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SADDLEPOINT APPROXIMATIONS AND TESTS BASED ON
MULTIVARIATE M-ESTIMATES

BY J. ROBINSON, E. RONCHETTI AND G. A. YOUNG

University of Sydney, University of Geneva and University of Cambridge

We consider multidimensional M-functional parameters defined by
expectations of score functions associated with multivariate M-estimators
and tests for hypotheses concerning multidimensional smooth functions of
these parameters. We propose a test statistic suggested by the exponent in the
saddlepoint approximation to the density of the function of the M-estimates.
This statistic is analogous to the log likelihood ratio in the parametric case.
We show that this statistic is approximately distributed as a chi-squared
variate and obtain a Lugannani–Rice style adjustment giving a relative error
of order n−1. We propose an empirical exponential likelihood statistic and
consider a test based on this statistic. Finally we present numerical results for
three examples including one in robust regression.

1. Introduction. Let X1, . . . ,Xn be an independent, identically distributed
sample of random vectors from a distribution F with density f on the sample
space X. Define the M-functional θ(F ) to satisfy

E{ψ(X; θ)} = 0,(1.1)

where ψ is assumed to be a smooth function from X × R
d to R

d and the
expectation is taken with respect to F . Suppose we wish to test a hypothesis
concerning parameters defined by a smooth transformation η = g(θ), to a space
of dimension d1 ≤ d . Consider test statistics based on g(Tn), where Tn is the
M-estimate of θ given by the solution of

n∑
i=1

ψ(Xi;Tn) = 0.(1.2)

When d1 = 1 we can simply base the test on g(Tn) and calculate the observed
significance level or p-value p = P (g(Tn) ≥ g(tn)), where tn is the observed value
of Tn. Saddlepoint approximations with relative error of order n−1 are available
for this case; see, for example, Tingley and Field (1990), Daniels and Young
(1991), Jing and Robinson (1994), Fan and Field (1995), Davison, Hinkley and
Worton (1995) and Gatto and Ronchetti (1996). In this special case a one-sided
test is possible. However, when d1 > 1, a single summary statistic, h(g(Tn)) of
dimension 1 is needed to obtain the test. In classical parametric cases quadratic
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forms in the mean scores or pseudo-likelihood statistics are competitors. Tests of
the kind considered here arise naturally in, for example, the context of multiple
regression, where interest lies in testing a hypothesis concerning a sub-vector of
the vector of regression parameters, with the remaining parameters including the
scale as nuisance parameters.

We consider the case when the cumulant generating function of the vector of
scores, defined by

Kψ(λ; θ) = logE
{
eλT ψ(X;θ)},(1.3)

exists. Then, under the assumption of the existence of a density for the
M-estimates, discussed in Section 2, we obtain a saddlepoint approximation to
the density of g(Tn) of the form

fg(Tn)(y) = rne
−nh(y)γ (y)

(
1 + O(n−1)

)
,

where

h(y) = inf{θ : g(θ)=y} sup
λ

{−Kψ(λ; θ)}.(1.4)

Thus we propose the test statistic h(g(Tn)) and obtain the p-value

p = P
(
h(g(Tn)) ≥ h(g(tn))

)
.

In the parametric case F is a known distribution from the class of distributions
satisfying (1.1) and under the null hypothesis the choice of θ is restricted to
the set �0 = {θ :g(θ) = η0}. Theorem 2 shows that the statistic h(g(Tn)) is
asymptotically pivotal, since the asymptotic distribution does not depend on the
choice of θ in �0.

Using a proof modelled on Barndorff-Nielsen and Cox (1984), we show that

p = Q̄d1(nû2) + n−1cnû
d1e−nû2/2

[
G(û) − 1

û2

]
+ Q̄d1(nû2)O(1/n),(1.5)

where û = √
2h(g(tn)),

cn = nd1/2

2d1/2−1�(d1/2)
,

and Qd1 = 1 − Q̄d1 is the distribution function of a chi-squared variate with
d1 degrees of freedom and G is a function defined in Theorem 1. We show in
the proof of Theorem 2 that the error here is relative uniformly for û < ε for
some ε > 0. This result holds only for the case of the particular summary statistic
h(g(Tn)) defined in (1.4). In general G requires a numerical integration over a
sphere of dimension d1, but a simple Monte Carlo approximation to any degree of
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accuracy required can be readily obtained. In addition, we show that (G(u)−1)/u2

is bounded for u bounded and so we obtain the simpler approximation

p = Q̄d1(nû2)
(
1 + O

(
(1 + nû2)/n

))
.(1.6)

This simpler form does not have small relative error in the large deviation region.
If the underlying distribution of the observations belongs to a full exponential

model with score statistic ψ(x; θ) = x − θ , where θ is the mean parameter, then
the statistic defined in (1.4) is the log-likelihood ratio statistic [see, e.g., Barndorff-
Nielsen and Cox (1984)]. The same holds for curved exponential models. In
general parametric models, even when Tn is the maximum likelihood estimator,
this is not necessarily the case.

If the underlying distribution of the observations does not belong to the model
but is assumed to lie in a neighborhood, robust tests should be used. In this case
the statistic h(g(Tn)) extends the notion of log-likelihood ratio and the test based
on this statistic is asymptotically equivalent to first order to robust versions of
score and Wald tests discussed in Heritier and Ronchetti (1994). In particular, by
an appropriate choice of the function ψ these tests have robustness of validity
and robustness of efficiency in a neighborhood of the model. These first order
properties are shared by the test based on h(g(Tn)). In addition, the adjusted
chi-squared approximation to the p-value of the test based on h(g(Tn)) is here
shown to have relative error of order n−1 under the model. We cannot expect this
second order relative error property to be maintained in a general neighborhood of
the model.

In Section 2 we consider the special case of testing the hypothesis H0 : θ = θ0
in R

d and we show, in Theorem 1, that a Lugannani–Rice style adjustment to the
chi-squared approximation has relative error O(n−1). In Section 3 we consider
the more general hypothesis H0 :g(θ) = η0 and obtain a similar result in Theo-
rem 2. A proof of this more general result is notationally complex but requires the
same lines of argument as those used in Theorem 1, which is therefore proved in
detail.

If the distribution of the observations is completely unspecified, we can use an
empirical exponential family to approximate the distribution of the observations
by F̂0, a tilted empirical distribution satisfying the null hypothesis, and use this to
give ĥ(g(Tn)), an empirical version of the test statistic. If we sample from F̂0 then
this gives an empirical exponential likelihood version of the test. The saddlepoint
approximation to this probability might be expected to hold.

In Section 4 we consider empirical exponential likelihood and approximate tests
based on this, noting that an extension of the theorems should show that a simple
bootstrap approximation to these should have the saddlepoint approximation from
the theorems. Section 5 contains two examples illustrating the accuracy of the
chi-squared approximation in a parametric setting and in the bootstrap setting
of Section 3. Also, in Section 5 a numerical example in the case of robust
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regression compares the distribution of the test statistic from Section 4 and that
of other available robust test statistics with the distribution obtained by Monte
Carlo resampling.

2. Simple hypothesis. Consider the simple hypothesis H0 : θ = θ0 in R
d . We

derive an approximation, with relative error O(n−1), to the p-value

p = PH0{h(Tn) ≥ h(tn)},
of the test based on the statistic h(Tn), where Tn is defined in (1.2), tn is its
observed value with

h(y) = sup
λ

{−Kψ(λ;y)},

and Kψ is defined in (1.3). We assume the following:

(A1): The density of Tn exists and has the saddlepoint approximation

fTn(t) = (2π/n)d/2enKψ(λ(t);t)|B(t)||
(t)|−1/2(
1 + O(n−1)

)
,(2.1)

where λ(t) is the saddlepoint satisfying

K ′
ψ(λ; t) ≡ ∂

∂λ
Kψ(λ; t) = 0,(2.2)

and | · | denotes the determinant; further, writing λ ≡ λ(t),

B(t) = e−Kψ(λ;t)E
{
ψ̇(X; t)eλT ψ(X;t)}(2.3)

and


(t) = e−Kψ(λ;t)E
{
ψ(X; t)ψT (X; t)eλT ψ(X;t)},

and ψ̇(X; t) = ∂
∂t

ψ(X; t).

The saddlepoint approximation (2.1) was given in Field (1982) and has
subsequently been considered by Skovgaard (1990), Jensen and Wood (1998) and
Almudevar, Field and Robinson (2000). Conditions which imply (A1) and cover,
in particular, the case when ψ is not differentiable are given in Almudevar, Field
and Robinson (2000).

THEOREM 1. Under assumption (A1), p is given by (1.5) and (1.6), with
d1 = d , where

G(u) =
∫
Sd

δ(u, s) ds = 1 + u2k(u)(2.4)

for

δ(u, s) = �(d/2)|B(y)||
(y)|−1/2J1(y)J2(y)

2πd/2ud−1 ,(2.5)
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where, for any y ∈ R
d , (r, s) are the polar coordinates corresponding to y,

r = √
(yT y) is the radial component and s ∈ Sd , the d-dimensional sphere of unit

radius, u = √
2h(y), J1(y) = rd−1 and J2(y) = ru/(h′(y)T y), û = √

2h(tn) and
k(û) is bounded and the order terms are uniform for û < ε for some ε > 0.

PROOF. Without loss of generality we assume θ0 = 0 and h′′(0) ≡
∂2

∂y ∂yT h(y)|y=0 = I . Otherwise, transform ψ(Xi; θ) to

ψ̃(Xi; θ̃ ) = ψ
(
Xi;h′′(0)−1/2(θ − θ0)

)
.

The proof follows by integrating (2.1) to get the p-value. Writing h(y) =
−Kψ(λ(y);y), we have

p =
∫
A

e−nh(y)

(2π/n)d/2
|B(y)||
(y)|−1/2(1 + O(n−1)

)
dy,

where A = {y :h(y) ≥ h(tn)}. We may consider the order term to be uniform in y,
since we can consider the approximation obtained by integrating over A ∩ Bc ,
where B = {y :h(y) ≥ h(tn) + ε} and P (Tn ∈ B) = P (Tn ∈ A)O(e−nε).

In order to integrate this to find p we perform two transformations, the first
the polar transformation y → (r, s) and the second (r, s) → (u, s), where u =√

2h(y). The Jacobians of these transformations are respectively J1 = rd−1 and
J2 = ru/(h′(y)T y).

Following these transformations we have

p =
∫ (û2+2ε)1/2

û
cnu

d−1e−nu2/2
{∫

Sd

δ(u, s)
(
1 + O(n−1)

)
ds

}
du.(2.6)

Now expanding each term of δ(u, s) we have

|B(y)| = |B(0)|(1 + rξ1(s) + r2γ1(r, s)
)

(2.7)

and

|
(y)|−1/2 = |
(0)|−1/2(1 + rξ2(s) + r2γ2(r, s)
)
,(2.8)

where ξ1(s), ξ2(s) are linear combinations of the components of s, and γ1 and γ2
are uniformly bounded for r bounded. Also

u =
√

2h(y) = r
(
1 + rρ(s) + r2γ3(r, s)

)
,(2.9)

where ρ(s) is a linear combination of terms of the form sisj sk and γ3 is uniformly
bounded for r bounded. Combining (2.7)–(2.9) in (2.5) and using

|B(0)||
(0)|−1/2 = |h′′(0)|1/2 = 1,

we have

δ(u, s) = (
1 + ub(s) + u2γ4(u, s)

)
�(d/2)/2πd/2,(2.10)
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where b(s) is an odd function, b(s) = −b(−s) and γ4(u, s) is uniformly bounded
when u is bounded, since h(0) = 0, h′(0) = 0 and, by assumption, h′′(0) = I .
Hence the second equality in (2.4) follows and similarly

G′(u) = uk∗(u),

where k(u) and k∗(u) are bounded for u bounded. So

p =
∫ √

û2+2ε

û
cnu

d−1e−nu2/2G(u)du
(
1 + O(n−1)

)

=
∫ ∞
û

cnu
d−1e−nu2/2 du

(
1 + O(n−1)

)
(2.11)

+ cn

n

∫ √
û2+2ε

û
ud−2(G(u) − 1

) d

du

[−e−nu2/2]du
(
1 + O(n−1)

)
,

and by integrating by parts,

p =
{
Q̄d(nû2) + n−1cnû

de−nû2/2 G(û) − 1

û2

}

+ cn

n

∫ √
û2+2ε

û

[
(d − 2)ud−3(G(u) − 1

) + ud−2G′(u)
]
e−nu2/2 du

(2.12) × (
1 + O(n−1)

)
,

= Q̄d(nû2) + n−1cnû
de−nû2/2 G(û) − 1

û2 + Q̄d(nû2)O(1/n).

The simpler form is obtained immediately from (2.4). �

REMARK. The second term of (1.5) is very much like the second term in the
Lugannani–Rice formula. When

√
nû is bounded this term is of order n−1, but

for û bounded, that is in the large deviation region, this term is not of order n−1

relative to the first term.

In the special case where Tn = X̄, the assumptions of the theorem reduce
to assuming the existence of a density for X and the existence of a cumulant
generating function K(λ) = logEeλT X , with K(λ) < C for ‖λ‖∞ < a, for some
0 < a < ∞ and 0 < C < ∞, where ‖ · ‖∞ denotes the sup norm.

It is possible to extend the result of Theorem 1 to the case when Xi are
not identically distributed or when Tn is defined by the more general estimating
equation

n∑
i=1

ψi(Xi;Tn) = 0.
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To do this we need to generalize the results of Field (1982) as in Section 4.5.c of
Field and Ronchetti (1990).

The expansion (2.9) shows that 2nh(Tn) is asymptotically equivalent to first
order to the Wald and the score tests based on the M-estimator Tn. In particular,
these tests have the same influence function. Therefore, by appropriately choosing
a bounded function ψ we can define a test which is asymptotically first order
robust, that is its asymptotic level and asymptotic power remain stable when
the distribution of the observations does not belong to the model but lies in a
neighborhood of it.

3. Composite hypothesis. Consider now the composite hypothesis H0 :
g(θ) = η0, for a smooth function g from R

d to R
d1 . As in Section 2, we consider

the approximation to the p-value

p = PH0

{
h
(
g(Tn)

) ≥ h
(
g(tn)

)}
of the test based on the statistic h(g(Tn)). As before, Tn is the M-estimator
satisfying (1.2), tn is the observed value and now

h(y) = inf{t : g(t)=y}
{−Kψ

(
λ(t); t

)}
,(3.1)

where Kψ is defined by (1.3) and λ(t) satisfies (2.2).

THEOREM 2. Assume (A1) in Theorem 1 and

(A2): The transformation t → (y = g(t), z = g1(t))
T , for g1 of dimension

d − d1, has continuous second derivatives and has nonzero Jacobian at the
solution t of (1.1).

Then p is given by (1.5) and (1.6), where (r, s) are the polar coordinates
corresponding to y, u = √

2h(y), û = √
2h(g(tn)) and G(u) is given by (2.4) with

δ(u, s) = �(d1/2)|B(t̃)||
(t̃)|−1/2J0(t̃)J1(y)J2(y)

2πd1/2ud1−1|L22(y, z̃)|1/2 ,(3.2)

where t (y, z) is the inverse of the transformation in (A2), t̃ = t (y, z̃) is such
that h(y) = Kψ(λ(t̃); t̃ ), L22(y, z) = ∂2Kψ(λ(t (y, z)); t (y, z))/∂z2, J0(t) is
the Jacobian of the transformation t → (y, z), J1(y) = rd1−1 and J2(y) =
ru/(h′(y)T y) and k(û) is bounded and the order terms are uniform for û < ε

for some ε > 0.

PROOF. We first obtain, by Laplace’s method, an approximation to the
d1-dimensional density of g(Tn) as in Jing and Robinson (1994). The result is
then obtained by the same techniques as those used in the proof of Theorem 1.
We transform the density (2.1) of Tn to obtain the joint density of g(Tn) and
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g1(Tn). The marginal density of g(Tn) is obtained by integrating out g1(Tn). Using
Laplace’s method, this is seen to have the form

fg(Tn)(y) = (2π/n)d1/2e−nh(y)γ (y)
(
1 + O(n−1)

)
,

where h(y) is as given by (3.1) and

γ (y) = |B(t̃)||
(t̃)|−1/2J0(t̃)

|L22(y, z̃)|1/2 .(3.3)

At this point we can apply the same arguments as used in the proof of Theorem 1
to approximate the p-value

p =
∫
A

rne
−nh(y)γ (y)

(
1 + O(n−1)

)
dy,

where A = {y :h(g(y)) ≥ h(g(tn))}. In order to obtain the expressions (2.10) and
(2.4) we need to prove that h′(ỹ) = 0 and h′′(ỹ) is positive definite, where ỹ is the
unconstrained minimiser of h(y).

Note that h(ỹ) = 0. Let the Lagrangian be

L(θ;β) = −Kψ

(
λ(θ); θ

) + βT (
g(θ) − y

)
.

Then

∂

∂θ
L(θ;β) = −K ′

ψ

(
λ(θ); θ

)
λ′(θ) − K̇ψ

(
λ(θ); θ

) + g′(θ)T β

= −B(θ)λ(θ) + g′(θ)T β,

since K ′
ψ(λ(θ); θ) = 0 and where B(θ) is defined by (2.3), g′(θ) = dg(θ)/dθ ,

λ′(θ) = dλ(θ)/dθ and

K̇ψ(λ; θ) = ∂

∂θ
Kψ(λ; θ).

It follows that h(y) = −Kψ(λ(θ), θ), where θ ≡ θ(y), λ(θ) ≡ λ(θ(y)) and
β ≡ β(y) satisfy the 2d + d1 constraints

g(θ) = y,(3.4)

K ′
ψ

(
λ(θ); θ

) = 0,(3.5)

g′(θ)T β = B(θ)λ(θ).(3.6)

Writing λ′ = λ′(θ) and θ ′ = dθ(y)/dy, we have

h′(y) = −(θ ′)T (λ′)T K ′
ψ

(
λ(θ); θ

) − (θ ′)T K̇ψ

(
λ(θ); θ

)
= −(θ ′)T K̇ψ

(
λ(θ); θ

)
by (3.5).
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Letting θ̃ = θ(ỹ), θ̃ ′ = θ ′(ỹ), λ̃ = λ(θ(ỹ)) and β̃ = β(ỹ), we have

h′(ỹ) = −(θ̃ ′)T B(θ̃)λ̃ = −(θ̃ ′)T g′(θ̃ )T β̃ = −β̃

by (3.6) and on noting that, from (3.4), g′(θ̃ )θ̃ ′ = I . Since ỹ is the unconstrained
minimizer of h(y), β̃ = 0, λ̃ = 0 and h′(ỹ) = 0.

Noting that K ′
ψ(λ(θ(y)); θ(y)) = 0 for any y and K̇ψ(λ̃; θ̃ ) = 0, we obtain

h′′(ỹ) = (θ̃ ′)T
(−K̈ψ(λ̃; θ̃ )

)
(θ̃ ′),

where −K̈ψ(λ̃; θ̃ ) = −K̈ψ(0; θ̃) = {Eψ̇(X; θ̃ )}T {Eψ(X; θ̃)ψT (X; θ̃ )}−1 ×
Eψ̇(X; θ̃ ) the inverse of the asymptotic covariance matrix of the M-estimator Tn.

Since h′(ỹ) = 0 and h′′(ỹ) is positive definite, the proof of the result is
completed by arguments the same as those used in the proof of Theorem 1. �

The discussion following the proof of Theorem 1 also applies here.

4. Empirical exponential likelihood tests. In practice, the distribution F

underlying the data sample X1, . . . ,Xn may be unknown. In these circumstances
an empirical exponential likelihood may be used to provide empirical versions
of the tests. To do this for a hypothesis H :g(θ) = η0, we need to consider the
empirical exponential family and take

F̂0(x) =
n∑

i=1

eβ(η0)
T ψ(xi;θ(η0))1{xi ≤ x}

/
n∑

i=1

eβ(η0)
T ψ(xi;θ(η0)),(4.1)

where β = β(η0), θ = θ(η0) and the Lagrange multiplier γ = γ (η0), and the
solutions of the equations

κ ′(β; θ) = 0,(4.2)

g(θ) = η0,(4.3)

κ̇(β; θ) = γ T g′(θ),(4.4)

where

κ(β; θ) = log

[
1

n

n∑
i=1

eβT ψ(xi;θ)

]
, κ ′(β; θ) = ∂κ(β; θ)

∂β
, κ̇(β; θ) = ∂κ(β; θ)

∂θ
,

are chosen to minimise the backward Kullback–Leibler distance between the
empirical distribution and the tilted empirical distribution subject to

EFψ(X; θ) = 0,

as in the F2 family of DiCiccio and Romano (1990). The construction of F̂0, as
described by the solution of (4.2)–(4.4), is performed using standard numerical
packages.
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Now consider the cumulant generating function of ψ(X∗; θ) when X∗ is drawn
from F̂0:

K
†
ψ(λ; θ) = log

[
n∑

i=1

eβ(η0)
T ψ(xi;θ(η0))+λT ψ(xi;θ)

/
n∑

i=1

eβ(η0)
T ψ(xi;θ(η0))

]
.(4.5)

Then

ĥ(y) = inf{θ : g(θ)=y} sup
λ

[−K
†
ψ(λ; θ)

] = −K
†
ψ

(
λ(y);ϑ(y)

)
,(4.6)

where λ(y), ϑ(y) and the Lagrange multiplier δ(y) are obtained from

K
†′
ψ

(
λ(y);ϑ(y)

) = 0,(4.7)

g
(
ϑ(y)

) = y,(4.8)

K̇
†
ψ

(
λ(y);ϑ(y)

) = δ(y)T g′(ϑ(y)),(4.9)

where K ′ and K̇ are defined as for κ .
Now we obtain ĥ(g(tn)) for tn the solution of

n∑
i=1

ψ(xi; tn) = 0

and ĥ(g(T ∗
n )) for T ∗

n the solution of
n∑

i=1

ψ(X∗
i ;T ∗

n ) = 0,

where X∗
1, . . . ,X∗

n is a sample from F̂0. The p-value based on this empirical
exponential likelihood statistic is

p∗ = P
(
ĥ(g(T ∗

n )) ≥ ĥ(g(tn))
)
.(4.10)

Of course, to obtain a 1 − α confidence region for g(θ) we invert this procedure
by finding the set of values of η0 such that p∗ ≥ α.

In the particular case when ψ(x; θ) = x − θ and g(θ) = θ , we have θ0 = η0 and
we solve

κ ′(β(θ0), θ0
) = 0.(4.11)

Then

K
†
ψ(λ, θ) = log

[
1

n

n∑
i=1

eβ(θ0)
T (xi−θ0)+λT (xi−θ)−κ(β(θ0),θ0)

]
.(4.12)

If λ(θ) is the solution of K
†′
ψ (λ, θ) = 0, then we see, taking θ = x̄, that λ(x̄) =

−β(θ0) and so

ĥ(x̄) = −β(θ0)
T (x̄ − θ0) + κ

(
β(θ0); θ0

)
.(4.13)
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We can obtain λ(x̄∗) and then show that

ĥ(x̄∗) = −κ
(
β(θ0) + λ(x̄∗); x̄∗) + κ

(
β(θ0); x̄∗)

.(4.14)

The p-value p∗ might be estimated by a Monte Carlo simulation. A series
of B bootstrap samples is drawn from F̂0. If T

∗(b)
n denotes the M-estimator

for the bth such sample, b = 1, . . . ,B , then p∗ is approximated by [1 +∑B
b=1 I {ĥ(g(T

∗(b)
n )) ≥ ĥ(g(tn))}]/(B + 1), where I (·) denotes the indicator

function. Alternatively, the bootstrap p-value p∗ might be approximated directly
by the chi-squared distribution on d1 degrees of freedom, instead of by a Monte
Carlo simulation. Since in this case a density of T ∗

n does not exist, Theorems
1 and 2 cannot be applied and we are unable to prove that the relative error of
the chi-squared approximation is of order given in (1.6) using the methods of this
paper. However, we might expect that the approximation will still hold in this case
with the same relative errors if the original sample is drawn from a distribution
satisfying the conditions of Theorems 1 and 2. This is demonstrated numerically
in the second example in Section 5 in the cases d = 3 with ψ(x) = x and X drawn
from independent exponential distributions with n = 20 and d = 3.

Note that the statistic ĥ(g(T ∗
n )) defined by (4.6) can be viewed as a nonparamet-

ric likelihood with exponential weights. This differs from Owen’s (1988) empirical
likelihood which in turn is equivalent to Mykland’s (1995) dual likelihood. A com-
parison between these nonparametric likelihoods in the case of a simple hypothesis
is provided in Monti and Ronchetti (1993).

5. Numerical examples. We give three examples. The first is a parametric
case when we can get analytic results for h, the second is a simple example of
Section 4 and the third is a robust regression of a more realistic nature. The first
example demonstrates the accuracy of the approximation of Theorem 1 in a simple
parametric case. Another example for this case can be found in Gatto (2000).
The second shows that accurate approximations are also given by Theorem 1
in the empirical exponential likelihood case. We give more extensive simulations
for the third case which compares the accuracy of the chi-square approximation
and the bootstrap approximation of Section 4.

EXAMPLE 1. Consider the method of Section 2 with d = 3, ψ(x; θ) = x − θ

and assume that X is distributed as a vector of three independent exponential
variables with means 1. Elementary calculations give

h(y) =
3∑

j=1

[(yj − 1) − logyj ].

For n = 20 in this case nX̄ is distributed as a vector of three independent gamma
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FIG. 1. (a) Q–Q plot for h(X̄) against theoretical quantiles of χ2
3 ; (b) Relative errors of

χ2
3 approximation for 10,000 samples of size 20 from a vector of three independent exponential

variables.

variates with shape parameter n. So we can generate 10,000 Monte Carlo replicates
of 2nh(X̄) and compare these to the approximating χ2

3 distribution. Figure 1(a)
gives a Q–Q plot of 10,000 Monte Carlo samples of nh(X̄) with the theoretical
quantiles (taking each 100th quantile in the plot) and Figure 1(b) plots the relative
errors of the tail probabilities from 10,000 Monte Carlo trials compared to the
χ2

3 approximation. The relative error is (P (2nh(X̄) > vα) − α)/α, where P (χ2
3 >

vα) = α, for α = 0.02,0.04, . . . ,0.1. The approximation is very good except for
the last 10 points where the Monte Carlo values are the cause of the variation.

EXAMPLE 2. Consider the method of Section 4 and draw a sample of 20
from a three-dimensional distribution of independent exponential variables with
mean 1. From (4.13) obtain ĥ(x̄) and for each of 10,000 bootstrap samples from
F̂0 obtain ĥ(x̄∗) from (4.14). As in Example 1 we give a Q–Q plot in Figure 2(a)
and we obtain an approximation to the relative error for tail areas of the chi-
square approximation as (P (2nĥ(X̄∗) ≥ vα) − α)/α, where P (χ2

3 > vα) = α, for
α = 0.02,0.04, . . . ,0.1 and plot these in Figure 2(b). Again the approximation is
very good.

EXAMPLE 3. Now we consider a more realistic example to illustrate the
results of Section 4. Consider the model

y = xT θ + e,(5.1)
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FIG. 2. (a) Q–Q plot for ĥ(X̄∗) against theoretical quantiles of χ2
3 ; (b) Relative errors of

χ2
3 approximation to tail probabilities of ĥ(X̄∗) from 10,000 bootstrap samples from a sample

of size 20 from a vector of three independent exponentials.

where x = (1, x(2), x(3)) and θ = (θ(1), θ(2), θ(3)). We have taken the values of
x(2), x(3) to be independent uniform on (0,1) and we consider the hypothesis
H0 : θ(2) = θ(3) = 0. The errors e are from the distribution (1 − ε)�(t) + ε�(t/s)

with settings of ε, s as in two of the settings in Hampel, Ronchetti, Rousseeuw
and Stahel [(1986), page 379]; the other settings gave very similar results. The
M-estimator of Tn satisfies

n∑
i=1

ψ(yi;Tn) = 0,(5.2)

where

ψ(y; θ) = ψc

(
y − xT θ

σ

)
x,(5.3)

for ψc(r) = min{c,max(−c, r)} and c = 1.5. The scale parameter σ is fixed at the
value estimated by Huber’s Proposal 2.

In addition to the empirical likelihood statistic 2nĥ(g(Tn)) of Section 4, we
considered the Wald test statistic, the score test statistic and the likelihood ratio
test statistic given in Welsh [(1996), Section 5.6.1]. We obtained 10,000 Monte
Carlo samples of size n = 20. For the 25 values of α = 1/250,2/250, . . . ,25/250,
we obtained the proportion of times out of 10,000 that the statistic, Sn say,
exceeded vα , where P (χ2

2 ≥ vα) = α. Further, for each Monte Carlo sample we
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obtained 299 bootstrap samples and calculated a bootstrap p-value, the proportion
of the 299 bootstrap samples giving a value S∗

n of the statistic exceeding Sn. The
bootstrap test of nominal level α rejects H0 if the bootstrap p-value is less than α.

The results are plotted in Figure 3. In Figure 3(a) and (b) we plot the actual
size against the nominal size for tests based on both the chi-square approximation
and bootstrap approximation for ĥ(g(Tn)) and the three other statistics in the case
ε = 0 and s = 1 and in (c) and (d) in the case ε = 0.1 and s = 5. It is clear that

FIG. 3. Actual size plotted against nominal size α for tests based on the statistic ĥ(g(Tn)) and the
likelihood ratio, Wald and score tests.
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the chi-square approximation for ĥ(g(Tn)) is much better than the corresponding
chi-square approximations for the other statistics. However, tests based on all the
statistics are quite accurately approximated under the bootstrap and the bootstrap
improves on the chi-square approximation in the case of the empirical exponential
likelihood.
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