. Also c is not a unit because otherwise $a R=b R$: if c is a unit then $c^{-1} \in R$ and so $b=c^{-1} a \in a R$, hence $b R \subset a R$. Thus a is not irreducible; a contradiction. Therefore $a R$ is maximal.

Corollary 4.17. If R is a PID and $a \in R$ is irreducible, then $R / a R$ is a field.

Example 4.18.

1. For a PID $R=\mathbb{Z}[i], a=2+i$ is irreducible. Hence $\mathbb{Z}[i] /(2+i) \mathbb{Z}[i]$ is a field.
2. For $R=\mathbb{Q}[x], a=x^{2}-2$ is irreducible. Hence $\mathbb{Q}[x] /\left(x^{2}-2\right) \mathbb{Q}[x]$ is the field $\mathbb{Q}(\sqrt{2})$.

Proposition 4.19. Let F be a field, $p(x) \in F[x]$ an irreducible polynomial and $I=p(x) F[x]$. Then $F[x] / I$ is a field. If $\operatorname{deg} p(x)=n$, then

$$
F[x] / I=\left\{I+a_{0}+a_{1} x+\cdots+a_{n-1} x^{n-1}, a_{i} \in F\right\}
$$

Proof. Corollary 4.17 implies that $F[x] / I$ is a field. For all $f(x) \in F[x]$, there exist $q(x), r(x) \in F[x]$ such that $f(x)=q(x) p(x)+r(x), r(x)=0$ or $\operatorname{deg} r(x)<n$. Hence $I+f(x)=I+r(x)$.

Suppose $F \subset K$ are fields. Recall that $\alpha \in K$ is algebraic over F if $f(\alpha)=0$ for some $f(x) \in F[x]$. The minimal polynomial of α is the unique monic polynomial $p(x)$ of the least degree such that $p(\alpha)=0$. Also recall that $F(\alpha)$ denotes the smallest subfield of K containing F and α.

Proposition 4.20. Let $F \subset K$ be fields, $\alpha \in K$ algebraic over F with minimal polynomial $p(x)$ and $\operatorname{deg} p(x)=n$. Let $I=p(x) F[x]$. Then $F[x] / I=F(\alpha)$ and every element of $F(\alpha)$ is uniquely written as $a_{0}+a_{1} \alpha+\cdots+a_{n-1} \alpha^{n-1}$ for some $a_{i} \in F$.

Proof. Consider the homomorphism $\theta: F[x] \rightarrow F(\alpha)$ defined by $f(x) \mapsto f(\alpha)$. Then

$$
\begin{aligned}
\operatorname{Ker} \theta & =\{f(x) \in F[x] \mid f(\alpha)=0\} \\
& =p(x) F[x]
\end{aligned}
$$

Theorem 4.11 says that $\operatorname{Im} \theta=F[x] / p(x) F[x]$. Then $\operatorname{Im} \theta$ is a field since $p(x)$ is irreducible. Proposition 4.19 implies that

$$
\operatorname{Im} \theta=\left\{p(x) F[x]+a_{0}+\cdots+a_{n-1} x^{n-1}\right\}
$$

Observe that $\operatorname{Im} \theta \subset K, \operatorname{Im} \theta$ is a subfield, $\alpha \in \operatorname{Im} \theta$ and $F \subset \operatorname{Im} \theta$ (since $x \mapsto \alpha$, $a \mapsto a$ for $a \in F)$. Therefore $F(\alpha) \subset \operatorname{Im} \theta$. Clearly $\operatorname{Im} \theta \subset F(\alpha)$. Thus $\operatorname{Im} \theta=F(\alpha)$. By Proposition 4.19 every element of $\operatorname{Im} \theta=F(\alpha)$ can be written as $a_{0}+a_{1} \alpha+\cdots+$ $a_{n-1} \alpha^{n-1}$. Now we have to prove the uniqueness. If for $a_{i} \in F$

$$
a_{0}+a_{1} \alpha+\cdots+a_{n-1} \alpha^{n-1}=b_{0}+b_{1} \alpha+\cdots+b_{n-1} \alpha^{n-1}
$$

then

$$
\left(b_{n-1}-a_{n-1}\right) \alpha^{n-1}+\cdots+\left(b_{0}-a_{0}\right)=0
$$

so α is a root of $q(x)=\left(b_{n-1}-a_{n-1}\right) x^{n-1}+\cdots+\left(b_{0}-a_{0}\right) \in F[x]$. Since n is the degree of the minimal polynomial of α, this is the zero polynomial, therefore $a_{i}=b_{i}$ for $i=0,1, \ldots, n-1$.

Example 4.21.

1. Consider $\mathbb{Q} \subset \mathbb{R}, \alpha=\sqrt{2}, p(x)=x^{2}-2$. Then by 4.20

$$
\mathbb{Q}(\sqrt{2})=\mathbb{Q}[x] /\left(x^{2}-2\right) \mathbb{Q}[x]=\{a+b \sqrt{2} \mid a, b \in \mathbb{Q}\} .
$$

2. Consider $\mathbb{Q} \subset \mathbb{C}, \alpha=\sqrt{d}, d \in \mathbb{Q}$ is not a square, $p(x)=x^{2}-d$. Then

$$
\mathbb{Q}(\sqrt{d})=\mathbb{Q}[x] /\left(x^{2}-d\right) \mathbb{Q}[x]=\{a+b \sqrt{d} \mid a, b \in \mathbb{Q}\}
$$

3. Consider $\mathbb{R} \subset \mathbb{C}, \alpha=\sqrt{-1}, p(x)=x^{2}+1$. Then

$$
\mathbb{R}(i)=\mathbb{R}[x] /\left(x^{2}+1\right) \mathbb{R}[x]=\{a+b i \mid a, b \in \mathbb{R}\}=\mathbb{C}
$$

4. Consider $\mathbb{Q} \subset \mathbb{C}, \alpha=e^{\frac{2 \pi i}{5}}$, clearly α is a root of $x^{5}-1$. But 1 is also root of $x^{5}-1$, so it is not irreducible (and hence not minimal). So $x-1 \mid x^{5}-1$; divide to get

$$
x^{5}-1=(x-1)\left(x^{4}+x^{3}+x^{2}+x+1\right)
$$

In fact, $x^{4}+x^{3}+x^{2}+x+1$ is irreducible (we will prove this later), monic, has α as a root and therefore is minimal. Thus

$$
\mathbb{Q}(\alpha)=\left\{a_{0}+a_{1} \alpha+\cdots+a_{3} \alpha^{3} \mid a_{i} \in \mathbb{Q}\right\}
$$

Proposition 4.22. A polynomial $f(x) \in F[x]$ of degree 2 or 3 is irreducible if and only if it has no roots in F.

Proof.
\Leftarrow If $f(x)$ is not irreducible, then $f(x)=a(x) b(x)$ with $\operatorname{deg} f(x)=\operatorname{deg} a(x)+$ $\operatorname{deg} b(x)$ and $\operatorname{deg} a(x), \operatorname{deg} b(x) \geq 1$ (units in $F[x]$ are polynomials of degree 0). Hence $\operatorname{deg} a(x)=1$ or $\operatorname{deg} b(x)=1$. Thus a linear polynomial, say $x-\alpha$ divides $f(x)$, so that $f(\alpha)=0$ for some $\alpha \in F$.
\Rightarrow The only if part follows from the Proposition 3.4 (if $f(x)$ has a root α then it is divisible by non-unit $(x-\alpha)$ and so is not irreducible).

Proposition 4.23. There exists a field with 4 elements.
Note. It is not $\mathbb{Z} / 4$ since it is not a field.
Proof. Start from $\mathbb{Z} / 2$. Consider $x^{2}+x+1 \in \mathbb{Z} / 2[x]$. This is an irreducible polynomial (check for $x=\overline{0}, \overline{1})$. Consider $\mathbb{Z} / 2[x] /\left(x^{2}+x+1\right) \mathbb{Z} / 2[x]$. This is a field since $x^{2}+x+1$ is irreducible. Also Proposition 4.19 says that all the cosets are: $I=\left(x^{2}+x+1\right) \mathbb{Z} / 2[x], 1+I, x+I, 1+x+I$. Thus the field has exactly 4 elements.

The explicit structure of the field with 4 elements is: Use notation $0:=I, 1:=1+I$, $\omega:=x+I$. Then the elements of the field are $\{0,1, \omega, \omega+1\}$. The addition table is:

	1	ω	$\omega+1$
1	0	$\omega+1$	ω
ω	$\omega+1$	0	1
$\omega+1$	ω	1	0

Observe that $\omega^{2}=\omega+1$. Indeed, x^{2} and $x+1$ are in the same coset because $x^{2}-(x+1)=x^{2}+x+1 \in I$ (we work in $\mathbb{Z} / 2$). Since $x^{2}+x+1 \in I$, we also have $(x+1)\left(x^{2}+x+1\right) \in I$. This gives

$$
x^{3}+2 x^{2}+2 x+1=x^{3}+1 \in I .
$$

Therefore x^{3} and 1 are in the same coset and hence $\omega^{3}=1$. The multiplication table is:

	1	ω	$\omega^{2}=\omega+1$
1	1	ω	ω^{2}
ω	ω	$1+\omega$	1
$\omega+1$	$\omega+1$	1	ω

In particular, $\omega^{-1}=1+\omega,(1+\omega)^{-1}=\omega$.

Example 4.24.

1. Prove that $x^{3}+x+1$ is irreducible over $\mathbb{Z} / 2$. Hence construct a field of 8 elements.
2. Prove that $x^{2}+1$ is irreducible over $\mathbb{Z} / 3$. Hence construct a field of 9 elements.

Theorem 4.25 (Gauss's Lemma). Let $f(x)$ be a polynomial with integer coefficients of degree at least 1 . If $f(x)$ is irreducible in $\mathbb{Z}[x]$, then $f(x)$ is irreducible in $\mathbb{Q}[x]$.

Note. This is equivalent to the following statement: if $f(x)=h(x) g(x), h(x), g(x) \in$ $\mathbb{Q}[x]$ of degree at least 1 , then $f(x)=a(x) b(x)$ for some $a(x), b(x) \in \mathbb{Z}[x]$ of degree at least 1.

Proof. Suppose $f(x)=h(x) g(x), h(x), g(x) \in \mathbb{Q}[x]$. Let n be an integer such that $n f(x)=\tilde{h}(x) \tilde{g}(x)$ for some $\tilde{h}(x), \tilde{g}(x) \in \mathbb{Z}[x]$. If $n \neq 1$, there exists a prime p that divides n. Let us reduce all the coefficients $\bmod p$. Call $h^{\prime}(x)$ and $g^{\prime}(x)$ the resulting polynomials with coefficients in \mathbb{Z} / p. Since p divides all coefficients of $n f(x)$, we get $0=h^{\prime}(x) g^{\prime}(x)$. Recall that $\mathbb{Z} / p[x]$ is an integral domain, so that one of $h^{\prime}(x), g^{\prime}(x)$, say $h^{\prime}(x)$, is the zero polynomial. Then p divides every coefficient of $\tilde{h}(x)$. Divide both sides by p. Then

$$
\frac{n}{p} f(x)=\frac{1}{p} \tilde{h}(x) \tilde{g}(x),
$$

where $\frac{n}{p} \in \mathbb{Z}, \frac{1}{p} \tilde{h}(x), g(x) \in \mathbb{Z}[x]$. Carry on repeating this argument until $f(x)$ is factorized into a product of 2 polynomials with integer coefficients (the degrees of factors don't change and neither factor is a constant).

Note. It follows from the Gauss's Lemma that if $f(x)$ has integer coefficients and is monic and can be written $f(x)=g(x) h(x)$ where $g(x), h(x) \in \mathbb{Q}[x]$ and $g(x)$ is monic, then in fact $g(x), h(x) \in \mathbb{Z}[x]$.

Example 4.26. Let $f(x)=x^{3}-n x-1$, where $n \in \mathbb{Z}$. For which values of n is $f(x)$ irreducible over $\mathbb{Q}[x]$? If $f(x)$ is reducible over $\mathbb{Q}[x]$, then $f(x)=\left(x^{2}+a x+b\right)(x+c)$ for $a, b, c \in \mathbb{Z}$. Hence $f(x)$ has an integer root $-c$. Since $b c=-1, c= \pm 1$. If $x=1$ is a root, then $n=0$ and if $x=-1$ is a root, then $n=2$. For all other values of n, $f(x)$ is irreducible over $\mathbb{Q}[x]$.

Theorem 4.27 (Eisenstein's irreducibility cirterion). Let $f(x)=a_{n} x^{n}+\cdots+$ $a_{1} x+a_{0}, a_{i} \in \mathbb{Z}$ for all $i \in\{0,1, \ldots, n\}$. If a prime p does not divide a_{n}, but p divides $a_{n-1}, \ldots, a_{1}, a_{0}$ and p^{2} does not divide a_{0}, then $f(x)$ is irreducible over \mathbb{Q}.

Proof. If $f(x)$ is reducible over \mathbb{Q}, then by the Gauss's Lemma, $f(x)=g(x) h(x)$, $g(x), h(x) \in \mathbb{Z}[x]$. Let $\bar{f}(x), \bar{g}(x), \bar{h}(x)$ be polynomials with coefficients in \mathbb{Z} / p obtained by reducing coefficients of $f(x), g(x), h(x)$ modulo p. By the condition of the theorem we have

$$
\bar{f}(x)=\bar{a}_{n} x^{n}=\bar{h}(x) \bar{g}(x)
$$

Therefore $\bar{h}(x)=\alpha x^{s}, \bar{g}(x)=\beta x^{t}$ for some $\alpha, \beta \in \mathbb{Z} / p, \alpha, \beta \neq 0$ and $s+t=n$. Then p divides all coefficients of $h(x)$ and $g(x)$ except their leading terms. In particular, p divides the constant terms of $h(x)$ and $g(x)$, therefore p^{2} divides a_{0}; a contradiction. Hence the initial assumption that $f(x)$ is reducible is false; $f(x)$ is irreducible.

Example 4.28. Polynomial $x^{7}-2$ is irreducible in \mathbb{Q} (choose $p=2$ in the criterion) and the polynomial $x^{7}-3 x^{4}+12$ is also irreducible in $\mathbb{Q}($ choose $p=3)$.

Example 4.29. Claim: Let p be prime. Then $1+x+\cdots+x^{p-1} \in \mathbb{Q}[x]$ is irreducible.
Proof. Observe that $f(x)=1+x+\cdots+x^{p-1}$ is $\frac{1-x^{p}}{1-x}$. Let $x=y+1$. Then

$$
\begin{aligned}
f(x)=\frac{x^{p}-1}{x-1} & =\frac{(y+1)^{p}-1}{y} \\
& =y^{p-1}+\binom{p}{1} y^{p-2}+\cdots+\binom{p}{p-1} \\
& =g(y) .
\end{aligned}
$$

Now p does not divide 1 and divides $\binom{p}{k}$. Also p^{2} does not divide $\binom{p}{p-1}=p$ and hence by the Eisenstein's criterion, $g(y)$ is irreducible and so is $f(x)$ (if $f(x)=f_{1}(x) f_{2}(x)$ for some $f_{1}(x), f_{2}(x) \in \mathbb{Q}[x]$, then $g(y)=g_{1}(y) g_{2}(y)$ for $g_{1}(y)=f_{1}(y+1), g_{2}=$ $f_{2}(y+1) \in \mathbb{Q}[x] ;$ a contradiction).

Chapter 5

Field extensions

Definition 5.1. If $F \subset K$ are fields, then K is an extension of F.
Example 5.2. Fields \mathbb{R} and $\mathbb{Q}(\sqrt{2})$ are extensions of \mathbb{Q}.
Proposition 5.3. If K is an extension of a field F, then K is a vector space over F.

Proof. Recall that a vector space is an abelian group under addition where we can multiply elements by the elements of F. The axioms of a vector field are: for all $\lambda, \mu \in F, v_{1}, v_{2} \in K$,
(1) $\lambda\left(v_{1}+v_{2}\right)=\lambda v_{1}+\lambda v_{2}$,
(2) $(\lambda+\mu) v_{1}=\lambda v_{1}+\mu v_{1}$,
(3) $\lambda \mu v_{1}=\lambda\left(\mu v_{1}\right)$,
(4) $1 v_{1}=v_{1}$.

All of these clearly hold.

Definition 5.4. Let K be an extension of F. The degree of K over F is $\operatorname{dim}_{F}(K)$.
degree
Denote this by $[K: F]$. If $[K: F]$ is finite, we call K a finite extension over F.

Example 5.5.

1. Let $F=\mathbb{R}, K=\mathbb{C}=\{x+i y \mid x, y \in \mathbb{R}\}$, so $\operatorname{dim}_{\mathbb{R}}(\mathbb{C})=2$ and $\{1, i\}$ is a basis of \mathbb{C}. So $[\mathbb{C}: \mathbb{R}]=2$.
2. Let $F=\mathbb{Q}, K=\mathbb{Q}(\sqrt{d})(d$ not a square $)$. Then $[\mathbb{Q}(\sqrt{d}): \mathbb{Q}]=2$ since $\{1, \sqrt{d}\}$ is clearly a basis of $\mathbb{Q}(\sqrt{d})$.
3. Find $[\mathbb{Q}(\sqrt[3]{2})$: $\mathbb{Q}]$. We claim that $\left\{1, \sqrt[3]{2},(\sqrt[3]{2})^{2}\right\}$ is a basis of $\mathbb{Q}(\sqrt[3]{2})$. Indeed, since otherwise these three elements are linearly dependent (they clearly span $\mathbb{Q}(\sqrt[3]{2}))$, i.e. we can find $b_{0}, b_{1}, b_{2} \in \mathbb{Q}$ not all zero, such that

$$
b_{0}+b_{1} \sqrt[3]{2}+b_{2}(\sqrt[3]{2})^{2}=0
$$

But the minimal polynomial of $\sqrt[3]{2}$ is $x^{3}-2$ because it is irreducible over \mathbb{Q} (e.g. by the Eisenstein Criterion). Therefore $[\mathbb{Q}(\sqrt[3]{2}): \mathbb{Q}]=3$.

Theorem 5.6. Let $F \subset K$ be a field extension, $\alpha \in K$. The minimal polynomial of α has degree n iff $[F(\alpha): F]=n$.

Proof.

\Rightarrow Suppose the degree of minimal polynomial of α is n. We know that

$$
F(\alpha)=\left\{a_{0}+a_{1} \alpha+\cdots+a_{n-1} \alpha^{n-1} \mid a_{i} \in F\right\}
$$

Hence $1, \alpha, \ldots, \alpha^{n-1}$ span $F(\alpha)$. Let us show that $1, \alpha, \ldots, \alpha^{n-1}$ are linearly independent: If not, there are $b_{0}, \ldots, b_{n-1} \in F$ such that $b_{1}+b_{1} \alpha+\cdots+$ $b_{n-1} \alpha^{n-1}=0$ and not all $b_{i}=0$. But then α is a root of the non-zero polynomial $b_{0}+b_{1} x+\cdots+b_{n-1} x^{n-1}$; this contradicts our assumption.
\Leftarrow Suppose $[F(\alpha): F]=n$. The elements $1, \alpha, \alpha^{2}, \ldots, \alpha^{n-1}, \alpha^{n} \in F(\alpha)$ are $n+1$ vectors in a vector space of dimension n. Hence there exist $a_{i} \in F, i=0, \ldots, n$ (not all $a_{i}=0$), such that $a_{0}+a_{1} \alpha+\cdots+a_{n} \alpha^{n}=0$. Therefore α is algebraic over F. Thus α has a minimal polynomial, say of degree m. By the proof of $\Rightarrow, m=[F(\alpha): F]$, so $m=n$.

Example 5.7.

1. $x^{2}+1$ is the minimal polynomial of i over \mathbb{R} and $[\mathbb{C}: \mathbb{R}]=2$.
2. $x^{2}-2$ is the minimal polynomial of $\sqrt{2}$ over \mathbb{Q} and $[\mathbb{Q}(\sqrt{2}): \mathbb{Q}]=2$.
3. $x^{3}-2$ is the minimal polynomial of $\sqrt[3]{2}$ over \mathbb{Q} and $[\mathbb{Q}(\sqrt[3]{2}): \mathbb{Q}]=3$.
4. $x^{2}+x+1$ is the minimal polynomial of ω over $\mathbb{Z} / 2$ and $[\mathbb{Z} / 2(\omega): \mathbb{Z} / 2]=2$.

Example 5.8. Let $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ be the smallest subfield of \mathbb{R} containing $\mathbb{Q}, \sqrt{2}$ and $\sqrt{3}$. We have $(\mathbb{Q}(\sqrt{2}))(\sqrt{3})=\mathbb{Q}(\sqrt{2}, \sqrt{3})$: By previous results

$$
(\mathbb{Q}(\sqrt{2}))(\sqrt{3})=\{\alpha+\beta \sqrt{3} \mid \alpha, \beta \in \mathbb{Q}(\sqrt{2})\}
$$

because $x^{2}-3$ is the minimal polynomial of $\sqrt{3}$ over $\mathbb{Q}(\sqrt{2})$. Also

$$
(\mathbb{Q}(\sqrt{2}))(\sqrt{3})=\{a+b \sqrt{2}+c \sqrt{3}+d \sqrt{6} \mid a, b, c, d \in \mathbb{Q}\} .
$$

Theorem 5.9. Let $F \subset K \subset E$ be fields. Then $[E: F]=[E: K][K: F]$.
Proof. Assume $[K: F]<\infty,[E: K]<\infty$. Let e_{1}, \ldots, e_{m} be a basis of E over K and k_{1}, \ldots, k_{n} be a basis of K over F. Then we claim that $e_{i} k_{j}$ for all $1 \leq i \leq m$, $1 \leq j \leq n$, form a basis of E over F. Any element of E can be written as $\sum_{i=1}^{m} a_{i} e_{i}$ for some $a_{i} \in K$. Write $a_{i}=\sum_{j=1}^{n} b_{i j} k_{j}, b_{i j} \in F$. Thus $\sum_{i=1}^{m} a_{i} e_{i}=\sum_{i, j} b_{i j} e_{i} k_{j}$ and hence $e_{i} k_{j}$ span E. If $e_{i} k_{j}$ are not linearly independent, then for some $\alpha_{i j} \in F$, not all zero, we have $\sum_{i, j} \alpha_{i j} e_{i} k_{j}=0$. Then

$$
\sum_{i=1}^{m} \underbrace{\left(\sum_{j=1}^{n} \alpha_{i j} k_{j}\right)}_{\in K} e_{i}=0
$$

Since e_{1}, \ldots, e_{m} is a basis, we must have $\sum_{j=1}^{n} \alpha_{i j} k_{j}=0$ for every $i=1, \ldots, m$. Since k_{1}, \ldots, k_{m} is a basis of K over F we must have $\alpha_{i j}=0$ for all i and j.
Hence $\left\{e_{i} k_{j}\right\}$ form a basis of E over F and thus

$$
[E: F]=\operatorname{dim}_{F} E=m n=[E: K][K: F]
$$

If E is not a finite extension of F, then either K is not a finite dimensional vector space over F or E is not a finite dimensional vector space over K : We actually showed that if $[E: K]<\infty$ and $[K: F]<\infty$, then $[E: F]<\infty$. If $[E: F]=\operatorname{dim}_{F} E<\infty$, then $[K: F]<\infty$ because K is a subspace of E. If $[E: F]<\infty$ then E is spanned by finitely many elements over F. The same elements span E over K, hence $[E: K]<\infty$.

Corollary 5.10. If $F \subset K \subset E$ are fields and $[E: F]<\infty$, then $[K: F]$ divides $[E: F]$ and $[E: K]$ divides $[E: F]$.

Definition 5.11. The smallest positive integer n such that

$$
\underbrace{1+1+\cdots+1}_{n \text { times }}=0
$$

is called the characteristic of the field F. If there is no such n, then F has characteristic 0 . Denote the characteristic of F by char F.
characteristic
$\operatorname{char}(F)$

Note. For $a \in F$ and $n \in \mathbb{N}$, we denote by $(n \times a)$ the sum

$$
(n \times a)=\underbrace{a+a+\cdots+a}_{n \text { times }} .
$$

Example 5.12. We have $\operatorname{char}(\mathbb{Q})=0$ and $\operatorname{char}(\mathbb{Z} / p)=p$ (with p prime).
Proposition 5.13. Let F be a field. Then (with p a prime number)
(1) $\operatorname{char}(F)=0$ or $\operatorname{char}(F)=p$,
(2) if $\operatorname{char}(F)=0$, then if $x \in F, x \neq 0$, then $(k \times x)$ for $k \in \mathbb{N} \backslash\{0\}$ is never zero,
(3) if $\operatorname{char}(F)=p$, then $(p \times x)=0$ for any $x \in F$.

Proof.
(1) Let $n>0, n \in \mathbb{Z}$, be the characteristic of F. Then $(n \times 1)=0$. If n is not prime, then $n=a b$ for $a, b \in \mathbb{Z}, 0<a, b<n$, and so $0=(a \times 1)(b \times 1)$. But then $(a \times 1)=0$ or $(b \times 1)=0$. This is a contradiction since $a, b<n$.
(2) If $\operatorname{char}(F)=0$ and $(n \times x)=x(n \times 1)=0$ then $x=0$ or $(n \times 1)=0$, so $x=0$.
(3) If $\operatorname{char}(F)=p, p$ prime, then for any $x \in F,(p \times x)=(p \times 1) x=0 x=0$.

Note. A finite field always has finite characteristic. However, an infinite field can have finite characteristic. For example the field of rational functions over \mathbb{Z} / p, i.e.

$$
F=\left\{\left.\frac{f(x)}{g(x)} \right\rvert\, f(x), g(x) \in \mathbb{Z} / p[x], g(x) \neq 0\right\}
$$

The characteristic of F is p, because $(p \times 1)=0$.

Proposition 5.14. If F is a field of characteristic p, then

$$
\{0,1,(2 \times 1), \ldots,((p-1) \times 1)\}
$$

is a subfield of F isomorphic to \mathbb{Z} / p. If $\operatorname{char}(F)=0$, then F contains a subfield isomorphic to \mathbb{Q}.

Proof. If $\operatorname{char}(F)=p$, then $\{0,1,(2 \times 1), \ldots,((p-1) \times 1)\}$ is closed under addition and multiplication and subtraction. Thus it is a subring of F with no zero divisors (since F has no zero divisors). Hence it is a finite integral domain and hence a field. If $\operatorname{char}(F)=0$, then the set $\{0,1,(2 \times 1), \ldots,(n \times 1), \ldots\}$ is infinite. It is closed under + and \cdot but not closed under - or inverses. Now add $-(n \times 1)$ for $n>0$ and get a field isomorphic to \mathbb{Z}. Since F is a field, it contains the ratios of these elements, adding these we get a subfield isomorphic to \mathbb{Q}.

Note. If $\operatorname{char}(F)=p$, then $\mathbb{Z} / p \subset F$ is the smallest subfield of F and if $\operatorname{char}(F)=0$
prime subfield then $\mathbb{Q} \subset F$ is the smallest subfield. It is called the prime subfield of F.

Note. Employing Proposition [5.14] we can consistently write $k \in F$ for $k \in \mathbb{Z}$ and F a field, taking k to be $(k \times 1)$ for $k \geq 0$ and $(k \times-1)$ for $k<0$. Hence we can drop the \times notation.

Theorem 5.15. Any finite field has p^{n} elements, where $n \in \mathbb{Z}, n>0$, and p is a prime number and the characteristic of F.

Proof. Since F is finite, $\operatorname{char}(F)<\infty$. Let $p=\operatorname{char}(F)$, prime number. Then \mathbb{Z} / p is a subfield of F. Since everything is finite, $[F: \mathbb{Z} / p]=\operatorname{dim}_{\mathbb{Z} / p}(F)=n<\infty$. If e_{1}, \ldots, e_{n} is a basis of F over \mathbb{Z} / p, then

$$
F=\left\{a_{1} e_{1}+\cdots+a_{n} e_{n} \mid a_{i} \in \mathbb{Z} / p\right\}
$$

Hence $|F|=p^{n}$.

Chapter 6

Ruler and Compass Constructions

Rules of The Game: Given two points, we can draw lines and circles, creating more points (the intersections) and more lines (joining two points). We can draw a circle with centre in some existing point and other existing point on its circumference. Question is: What are all the constructible points? (or what we cannot construct)

Construction 6.1. Given two points P and Q, we can construct their perpendicular bisector.

Proof. Draw two circles with the same radius (greater than $|P Q|$) with centre in P and Q. Join their intersection points to get the bisector.

Figure 6.1: Constructing a perpendicular bisector of P and Q.

Construction 6.2. Given two points O and X, we can construct the line through O perpendicular to the line joining O and X.

Proof. Draw the line $O X$. Draw a circle centered in O with radius $|O X|$. Let the intersection point (the one that is not X) be Y. Construct the perpendicular bisector of X and Y.

Figure 6.2: Constructing a line through O perpendicular to $O X$.

Construction 6.3. Given a point X and a line l, we can drop a perpendicular from X to l.

Proof. Draw a circle centered at X such that it has two intersection points with l. Find their perpendicular bisector.

Figure 6.3: Droping a line from X perpendicular to l.

Construction 6.4. Given two intersecting lines l_{1} and l_{2}, we can construct a line l_{3} that bisects the angle between l_{1} and l_{2}.

Proof. Draw a circle centered in the intersection of l_{1} and l_{2}. Find the perpendicular bisector of its intersection points with l_{1} and l_{2}.

The problems unsolved by the Greeks:

1. trisect an angle,
2. square the circle (construct a square of the same area as a given circle),
3. duplicate the cube (construct a cube with twice the volume as a given cube).

Figure 6.4: Constructing an angluar bisector between l_{1} and l_{2}.

Constructing a regular n-gon

We can easily construct an equilateral triangle, square, regular pentagon. We cannot construct regular 7,11,13-gons. Amazingly, we can construct a regular 17-gon using just ruler and compass!
The 2 original points, say O and X can be used to construct a coordinate system. Let $|O X|=1$. Construct a perpendicular to $O X$ through O. Any point in the plane is given by its coordinates, say (a, b).

Note. If we can construct (a, b), then we can construct $(a, 0),(b, 0)$.
Definition 6.5. A real number $a \in \mathbb{R}$ is constructible if $(a, 0)$ is constructible from $O=(0,1)$ and $X=(1,0)$.

Proposition 6.6. The set $\{a \in \mathbb{R} \mid a$ is constructible $\}$ is a subfield of \mathbb{R}.
Proof. Both 0 and 1 are constructible. We need to show that if a and b are constructible, then so are $-a, a+b, a b$ and $\frac{1}{b}$ if $b \neq 0$. For $-a$, draw a circle with centre in O passing through a. For $a+b$, construct $(0, b)$ and then (a, b). Then construct a

Figure 6.5: Constructing -a from a.
circle with centre in a and passing through (a, b). For $a b$, construct $(0,1)$ and join it

Figure 6.6: Constructing $a+b$ from a, b.
with $(a, 0)$. Next, construct a parallel line through $(0, b)$ (drop a perpendicular from $(0, b)$ and then construct a line perpendicular to it). Let $(c, 0)$ be its intersection with the x axis. Observe that (from similar triangles)

$$
\frac{c}{b}=\frac{a}{1} .
$$

Hence $c=a b$. For $\frac{1}{b}$, construct $(0, b)$ and draw a line joining $(0, b)$ and $(1,0)$. Then

Figure 6.7: Constructing $a b$ from a, b.
construct a line parallel to it passing through $(0,1)$ and let $(c, 0)$ be its intersection with the x axis. Again, from similar triangles, $\frac{1}{b}=\frac{c}{1}$ and hence $c=\frac{1}{b}$.

Proposition 6.7. Every rational number is constructible. If $a>0$ is constructible, then so is \sqrt{a}.

Proof. On a line (say the x axis) construct a length $a=|O A|$ next to length $1=|B O|$. Let Z be the mid-point of $A B$. Draw the circle centered at Z with circumference containing A. Draw a perpendicular to the line $A B$ from O and call its intersection

Figure 6.8: Constructing $\frac{1}{b}$ from b.
with the circle C. We claim that $|O C|=\sqrt{a}$. Indeed, observe that $|C Z|=\frac{a+1}{2}$. Also $|O Z|=|B Z|-1=\frac{a-1}{2}$. Now by Pythagoras,

$$
|O C|=\sqrt{\left(\frac{a+1}{2}\right)^{2}-\left(\frac{a-1}{2}\right)^{2}}=\sqrt{a}
$$

Figure 6.9: Constructing \sqrt{a} from a.

Proposition 6.8. Let P be a finite set of points in the plane \mathbb{R} and let K be the smallest subfield of \mathbb{R} which contains the coordinates of the points of P. If $\left(x_{1}, y_{1}\right)$ can be obtained from the points of P by a one-step construction, then x_{1} and y_{1} belong to the field $K(\sqrt{\delta})$ for some $\delta \in K$, i.e. x_{1} and y_{1} are of the form $a+b \sqrt{\delta}$, where $a, b \in K$.

Proof. Let $A=\left(a_{1}, a_{2}\right), B=\left(b_{1}, b_{2}\right), C=\left(c_{1}, c_{2}\right)$ and $D=\left(d_{1}, d_{2}\right)$. We can obtain a new point in 3 ways:

1. To construct $M=(x, y)$ from intersection of lines through A, B and C, D : The line through A, B has equation

$$
\begin{equation*}
\left(x-a_{1}\right)\left(b_{2}-a_{2}\right)=\left(y-a_{2}\right)\left(b_{1}-a_{1}\right) . \tag{1}
\end{equation*}
$$

The line through C, D has equation

$$
\begin{equation*}
\left(x-c_{1}\right)\left(d_{2}-c_{2}\right)=\left(y-c_{2}\right)\left(d_{1}-c_{1}\right) . \tag{2}
\end{equation*}
$$

Recall that $a_{i}, b_{i}, c_{i}, d_{i} \in K$ for $i=1,2$. Multiply (1) by $\left(d_{2}-c_{2}\right)$, then subtract (2) multiplied by $b_{2}-a_{2}$. Find $y \in K$ and then use the other equation to find $x \in K$ (and so $x \in K(\sqrt{\delta})$ as well).
2. Get $M=(x, y)$ as an intersection of line through C, D and a circle with in A and radius $|A B|$: Similar to the case 1., with first equation replaced by

$$
\begin{equation*}
\left(x-a_{1}\right)^{2}+\left(y-a_{2}\right)^{2}=\left(b_{1}-a_{1}\right)^{2}+\left(b_{2}-a_{2}\right)^{2} . \tag{1}
\end{equation*}
$$

Use (2) to express $y=\alpha x+\beta$ for $\alpha, \beta \in K$ (always possible except when $d_{1}=c_{1}$; then express x in terms of y). Substitute x into the equation of the circle. Solve this (quadratic) and find x. If the quadratic is

$$
x^{2}+\xi x+\gamma=0
$$

for $\xi, \gamma \in K$, then

$$
x=\frac{-\xi \pm \sqrt{\xi^{2}-4 \gamma}}{2} .
$$

But $\delta=\xi^{2}-4 \gamma$ is not always a square in K and so $x \in K(\sqrt{\delta})$ and also $y \in K(\sqrt{\delta})$.
3. Get $M=(x, y)$ as an intersection of two circles with centres in A and C and diameters $|A B|$ and $|C D|$ respectively: Get equations of the circles:

$$
\begin{align*}
\left(x-a_{1}\right)^{2}+\left(y-a_{2}\right)^{2} & =\left(b_{1}-a_{1}\right)^{2}+\left(b_{2}-a_{2}\right)^{2}, \tag{1}\\
\left(x-c_{1}\right)^{2}+\left(y-c_{2}\right)^{2} & =\left(d_{1}-c_{1}\right)^{2}+\left(d_{2}-c_{2}\right)^{2} . \tag{2}
\end{align*}
$$

Then (1) - (2) is a linear equation in x and y; proceed as in the case 2 .
Theorem 6.9. Let P be a set of points constructible in a finite number of steps from $(0,0)$ and $(1,0)$ and let K be the smallest subfield of \mathbb{R} containing the coordinates of these points. Then $[K: \mathbb{Q}]=2^{t}$ for some $t \in \mathbb{Z}, t \geq 0$.

Proof. Clearly $\mathbb{Q} \subset K$. Write P in order of construction $0,1, p_{1}, \ldots, p_{n}$. Let K_{i} be the smallest subfield of \mathbb{R} containing the coordinates of p_{1}, \ldots, p_{i}. Then either $K_{i+1}=K_{i}$ or $\left[K_{i+1}: K_{i}\right]=2$ by the previous proposition. Therefore $\left[K_{i}: \mathbb{Q}\right]=2^{a}$, $a \in \mathbb{Z}, 0 \leq a \leq i$ by Theorem 5.9]

Corollary 6.10. If $a \in \mathbb{R}$ is constructible, then $[\mathbb{Q}(a): \mathbb{Q}]=2^{t}, t \in \mathbb{Z}, t \geq 0$.
Proof. Let $(a, 0)$ be constructible. Then $\mathbb{Q}(a) \subset K$, where K is as in Theorem 6.9 Then $\mathbb{Q} \subset \mathbb{Q}(a) \subset K$, hence by Corollary $5.10[\mathbb{Q}(a): \mathbb{Q}]$ divides $[K: \mathbb{Q}]=2^{n}$.

Theorem 6.11. It is impossible to duplicate the cube.

Proof. For a cube of side 1 , the issue is to construct $\sqrt[3]{2}$. Note that $x^{3}-2$ is the minimal polynomial of $\sqrt[3]{2}$: it is indeed irreducible (e.g. by the Eisenstein's criterion with $p=2$). Therefore $[\mathbb{Q}(\sqrt[3]{2}): \mathbb{Q}]=\operatorname{deg}\left(x^{3}-2\right)=3$. By Corollary $6.10 \sqrt[3]{2}$ is not constructible.

Theorem 6.12. It is impossible to square the circle
Outline of the proof. We have to show that $\sqrt{\pi}$ is not constructible. If $\sqrt{\pi}$ is constructible, then so is π (by Proposition 6.6). A Theorem (not easy to prove) says that π is not algebraic over \mathbb{R}. This implies that the smallest subfield of \mathbb{R} containing π is an infinite extension of \mathbb{Q}. Thus π is not constructible by Corollary 6.10,

Proposition 6.13. The following are equivalent:
(1) constructing a regular n-gon in the unit circle,
(2) constructing an angle $\frac{2 \pi}{n}$,
(3) constructing $\cos \frac{2 \pi}{n}$.

Proof. Obvious.

Theorem 6.14. It is false that every angle can be trisected.
Proof. Can construct $\frac{\pi}{3}$. We will show it cannot be trisected, i.e. $\cos \frac{\pi}{9}$ cannot be constructed using ruler and compass. Observe that

$$
\begin{aligned}
\cos 3 \theta & =\cos \theta \cos 2 \theta-\sin \theta \sin 2 \theta \\
& =\cos \theta\left(2 \cos ^{2} \theta-1\right)-2 \sin ^{2} \theta \cos \theta \\
& =4 \cos ^{3} \theta-3 \cos \theta
\end{aligned}
$$

Apply this to $\theta=\frac{\pi}{9}$ to get

$$
4 \cos ^{3} \frac{\pi}{9}-3 \cos \frac{\pi}{9}=\frac{1}{2}
$$

Therefore $\cos \frac{\pi}{9}$ is a root of $4 t^{3}-3 t-\frac{1}{2}$. Constructing the angle θ is equivalent to constructing the number $\cos \theta$. Let us show that $\cos \frac{\pi}{9}$ is not constructible. First we show that $t^{3}-\frac{3}{4} t-\frac{1}{8}$ is the minimal polynomial of $\cos \frac{\pi}{9}$ over \mathbb{Q}. To show that it is irreducible, consider $8 t^{3}-6 t-1$. Write $y=2 t$ to get $y^{3}-3 y-1$. By a Corollary of Gauss's Lemma, if $y^{3}-3 y-1$ is reducible over \mathbb{Q}, it is reducible over \mathbb{Z}, thus has a root in \mathbb{Z}. Suppose that

$$
y^{3}-3 y-1=(y-a)\left(y^{2}+b y+c\right)
$$

for $a, b, c \in \mathbb{Z}$ with a root a. Now $-a c=1$ and so $a= \pm 1$. But ± 1 is not a root, therefore $t^{3}-\frac{3}{4} t-\frac{1}{8}$ is the minimal polynomial of $\cos \frac{\pi}{9}$. Therefore $\left[\mathbb{Q}\left(\cos \frac{\pi}{9}\right): \mathbb{Q}\right]=3$. Since 3 is not a power of $2, \cos \frac{\pi}{9}$ is not constructible.

Proposition 6.15. Let $\omega=e^{\frac{2 \pi i}{n}}=\cos \frac{2 \pi}{n}+i \sin \frac{2 \pi}{n}$ with $n>2$. Then $\mathbb{Q}\left(\cos \frac{2 \pi}{n}\right) \subset$ $\mathbb{Q}(\omega)$ and $\left[\mathbb{Q}(\omega): \mathbb{Q}\left(\cos \frac{2 \pi}{n}\right)\right]=2$.

Proof. Let $\alpha=\cos \frac{2 \pi}{n}$ and $\bar{\omega}=\cos \frac{2 \pi}{n}-i \sin \frac{2 \pi}{n}$. Observe that ω is a root of

$$
\begin{aligned}
(x-\omega)(x-\bar{\omega}) & =x^{2}-x(\omega+\bar{\omega})+\omega \bar{\omega} \\
& =x^{2}-2 x \cos \frac{2 \pi}{n}+1 \\
& =x^{2}-2 \alpha x+1
\end{aligned}
$$

Also

$$
\omega \bar{\omega}=\left(\cos \frac{2 \pi}{n}\right)^{2}+\left(\sin \frac{2 \pi}{n}\right)^{2}=1
$$

and so

$$
\alpha=\frac{1}{2}(\omega+\bar{\omega})=\frac{1}{2}\left(\omega+\omega^{-1}\right) \in \mathbb{Q}(\omega) .
$$

Therefore $\mathbb{Q}(\alpha) \subset \mathbb{Q}(\omega)$. The minimal polynomial of ω over $\mathbb{Q}(\alpha)$ is $x^{2}-2 \alpha x+1$. Note that it is irreducible because it is irreducible over a bigger field $\mathbb{R}(\omega, \bar{\omega} \notin \mathbb{R})$.

Proposition 6.16. Let p be an odd prime, $\omega=e^{\frac{2 \pi i}{p}}$. Then $[\mathbb{Q}(\omega): \mathbb{Q}]=p-1$ and $\left[\mathbb{Q}\left(\cos \frac{2 \pi}{p}\right): \mathbb{Q}\right]=\frac{p-1}{2}$.

Proof. Since $\omega^{p}=1, \omega$ is a root of $x^{p}-1$. We have

$$
x^{p}-1=(x-1)\left(x^{p-1}+\cdots+x+1\right)
$$

and $x^{p-1}+\cdots+x+1$ is irreducible in $\mathbb{Q}[x]$ by Example 4.29 and ω is its root. Hence $x^{p-1}+\cdots+x+1$ is the minimal polynomial of ω and thus $[\mathbb{Q}(\omega): \mathbb{Q}]=p-1$. We have $\mathbb{Q} \subset \mathbb{Q}\left(\cos \frac{2 \pi}{p}\right) \subset \mathbb{Q}(\omega)$. Since

$$
[\mathbb{Q}(\omega): \mathbb{Q}]=[\mathbb{Q}(\omega): \mathbb{Q}(\cos 2 \pi / p)][\mathbb{Q}(\cos 2 \pi / p): \mathbb{Q}]
$$

and $\left[\mathbb{Q}(\omega): \mathbb{Q}\left(\cos \frac{2 \pi}{p}\right)\right]=2$, we have that $\left[\mathbb{Q}\left(\cos \frac{2 \pi}{p}\right): \mathbb{Q}\right]=\frac{p-1}{2}$.
Theorem 6.17. If a regular p-gon is constructible, where p is an odd prime, then $p-1=2^{n}$ for some n.

Proof. This is equivalent to constructing $\cos \frac{2 \pi}{p}$, but then $\left[\mathbb{Q}\left(\cos \frac{2 \pi}{p}\right): \mathbb{Q}\right]=\frac{p-1}{2}$ is a power of 2 . Hence $p-1=2^{n}$ for some n.

Note. This implies that a regular 7-gon, 11-gon, 13-gon are not constructible.
Note. For $p-1=2^{n}$, write $n=m 2^{r}$ where m is odd, $r \in \mathbb{Z}, r \geq 0$. Let $\alpha=2^{2^{r}}$ and so $2^{n}=2^{2^{r} m}=\alpha^{m}$. We have

$$
\begin{aligned}
p & =1+2^{n}=1+\alpha^{m}=1-(-\alpha)^{m} \\
& =(1-(-\alpha))\left(1+(-\alpha)+(-\alpha)^{2}+\cdots+(-\alpha)^{m-1}\right)
\end{aligned}
$$

Therefore $p=(1+\alpha)\left(1-\alpha+\cdots+\alpha^{m-1}\right)$ and $\alpha \geq 2$. If p is prime, then $1-\alpha+$ $\cdots+\alpha^{m-1}=1$, i.e. $m=1$.
Conclusion: If a prime p equals $1+2^{n}$, then $n=2^{r}$. Such primes p are called Fermat primes. First few are $3,5,17,257,65537$.

Proposition 6.18. If we can construct a regular n-gon where $n=a b$, then we can construct a regular a-gon.

Proof. Join every b-th vertex of the regular n-gon.
Corollary 6.19. If a regular n-gon is constructible, then $n=2^{a} p_{1} \cdots p_{k}$ where p_{1}, \ldots, p_{k} are Fermat primes.

Proof. Suppose a regular n-gon is constructible and consider the prime factors of n. If n is even, then we can construct a regular $n / 2$-gon by joining every other vertex and continue until we get odd $m=n / 2^{a}$. We need to show that m is a product of Fermat primes: in case m has a prime factor p that is not a Fermat prime, then by 6.18 we can construct a regular p-gon, a contradiction. It remains to show that m is a product of distinct Fermat primes. By the Sheet 8, it is impossible to construct regular p^{2}-gon for p prime. Hence if $p^{k}, k>1$ is a factor of m, p^{2} is as well and we can construct a regular p^{2}-gon, a contradiction.

Proposition 6.20. If m and n are coprime and we can construct a regular m-gon and a regular n-gon, then we can also construct a regular $m n$-gon.

Proof. If $\operatorname{hcf}(m, n)=1$, then there exist $a, b \in \mathbb{Z}$ such that $a m+b n=1$. It follows that

$$
\frac{1}{m n}=\frac{a}{n}+\frac{b}{m}
$$

and so

$$
\frac{2 \pi}{m n}=a \frac{2 \pi}{n}+b \frac{2 \pi}{m}
$$

Thus $\frac{2 \pi}{m n}$ is constructible.
Note. In fact, a regular n-gon is constructible iff $n=2^{a} p_{1}^{b_{1}} \cdots p_{k}^{b_{k}}$ for p_{1}, \ldots, p_{k}.
Proposition 6.21. A regular pentagon is constructible.
Proof. Let $\alpha=\cos \frac{2 \pi}{5}$. Proposition 6.16 says that $[\mathbb{Q}(\alpha): \mathbb{Q}]=\frac{5-1}{2}=2$. Hence the degree of minimal polynomial of α over \mathbb{Q} is 2 . Let $x^{2}+b x+c, b, c \in \mathbb{Q}$ be the minimal polynomial of α over \mathbb{Q}. Then

$$
\alpha=\frac{-b \pm \sqrt{b^{2}-4 c}}{2}
$$

Since b, c are constructible, so is $\sqrt{b^{2}-4 c}$ and so is α.

Chapter 7

Finite fields

We know that \mathbb{Z} / p is a finite field with p elements for p prime. If F is a finite field, then we have $p=(p \times 1)=0$ for $p=\operatorname{char}(F)$ prime. Theorem 5.15 says that $|F|=p^{n}$. Our aim is to show that for any prime power p^{n} there exists a finite field with p^{n} elements.

Proposition 7.1. Let p be an odd prime. Then there exists a field with p^{2} elements.

Proof. For any $r \in \mathbb{Z} / p$ we have $-r=p-r$ has the same square as r. Also $r=-r$ iff $2 r=0$ iff $r=0$ (since p is odd). Therefore, we have exactly $\frac{p-1}{2}$ non-zero squares and thus at least one non-square $a \in \mathbb{Z} / p, a \neq 0$. Then $x^{2}-a$ is an irreducible polynomial over \mathbb{Z} / p. By Proposition 4.19 $\mathbb{Z} / p[x] /\left(x^{2}-a\right) \mathbb{Z} / p[x]$ is a field with elements

$$
\left\{\alpha_{0}+\alpha_{1} x+\left(x^{2}-a\right) \mathbb{Z} / p \mid \alpha_{0}, \alpha_{1} \in \mathbb{Z}_{p}\right\}
$$

Hence the constructed field contains p^{2} elements.

Proposition 7.2 (is 4.19). Let F be a field and $p(x) \in F[x]$ be an irreducible polynomial of degree n. Write $F(\alpha)$ for the field $F[x] / p(x) F[x]$. Then $F(\alpha)$ is a field containing F and

$$
F(\alpha)=\left\{b_{0}+b_{1} \alpha+\cdots+b_{n-1} \alpha^{n-1} \mid b_{i} \in F\right\}
$$

where α is the image of x under the map $F[x] \rightarrow F(\alpha)$ sending each polynomial to its value at α. We have $p(\alpha)=0$.

Example 7.3.

1. Let $n=1, p(x)=a_{0}+a_{1} x, a_{1} \neq 0$. Then $F(\alpha)=F$. What is the image of x ? We have

$$
\begin{aligned}
\frac{1}{a_{1}} p(x) & =x+\frac{a_{0}}{a_{1}} \\
I & =\left(a_{1} x+a_{0}\right) F[x]
\end{aligned}
$$

so $x+I=-\frac{a_{0}}{a_{1}}+I$.
2. Let $F=\mathbb{Q}, p(x)=x^{2}-2$. Then $F(\alpha)=\mathbb{Q}(\sqrt{2})$ and $p(\sqrt{2})=0$.
3. Let $F=\mathbb{Z} / 2, p(x)=x^{2}+x+1$. Then

$$
F[x] / p(x) F[x]=F(\omega)=\left\{a_{0}+a_{1} \omega \mid a_{i} \in \mathbb{Z} / 2,1+\omega+\omega^{2}=0\right\}
$$

Corollary 7.4. Let F be a field and let $f(x) \in F[x]$. Then there exists a field $K \supset F$ such that $f(x) \in K[x]$ is a product of linear factors $f(x)=c\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{n}\right)$ where $c \in K^{*}, \alpha_{i} \in K$. In other words, $f(x)$ has $\operatorname{deg} f(x)$ roots in K.

Proof. Let m be the number of roots of $f(x)$ in F. If $m=n$, then $K=F$. Otherwise, let $p(x)$ be an irreducible polynomial dividing $f(x)$. Define $F_{1}=F(\alpha)$ as in Proposition [7.2] Then $p(\alpha)=0$ and so α is a root of $p(x)$ in F_{1} and so a root of $f(x)$ in F_{1}. Then write $f(x)=(x-\alpha) f_{1}(x) \in F_{1}[x]$. Repeat the same argument for F_{1}. Carry on until we construct a finite extension F over which $f(x)$ is a product of linear factors.

Example 7.5. Let $F=\mathbb{Q}, f(x)=\left(x^{2}-2\right)\left(x^{2}+1\right)$. Take $p(x)=x^{2}-2, F_{1}=\mathbb{Q}(\sqrt{2})$. Over $\mathbb{Q}(\sqrt{2}), f(x)=(x-\sqrt{2})(x+\sqrt{2})\left(x^{2}+1\right)$. Then $F_{2}=\mathbb{Q}(\sqrt{2})(\sqrt{-1})=K$. Over $K, f(x)=(x-\sqrt{2})(x+\sqrt{2})(x-\sqrt{-1})(x+\sqrt{-1})$.

Theorem 7.6. There exists a field with p^{n} elements for any prime p and positive integer n.

Proof. Let $F=\mathbb{Z} / p, f(x)=x^{p^{n}}-x \in F[x]$. There exists a field K such that $F \subset K$ and $f(x)=c \prod_{i=1}^{p^{n}}\left(x-\alpha_{i}\right)$ for some $c \in K^{*}, \alpha_{i} \in K$. Let $E=\left\{\alpha_{i} \mid 1 \leq i \leq p^{n}\right\}$. Two things to prove: (1) E is a field, (2) $|E|=p^{n}$, i.e. the α_{i} are distinct.
For (1): Clearly $\{0,1\} \subset E$. If $a \in E$, then $-a \in E$: If $p=2, a=-a$. If p is odd, $(-a)^{p^{n}}=-a^{p^{n}}$ so that $f(-a)=-a^{p^{n}}-(-a)=-f(a)=0$. If $a, b \in E$, then $a b \in E$, since

$$
\begin{aligned}
f(a b) & =(a b)^{p^{n}}-a b \\
& =a^{p^{n}} b^{p^{n}}-a b .
\end{aligned}
$$

But $a^{p^{n}}=a, b^{p^{n}}=b$, thus $f(a b)=a b-a b=0$. If $b \in E$ and $b \neq 0$, then

$$
\left(\frac{1}{b}\right)^{p^{n}}=\frac{1}{b^{p^{n}}}=\frac{1}{b}
$$

therefore $f\left(\frac{1}{b}\right)=0$, thus $\frac{1}{b} \in E$.
Lemma 7.7. For any elements x and y in a field of characteristic p we have $(a+b)^{p}=$ $a^{p}+b^{p}$.

Proof. If $p=2,(a+b)^{2}=a^{2}+2 a b+b^{2}=a^{2}+b^{2}$. We have

$$
\begin{aligned}
(a+b)^{p}= & a^{p}+p a^{p-1} b+\frac{p(p-1)}{2} a^{p-2} b^{2}+\cdots \\
& +\frac{p(p-1) \cdots(p-m+1)}{m!} a^{p-m} b^{m}+\cdots+b^{p}
\end{aligned}
$$

Observe that $\frac{p(p-1) \cdots(p-m+1)}{m!}$ is an integer divisible by p since p doesn't divide m ! for $m<p$. So $(a+b)^{p}=a^{p}+b^{p}$.

Apply the Lemma to $(a+b)^{p^{n}}$, where $a^{p^{n}}=a$ and $b^{p^{n}}=b$:

$$
\left((a+b)^{p}\right)^{p^{n-1}}=\left(a^{p}+b^{p}\right)^{p^{n-1}}=\left(a^{p^{2}}+b^{p^{2}}\right)^{p^{n-2}}=\cdots=a^{p^{n}}+b^{p^{n}}
$$

thus $f(a+b)=0$ and $a+b \in E$. This proves (1).
For (2): Clearly $|E| \leq p^{n}$. Let us show that any root of $f(x)$ is a simple root. By part (1), if p is odd,

$$
x^{p^{n}}-a^{p^{n}}=x^{p^{n}}+(-a)^{p^{n}}=(x+(-a))^{p^{n}}=(x-a)^{p^{n}} .
$$

If $p=2, b=-b$ for any $b \in F$ and so

$$
x^{2^{n}}-a^{2^{n}}=x^{2^{n}}+a^{2^{n}}=(x+a)^{2^{n}}=(x-a)^{2^{n}} .
$$

We have

$$
\begin{aligned}
f(x) & =x^{p^{n}}-x \\
& =x^{p^{n}}-x-\underbrace{\left(a^{p^{n}}-a\right)}_{=0}=\left(x^{p^{n}}-a^{p^{n}}\right)-(x-a) \\
& =(x-a)\left((x-a)^{p^{n}-1}-1\right) .
\end{aligned}
$$

Therefore, we have written $f(x)=(x-a) g(x)$, where $g(x)=(x-a)^{p^{n}-1}-1$. Clearly $g(a)=-1 \neq 0$, thus $(x-a)^{2}$ does not divide $f(x)$, so a is a simple root of $f(x)$.

There is a general method of checking that a root of a polynomial is simple. The idea is just taking the derivative.

Definition 7.8. Let $f(x)$ be a polynomial with coefficients in a field F of any characteristic, $f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$. The derivative $f^{\prime}(x)$ is defined as $f^{\prime}(x)=a_{1}+2 a_{2} x+\cdots+n a_{n} x^{n-1}$.
derivative
$f^{\prime}(x)$

Then clearly $(f(x)+g(x))^{\prime}=f^{\prime}(x)+g^{\prime}(x)$. Also $(f(x) g(x))^{\prime}=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)$: it is enough to show that $\left(x^{n} x^{m}\right)^{\prime}=(n+m) x^{n+m-1}=n x^{n-1} x^{m}+m x^{n} x^{m-1}$.

Proposition 7.9. If $f(x) \in F[x]$, where F is a field, and K is a field extension of F such that $f(\alpha)=0$ for $\alpha \in K$, then α is a multiple root of $f(x)$ iff $f^{\prime}(\alpha)=0$.

Proof. Write $f(x)=(x-\alpha)^{m} g(x)$, where $g(x) \in K[x], m \geq 0, g(\alpha) \neq 0$. Then $f^{\prime}(x)=m(x-\alpha)^{m-1} g(x)+(x-\alpha)^{m} g^{\prime}(x)$. If α is multiple, then $m \geq 2$ and hence $f^{\prime}(\alpha)=0$. If α is simple, then $m=1$ so that $f^{\prime}(\alpha)=g(\alpha)+0=g(\alpha) \neq 0$.

Example 7.10.

1. Let $f(x)=x^{p^{n}}-x$ over \mathbb{Z} / p with $\operatorname{char}(\mathbb{Z} / p)=p$. Then $f^{\prime}(x)=p^{n} x^{p^{n}-1}-1=$ -1 so any roof of $f(x)$ is simple.
2. Let $f(x)=x^{m}-1$. Then $f^{\prime}(x)=m x^{m-1}, x=0$ is not a root. Therefore $f(x)$ has simple root iff $\operatorname{char}(F)$ does not divide m.

Recall some facts from group theory. A group G is cyclic if $G=\left\{1, g, g^{2}, \ldots\right\}$ for
cyclic some $g \in G$.
Let G be a finite group of order $n, n=|G|$. The order of an element $x \in G$ is the order least positive integer r such that $x^{r}=1$. A finite group G is cyclic if there exists $g \in G$ such that the order of g equals to $|G|$. Such g is called the generator of G. We will write $\operatorname{ord}(x)$ for the order of $x \in G$.

Note.

(1) If $x^{d}=1$, then $\operatorname{ord}(x) \mid d$.
(2) If $|G|=n=a d$ and g is the generator of G, then the elements $x \in G$ satisfying $x^{d}=1$ are $\left\{1, g^{a}, g^{2 a}, \ldots, g^{(d-1) a}\right\}$.

Proof.
(1) Say if $\operatorname{ord}(x)=a$, then write $d=q a+r$, where $r=0$ or $0<r<a$. Then $x^{d}=1$ and $x^{a}=1$. Thus $x^{r}=x^{d-q a}=x^{d}\left(x^{a}\right)^{-q}=1$. If $r \neq 0$, we get a contradiction because $r<a$. Hence $r=0$, so that $a=\operatorname{ord}(x) \mid d$.
(2) Clearly, $\left(x^{i a}\right)^{d}=\left(x^{a d}\right)^{i}=x^{n i}=1$ since by Lagrange's theorem, ord $(x) \mid n$. Now suppose that $x^{d}=1$ and write $x=g^{i}$. Then $g^{d i}=1$. Write $d i=q n+r$ where $r=0$ or $0<r<n$. Then $g^{r}=g^{d i} g^{-q n}=1$. If $r \neq 0$, we get a contradiction since $r<n=\operatorname{ord}(g)$. Therefore $r=0$ so that $d i=q n=q a d$. Thus $i=q a$.
$\varphi(d)$
Euler's function

Definition 7.11. For each $d \in \mathbb{N}$ define $\varphi(d)$ as the number of elements of order d in a cyclic group with d elements. Function $\varphi(d)$ is called Euler's function. The first few values are:

$$
\begin{array}{r|rrrrrrr|}
d & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline \varphi(d) & 1 & 1 & 2 & 2 & 4 & 2 & 6 \\
\hline
\end{array}
$$

Note. \mathbb{Z} / n with its additive structure is a cyclic group with n elements. Then g is a generator of \mathbb{Z} / n if $\{0, g, g+g, g+g+g, \ldots\}=\mathbb{Z} / n$. For example, if $n=4$, $\mathbb{Z} / 4=\{\overline{0}, \overline{1}, \overline{2}, \overline{3}\}$, then $\overline{1}$ and $\overline{3}$ are the generators. If $n=5$, then since 5 is prime, every non-zero element if a generator. If $n=6$, the generators are $\overline{1}$ and $\overline{5}$.

Lemma 7.12. For an integer $d, d=\sum_{\delta \mid d} \varphi(\delta)$.
Proof. Let G be a cyclic group with d elements, $G=\langle g\rangle$. By Lagrange, ord $(x) \mid d$ for any $x \in G$. Hence

$$
d=|G|=\sum_{\delta \mid d}|\{x \in G \mid \operatorname{ord}(x)=\delta\}|
$$

By part (2) of the above note, all the elements $x \in G, \operatorname{ord}(x)=\delta$ generate the unique cyclic subgroup of G with δ elements (i.e. $\left\{1, g^{a}, \ldots, g^{(d-1) a}\right\}$ where $d=a \delta$). The set $\left\{1, g^{a}, \ldots, g^{(d-1) a}\right\}$ is a group generated by g^{a}. Since $\operatorname{ord}\left(g^{a}\right)=\delta$, this is a cyclic group of δ elements. Thus $|\{g \in G \mid \operatorname{ord}(g)=\delta\}|=\varphi(\delta)$. Hence $d=\sum_{\delta \mid d} \varphi(\delta)$.

Proposition 7.13. Let d be a factor of $|F|-1$. Then the polynomial $x^{d}-1$ has d distinct roots in a field F.

Proof. Clearly $F \backslash\{0\}$ is a group under multiplication and $|F \backslash\{0\}|=q-1$. Therefore, by Lagrange, $\alpha^{q-1}=1$ for any $\alpha \in F \backslash\{0\}$. In other words, every non-zero element of $F \backslash\{0\}$ is a root of $x^{q-1}-1$ and hence $x^{q-1}-1$ has $q-1$ distinct roots in F. Since $d \mid q-1$,

$$
\begin{equation*}
x^{q-1}-1=\left(x^{d}-1\right) g(x) \tag{*}
\end{equation*}
$$

where $g(x)=1+x^{d}+\cdots+x^{q-1-d}$ has at most $q-1-d$ distinct roots. Both sides of $(*)$ have the same number of roots, so $x^{d}-1$ has d distinct roots.

Theorem 7.14. The multiplicative group $F \backslash\{0\}$ is cyclic.
Proof. Let $|F|=q$. Define $\psi(\delta)$ to be the number of elements of order δ in $F \backslash\{0\}$. Is δ a factor of $\psi(\delta)-1$? Clearly, $\psi(\delta)=0$ if $\delta \not \backslash q-1$.
Claim: For $d \mid q-1, \psi(d)=\varphi(d)$.
Proof. Recall that $\varphi(d) \geq 1$ by definition of the Euler's function. The roots of $x^{d}-1$ are precisely the elements of $F \backslash\{0\}$ of order δ for all $\delta \mid d$. Conversely, if $\alpha^{d}=1$, the order of α divides d. Hence the number of roots of $x^{d}-1=d$ (by Proposition 7.13) is $d=\sum_{\delta \mid d} \psi(\delta)(*)$. The Lemma 7.12 says that $d=\sum_{\delta \mid d} \varphi(\delta)$. We continue by induction on d : clearly, $\varphi(1)=\psi(1)=1$. Assume that $\psi(\delta)=\varphi(\delta)$ for all $\delta \mid q-1$ and $\delta<d$. Then from (*)

$$
\psi(d)=d-\sum_{\delta \mid d, \delta \neq d} \psi(\delta)
$$

By Lemma 7.12

$$
\varphi(d)=d-\sum_{\delta \mid d, \delta \neq d} \varphi(\delta)
$$

Hence by induction assumption, the claim holds.
Then for $d=q-1$, there are $\psi(q-1)=\varphi(q-1) \geq 1$ elements of order $q-1$ in $F \backslash\{0\}$. Hence $F \backslash\{0\}$ is cyclic.

Index

$F\left(\alpha_{1}, \ldots, \alpha_{n}\right)$, 团
$I+r, 21$
$R / I, 21$
$R[x]$, 3
R^{*}, [5]
[$K: F]$, 29$]$
$\operatorname{char}(F), 31$
Ker, 21
Im, 21
ord (x),45
\bar{n},
$\varphi(d), 46$
$a R$, 5
$f^{\prime}(x), 45$
algebraic over, 13
associates, 7
characteristic, 31
commutative, [1]
constructible, [35
coset, [21
degree, 29
derivative, 45
divides, 5
domain
Euclidean, 11
integral, 2
principal ideal, 15
Euler's function, 46
extension, 29
finite, 29
field, 3
of fractions, 21
Gaussian integers, 2
generator, 45
group
cyclic, 45
homomorphism, 19
ideal, 15
maximal, 22
principal, 15
image, 21
irreducible, 6
isomorphism, 19
kernel, 21
monic, 13
norm, 11
order, 45
PID, 15
polynomial
minimal, 13
prime
Fermat, 40
properly divides, ® 8
reducible, 6
ring, [
factor, 21
root, 12
subfield, [
prime, 32
subring, [
UFD, 7
unit, ${ }^{5}$
zero divisor, [2]

