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The rogue Raspe



The Adventures of Baron Munchausen

I A voyage to an island composed entirely of cheese, and judged
larger than Europe.

I Two voyages to the moon (one accidental).

I Salvation from death by drowning in a swamp of quicksand by
lifting himself (and his horse) up by his hair, in later versions
pulling himself up by his bootstraps.
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Bootstrap methods of inference

Sample data D plays an interventionist role in determining the
analysis applied to itself. ‘Random data corruption’ methods,
among others.

Small-scale problems, small D.

Different answers from different approaches. Resolve conflict?



The bootstrap

Formalised, ‘the bootstrap’, by Efron (1979): estimates of
statistical variability, by using empirical sampling models
constructed from D together with simulation from the empirical
model.

Replace analytic calculations and approximations required by
conventional approaches.

Pull ourselves up by bootstraps, by pretending empirical model is
true (unknown) probability distribution from which D has come.



Parametric statistical inference

Data D = {X1, . . . ,Xn}, assumed to be a random sample from
(infinite) population, the randomness expressed through a
probability density function, which expresses relative plausibility of
different values.

Density function f (X ; θ) of specified functional form, but
depending on parameter θ = (µ, ν), value unspecified.



An example

A Gamma density, of mean µ and shape parameter ν has density
of functional form:

f (X ; θ) =
νν

Γ(ν)
exp[−ν{X

µ
− log(

X

ν
)}] 1

X
.

By allowing µ (location) and ν (concentration) to vary, generate a
flexible class of probability distributions.
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The inference problem

Typically, µ is an interest parameter, and ν is a nuisance parameter.

Objective of data analysis: test consistency of D with the
hypothesis (‘null hypothesis, H0’) that µ takes a particular value,
µ = µ0.

Let
l(θ) ≡ l(µ, ν) = Σn

i=1 log f (Xi ;µ, ν)

be the log-likelihood for (µ, ν), given D.



Let θ̂ = (µ̂, ν̂) be the global maximum likelihood estimator (MLE),
which maximises l(θ).

Let θ̂0 = (µ0, ν̂0) be the constrained MLE , which maximises l(θ),
subject to the constraint µ = µ0.



Inference is based on the test statistic

r(µ0) = sgn(µ̂− µ0)

√
2{l(θ̂)− l(θ̂0)}.

Denote value of r(µ0) for D by rD . Frequentist approach: compare
rD with the distribution of values of r(µ0) for (hypothetical)
datasets from the population, if H0 is true. Reject H0 if rD is
‘extreme’ for this distribution.

Specifically, calculate the p-value, prob{r(µ0) ≥ rD | H0}, reject
H0 if this is small.



But the sampling distribution of r(µ0) under H0 is not known, as ν
remains unspecified, even under H0. Can’t calculate the p-value.

Either: Approximate distribution analytically. Asymptotically
(n →∞) the sampling distribution if H0 is true is ‘standard
Gaussian’, N(0, 1). More sophisticated approximations possible.

Or: bootstrap.
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A Gamma dataset

Dataset D of size n = 20 on survival times (in some units) of 20
mice exposed to 240 rads of gamma radiation: 152, 115, 152, 109,
137, 88, 94, 77, 160, 165, 125, 40, 128, 123, 136, 101, 62, 153,
83, 69.

Reasonable to model survival time using Gamma distribution.
Consider testing H0 : µ = µ0, mean survival time is µ0.



The bootstrap calculation, to test H0

I From D, obtain µ̂, ν̂, ν̂0 and calculate rD .

I Simulate B (actual) datasets, D∗
1 , . . . ,D∗

B , say, each of size
n = 20, from the Gamma density f (X ;µ0, ν̂0). [Easy: big B,
millions, feasible].

I By repeating for each D∗
i the calculations involved in

determining r(µ0), obtain associated values rD∗
1
, . . . , rD∗

B
of

the test statistic, representing H0.

I The bootstrap p-value is the proportion of the B simulated
values ≥ rD .
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Illustration: testing H0 : µ = 100

With µ0 = 100, we find ν̂0 = 7.715, rD = 1.654.

Simulate B = 5, 000, 000 data samples of size n=20 from Gamma
density f (X ; 100, 7.715).

For each simulated dataset, compute r(µ0), observe that the
proportion giving value larger than rD is 5.9%.

This bootstrap p-value is large enough that we would conclude
there is no strong evidence against H0.
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Is the bootstrap any good?

Repeated sampling perspective: yes.

If H0 is true (population really has µ = µ0), under repeated
sampling of D, bootstrap p-value is distributed as uniform on
(0, 1), to error of order n−3/2. Correct answers would correspond
to distribution being exactly uniform.



Conditional inference

Repeated sampling perspective is narrow. A more sophisticated
analysis should take into account demands of conditional inference.

Controversial, murky area. Basic idea: need to make inference
relevant to D by conditioning on features of D which, in
themselves, say nothing about quantity of interest, µ, but which
control propensity for extreme values of test statistic to occur for
artificial reasons.

Restrict frequentist inference to involve (hypothetical) datasets
which have same value as D of some ‘ancillary statistic’.
‘Conditionality Principle’.



Motivating example

Physical quantity θ can be measured by two machines, both giving
(Gaussian) measurements X which have mean θ. First machine is
precise, measurement error is low, Gaussian distribution has low
variance, but second machine gives measurements of high
variability about θ.

Precise machine is often busy, second machine will be used only if
first is unavailable: through repeated observation we know that
each machine is equally likely to be used.



We are given an observation, and told it has come from the first
machine.

Should our inference on θ take into account that the second
machine might have been used, but in the event wasn’t?

Silly to take into account (as in frequentist approach) that second
machine might have been used, when we know that it wasn’t.
Draw inference from distribution of X for machine actually used:
‘machine used’ is ancillary statistic.
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The swamp of conditional inference

Some of the formal difficulties with conditional inference:

I Conflict between conditioning and ‘power’, ability to correctly
identify that H0 is false. ‘Cut off right hand to save left’.

I Typically, arbitrariness of what to condition on, ancillary
statistics are not unique. ‘Dithering’.

I Mathematical contradiction. Formally, acceptance of (totally
uncontroversial) ‘sufficiency principle’ together with
conditionality principle requires acceptance of ‘likelihood
principle’. The likelihood principle is incompatible with
common methods of inference such as calculation of p-values.
‘Sawing off the branch of the tree that you are sitting on’.
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A schizophrenic attitude is quite common.



Lifting ourselves out of the swamp

Be Bayesian. ‘Out of the frying pan into the fire’.

Or, construct new approach to inference e.g. Fisher’s fiducial
theory. “Fisher’s biggest blunder”.

Or, more modestly, use forms of frequentist inference which deliver
the same solution, whether applied unconditionally or conditionally
on any relevant ancillary.

Identify unconditional procedures which yield same inference as we
would obtain from conditional inference, were we to agree on it.
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Efron’s bootstrap lifts us..

Bootstrap calculations as described (no conditioning specified)
yield inference which respects conditioning to astonishing degree.



Two contexts for conditioning

I ‘exponential family models’, where l has particular form:
conditioning has effect of eliminating nuisance parameter
(uncontroversial);

I where there exists ancillary statistic a. [Statistic with
distribution not depending on θ which, together with MLE, is
‘minimal sufficient’]. Inference should consider only
(hypothetical) samples with same value of a as D (very
controversial).
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Bootstrap and conditional inference

Exponential family context: (unconditional) bootstrap calculations
approximate exact conditional inference to third-order, O(n−3/2),
as good as sophisticated analytic methods.

Ancillary statistic context: bootstrap calculations approximate
exact conditional inference to second-order, O(n−1). Good
enough? Yes, insisting on greater conditional accuracy is
unwarranted.
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The Gamma mean problem

Exponential family. Exact conditional test is analytically
intractable, except for n = 2 or 3. Compare bootstrap with
analytic procedures, specifically designed to approximate the exact
inference to third-order.
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Exponential regression

Ancillary statistic model. Exact conditional inference feasible,
awkward.
Have D = {X1, . . . ,Xn} independent survival times, f (Xi ;µi )
exponential,

f (Xi ;µi ) =
1

µi
exp(−Xi/µi ),

with mean µi depending on known covariate value zi .
Interested in mean survival µ for covariate z0, in presence of a
nuisance parameter. Test H0 : µ = µ̂ + δ.



The n = 5 responses Xi are 156, 108, 143, 65 and 1, survival times
(in weeks) of leukaemia patients, covariate values zi are base-10
logarithms of initial blood cell count: 2.88, 4.02, 3.85, 5.0, 5.0.
Take z0 = log10(50000) ≈ 4.7.



Confidence Density, n=5 Exponential regression
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Confidence Density, n=17 Exponential regression
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Bootstrap is more subtle.......

Bootstrap methods allow accurate estimation of sampling
characteristics of inferentially important statistics. Work well from
repeated sampling perspective.

Also automatically encapsulate sophisticated statistical thought.
Provide pragmatic solution to debate on conditional inference.



Last word to the Baron...


