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S

Prepivoting by conventional bootstrap iteration is known to yield a progressively more
accurate pivot in certain problems, and has important application in the construction of
confidence limits and estimation of null distributions. We investigate the theoretical effects
of weighted bootstrap iteration on prepivoting and show that each weighted bootstrap
iteration, with weights chosen carefully but empirically, is asymptotically equivalent to
two consecutive conventional bootstrap iterations. In terms of reducing the order of error,
prepivoting can therefore be carried out much more efficiently if based on weighted boot-
strap iterations. This is shown for a variety of problem settings, including the smooth
function model, M-estimation and the regression context. A numerical illustration is
provided, demonstrating the potential practical usefulness of weighted prepivoting.

Some key words: Bootstrap iteration; Linear regression; M-estimation; Pivot; Prepivoting; Smooth function
model; Weighted bootstrap iteration.

1. I

The iterated bootstrap (Hall, 1986; Beran, 1987) provides a satisfactory theoretical
solution to the problem of reducing the error in bootstrap methods of inference. A general
theory of bootstrap iteration is given by Hall & Martin (1988), who show that successive
iterations produce successive reductions in the order of error of the bootstrap procedure.
In practice, however, iterated bootstrap procedures generally require a computationally
expensive Monte Carlo simulation, involving nested levels of bootstrap sampling from
data, which restricts the practical feasibility of higher levels of iteration, and demands
analysis of whether or not the benefits of higher level iteration are obtainable without
prohibitive computational expense. A number of authors have discussed issues relating to
computationally efficient implementation of bootstrap iteration; see, among others,
DiCiccio et al. (1992), Lee & Young (1995, 1999), Hall et al. (2000), Chan & Lee (2001)
and references therein.
In this paper we establish that the theoretical effects of bootstrap iteration can be
accelerated, using weighted bootstrap techniques in place of conventional bootstrap sam-
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pling. To be specific, we reconsider a formulation of bootstrap iteration, due to Beran
(1987, 1988), known as prepivoting, and show that prepivoting using weighted bootstrap
sampling enhances the effect of iteration on the reduction of error of bootstrap techniques.
Prepivoting has been proposed as a unified strategy for transforming a function R

n
(X, h )

of a sampleX and an unknown parameter h into an approximate pivot, or, more precisely,
an approximately Un(0, 1) random variable. The idea can be iterated and each iteration
brings the transformed R

n
closer to a pivot by an order of O(n−1/2 ) in regular settings.

Prepivoting has found important applications in reducing the coverage error of boot-
strap confidence sets when R

n
takes the form of a confidence set root, and in reducing

the error of the rejection probability when R
n
is a test statistic. In the former application,

we suppose a one-sided bootstrap confidence set for h of nominal coverage a is
{c : R

n
(X, c}∏a} or {c : R

n
(X, c)�1−a}, depending on the side for which the confidence

set is intended; examples are given in §§ 3·2–3·5. Expressed in these terms, it is clear that
if the sampling distribution of R

n
(X, h ) were exactly Un(0, 1) the bootstrap confidence set

would have coverage exactly equal to the nominal desired coverage. When we are testing
the hypothesis H

0
: h=c, the hypothesis is rejected in a one-sided test of nominal size a if

R
n
(X, c)∏a, or if R

n
(X, c)�1−a. If R

n
(X, h ) were Un(0, 1), the rejection probability

would be exactly a, under H0 .
The conventional prepivoting procedure may be described as follows. LetX be a sample
drawn from a distribution F, and let g(F ) be an Rk-valued functional of F. The parameter
of interest h is assumed to be h=g{g(F )}, for some real function g on Rk. For each possible
value j of g( . ), derive a sequence of n vector-valued functions Z= (z1 (X, j), . . . , z

n
(X, j)),

where each z
i
has values in Rd. Bootstrap sampling is performed on this ‘derived sample’

Z. Precise definitions of the z
i
depend on the context of the problem, but in conventional

bootstrapping j is typically taken as an estimate of g(F ). In the simplest case, where X=
(X1 , . . . , Xn ) represents a sample of independent and identically distributed data, we may
define z

i
(X, j)=X

i
so that X=Z. The z

i
(X, j) need not be independent in general. For

example, in linear regression, z
i
(X, j) may be defined as the ith centred residual, in which

case j could be taken as the least squares estimates of the regression coefficients. In our
weighted bootstrap prepivoting procedure to be introduced later, j could be taken as
some hypothesised or pilot values of g(F ), and their explicit roles will be elucidated by
examples in §§ 3–5. Let h@=h@ (X) be an estimator of h. Denote by Z* a bootstrap sample
formed by sampling with replacement from Z, and by X* the bootstrap version of X
reconstructed from Z*. For each possible value c of h, write R

n,0
(X, c)=R

n
(X, c). Denote

by R
n,j

(X, c) the transformation of R
n
(X, c) after j iterations of prepivoting. Let GC

j
be the

bootstrap cumulative distribution function of R
n,j

(X, h ), so that

GC
j
(x)=P*{R

n,j
(X*, h@ )∏x},

where P* denotes the probability, given X, under the drawing of bootstrap samples X*.
Then prepivoting R

n,j
yields R

n,j+1
(X, c)=GC

j
{R
n,j

(X, c)}, for j=0, 1, 2, . . . .
We remark in passing that, if it were possible to use the true distribution function of

R
n,j

(X, h ) in place of its bootstrap estimator GC
j
, then R

n,j+1
(X, h ) would be exactly distrib-

uted as Un(0, 1) under appropriate continuity conditions. Note also that construction of
R
n,j+1

will generally require nested levels of bootstrap sampling from X; illustration is
provided in §§ 3–5.
It can be shown that in regular situations, if R

n
(X, h ) is asymptotically pivotal to order

O(n−j
0
/2 ), then R

n,j
(X, h ) is asymptotically pivotal to O(n−(j

0
+j)/2 ). In other words,
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R
n,j

(X, h ) differs from Un(0, 1) by an order of O(n−(j
0
+j)/2 ). Each iteration step has the

effect of reducing the error by O(n−1/2 ); see Hall & Martin (1988) for a detailed discussion.
Recently, there has been much interest in procedures of bootstrap inference which

replace uniform resampling from Z by weighted sampling, in which unequal weights are
placed on the elements z

i
(X, j) of Z; see, for example, Hall & Presnell (1999a, b) and

Chuang & Lai (2000). These techniques, in which bootstrap samples are drawn under
non-uniform, but fixed, weights on the observed data points, may be contrasted with
weighted bootstrap techniques discussed by Barbe & Bertail (1995). The latter are pro-
cedures based on the heuristic of randomly reweighting each observation in the sample.
Our primary contribution in this paper is to investigate the effect of using weighted
resampling instead of uniform resampling on the properties of bootstrap prepivoting. We
provide a general account of techniques by which the effectiveness of bootstrap prepivoting
can be enhanced. In particular, we provide a detailed analysis of the effects of prepivoting
in general settings of practical importance, such as those arising in regression problems
and M-estimation.
Our resampling frame permits the functions z

i
to depend on X as well as on a hypoth-

esised or pilot value c=g(j) through some k-vector j. Typically c is set to the hypothesised
value of h in testing problems or taken from a number of trial values of h when constructing
confidence sets for h. A weighted bootstrap sample X† is reconstructed from Z†=
(Z†
1
, . . . , Z†

n
), where each Z†

i
is independently drawn fromZ= (z1 (X, j), . . . , z

n
(X, j)) such

that Z†
i
=z
j
(X, j) with probability p

j
. Here p= ( p1 , . . . , pn ) is a vector of sampling weights

such that Wn
i=1

p
i
=1. We reserve the more common notation X* for bootstrap samples

generated by uniform resampling. Denote by F†
j,p
the sampling distribution of X† con-

ditional on X. For each fixed c, the functional form of the sampling weights p=p(c), as a
function of c, is determined by minimising a ‘distance’ between p(c) and the vector of
uniform weights (n−1, . . . , n−1 ) subject to conditions that g(F†

e,p(c)
)=j and g(j)=c. Hall

& Presnell (1999a) propose a general class of distance measures suitable for this purpose.
Let P†

c
denote the probability, given X, under the drawing of weighted bootstrap samples

X† using weights p(c).
Weighted prepivoting replaces GC

j
by GB

j
( . |c), the weighted bootstrap distribution

function of R
n,j

(X, c):

GB
j
(x |c)=P†

c
{R
n,j

(X†, c)∏x}.

Now R
n,j+1

(X, c)=GB
j
{R
n,j

(X, c) |c}, for j=0, 1, 2, . . . .
We show below that R

n,j
(X, h ) is asymptotically Un(0, 1) to order O(n−(j

0
+2j)/2 ) if

R
n
(X, h ) is asymptotically Un(0, 1) to order O(n−j

0
/2 ). Prepivoting by weighted bootstrap

iterations thus improves upon the same number of conventional bootstrap iterations in
terms of the order of the difference from the exact pivot Un(0, 1). In fact, each weighted
bootstrap iteration reduces the error by O(n−1 ) and is asymptotically equivalent to two
conventional bootstrap iterations.
Section 2 gives a theoretical account of the effects of weighted bootstrap iterations on

prepivoting, and suggests a general device for selecting the appropriate sampling weights.
Sections 3–5 illustrate our theory in three general settings, namely smooth function models,
M-estimation and linear regression. Examples are provided of common bootstrap appli-
cations. A numerical illustration is reported in § 6. All technical details are given in the
Appendix.
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2. T

Let s2 be the asymptotic variance of n1/2h@ and let s@2 be an appropriate sample estimator.
The forms of estimator are described for particular cases later, where s2 assumes the
general expression in (A7). Studentisation of h@ yields an asymptotically standard normal
variable T=n1/2(h@−h )/s@ .
The initial function R

n
(X, c) may take on a variety of forms, depending on the applica-

tion in hand. For example, it may be a test statistic for testing the null parameter value
c or an approximate pivot for constructing confidence sets. Sections 3·2–3·5 present
examples corresponding to different choices of R

n
. Recall that h=g{g(F )}. Let Z9=

n−1Wn
i=1

z
i
{X, g(F )}. We assume that, for some j�0, R

n,j
(X, h ) admits an asymptotic

expansion

R
n,j

(X, h )=W(T )+w(T ){n−1/2r
1
(Z9 , T )+n−1r

2
(Z9 , T )+ . . .}, (1)

where W and w denote the standard normal distribution and density functions respectively,
and each r

i
(z, t) is a polynomial in t with coefficients being smooth functions of the vector

z. It is clear from (1) that R
n,j

(X, h ) is asymptotically Un(0, 1). In subsequent sections of
the paper, we shall give the forms of (1) under three important general settings and briefly
describe the regularity conditions required in each case.
Consider an arbitrary smooth function f defined on Rd. Define m

Z
= lim

n�2
E(Z9 ), which

will exist under mild regularity conditions. We assume that, given the sample X, the family
of resampling weights p(c) satisfies, at c=h,

f C ∑n
i=1

p
i
(h )z
i
{X, g(F )}D= f (Z9 )+n−1/2H(m

Z
, T , f )+O

p
(n−1 ), (2)

where H(z, t, f ) is a smooth functional of zµRd, with tµR and f in the class of smooth
functions from Rd to R. We remark that (1) and (2) hold in all the standard cases looked
at in the remainder of the paper. Define D(z, f ) to be a smooth functional which satisfies

E[n1/2T { f (Z9 )− f (m
Z
)}]=s−1D(m

Z
, f )+O(n−1 ).

Recall that prepivoting using weights p(c) yields R
n,j+1

(X, c)=GB
j
{R
n,j

(X, c) |c}. Define
z
x
=W−1(x). Our main result is given in the following proposition.

P 1. Assume that (1) and (2) hold, that

pr{R
n,j

(X, h )∏x}=x−n−j
0
/2w(z
x
)d(m
Z
, z
x
)+O(n−(j

0
+1)/2 ) (3)

for some polynomial d(m
Z
, z
x
) in z

x
with coeYcients depending smoothly on m

Z
and for some

integers j�0 and j0�1, and that the expansion (3) is uniform over xµ[e, 1−e] for all
eµ(0, D]. T hen

pr{R
n,j+1

(X, h )∏x}=x+n−(j
0
+1)/2w(z

x
)[H{m

Z
, z
x
, d( . , z

x
)}+s−1z

x
D{m
Z
, d( . , z

x
)}]

+O(n−(j
0
+2)/2 ), (4)

uniformly over xµ[e, 1−e] for all eµ(0, D].

The proof of Proposition 1 is outlined in the Appendix. The conditions under which
the proposition applies differ in different problem settings. Loosely speaking, conditions
which permit Edgeworth expansions in powers of n−1/2 to order O(n−(j

0
+1)/2 ) suffice. Note

that the form of the functional H(z, t, f ) depends on the choice of sampling weights p. In
particular, if p

i
(c)¬n−1 for all i and c as in conventional bootstrap prepivoting, then
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H(z, t, f )¬0. The next proposition follows immediately by iterating the conclusion of
Proposition 1.

P 2. Under the conditions of Proposition 1 and for m=1, 2, . . . , we have the
following:
(i ) if p(c)¬ (n−1, . . . , n−1 ), then

pr{R
n,j+m

(X, h )∏x}=x+O(n−(j
0
+m)/2 ),

uniformly over xµ[e, 1−e] for all eµ(0, D];
(ii ) if the sampling weights p(c) used in the weighted bootstrapping are such that p(h )

satisfies (2) with

H(m
Z
, T , f )=−s−1T D(m

Z
, f )+O

p
(n−1/2 ) (5)

for smooth functions f on Rd, then

pr{R
n,j+m

(X, h )∏x}=x+O(n−(j
0
+2m)/2 ),

uniformly over xµ[e, 1−e] for all eµ(0, D].

Proposition 2(i) reiterates the well-known result that each conventional bootstrap iter-
ation succeeds in reducing the error by an order O(n−1/2 ). Proposition 2(ii) establishes
that weighted bootstrap iterations based on appropriate sampling weights can be more
effective in prepivoting, with each iteration reducing the error by O(n−1 ).
One level of uniform bootstrapping generally eliminates the leading-order discrepancy,

exemplified by the term−n−j
0
/2w(z
x
)d(m
Z
, z
x
) in (3), between the distributions of R

n,j
(X, h )

and Un(0, 1). This results in a smaller discrepancy in the form of

n−(j
0
+1)/2w(z

x
)s−1z

x
D{m
Z
, d( . , z

x
)},

contributed by the correlation between R
n,j

(X, h ) and the eliminated leading-order discrep-
ancy. Fine tuning of the uniform weights within O(n−1/2 ) gives rise to a perturbation of
order O(n−1/2 ), see (2), which translates to the term n−(j

0
+1)/2w(z

x
)H{m

Z
, z
x
, d( . , z

x
)} in the

coverage expansion (4). Such perturbation may be deployed constructively to eliminate
the O(n−(j

0
+1)/2 ) error term in (4), provided that condition (5) holds, which may be

achieved by careful tuning of the sampling weights.
A general strategy for ensuring (5) is to choose p=p(c) which is closest to (n−1, . . . , n−1 )

with respect to some appropriate distance measure, subject to constraints g(F†
j,p

)=j and
g(j)=c. Based on Read & Cressie’s (1988, Ch. 7) notion of power divergence, Hall &
Presnell (1999a) discuss a useful class of distance measures

D
r
( p)=2{r(1−r)}−1 qn− ∑n

i=1
(np
i
)rr (−2<r<2 )

which generalise the Kullback–Leibler distance between p and (n−1, . . . , n−1 ). In particu-
lar, Owen’s (1988) empirical likelihood ratio corresponds to D

r
with r�0. In this case,

p is chosen to minimise

D
0
( p)=−2 ∑

n

i=1
log (np

i
),

subject to the above constraints. Alternatively, we may follow DiCiccio & Romano’s
(1990) approach to determine p according to a least favourable family indexed by c. The
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sampling weights p(c) found by minimising D
r
satisfy (5) for all r in all three settings

considered in the rest of paper. Proofs are given in the Appendix.

3. S  

3·1. Preliminaries

Let X= (X1 , . . . , Xn ) denote a sample of independent and identically distributed vector-
valued observations in Rk. Let g(F ) and X9 be the population and sample means respect-
ively. Assume Bhattacharya & Ghosh’s (1978) smooth function model, so that h=g{g(F )}
for some smooth function g. A natural estimator of h is h@=g(X9 ). Define z

i
=z
i
(X, j) to

be a d-vector consisting of products of the components of X
i
up to an order determined

by the number of terms required in (1). Note that the z
i
defined as such do not depend

on j. The asymptotic variance s2 can be treated as a function of s(m
Z
)2, for it depends

smoothly on the first and second moments of X1 . A plug-in estimator of s2 is
s@2=s(Z9 )2. Under the regularity conditions of Theorems 5.1 and 5.2 in Hall (1992) and
applying the two theorems inductively, we can show that (1) is indeed satisfied by all
common examples of R

n,j
(X, c).

The sampling weights p=p(c) are chosen to minimise D
r
( p) subject to the condition

g(Wn
i=1

p
i
X
i
)=c. We prove in the Appendix that p(h ) satisfies (2) and (5) quite generally,

so that all the assumptions hold. Our main conclusions are therefore available in wide
generality.
We describe below a number of examples commonly found in problems of hypothesis

testing and confidence limit construction. We assume that the sampling weights p are
chosen such that (5) holds. As before, we denote by P* and P†

c
the conditional probabilities

given X under uniform and weighted bootstrap sampling respectively. Similarly, statistical
functions superscripted by 1 and † are computed based on uniform and weighted bootstrap
samples respectively.
Define p

i
(m
Z
, x) and q

i
(m
Z
, x) to be polynomials in x pertinent to Edgeworth expansions

of the distributions of T=n1/2(h@−h )/s@ and S=n1/2(h@−h )/s:

pr (T∏x)=W(x)+w(x){n−1/2q
1
(m
Z
, x)+n−1q

2
(m
Z
, x)+ . . .}, (6)

pr (S∏x)=W(x)+w(x){n−1/2p
1
(m
Z
, x)+n−1p

2
(m
Z
, x)+ . . .}. (7)

For details of the polynomials p
i
and q

i
, see Hall (1992, Ch. 2). It follows from Lemma A1

in the Appendix that

pr[W(T )+w(T ){n−1/2r
1
(Z9 , T )+O

p
(n−1 )}∏x]

=x−w(z
x
)[n−1/2{r

1
(m
Z
, z
x
)−q
1
(m
Z
, z
x
)}+O(n−1 )], (8)

uniformly over xµ[e, 1−e] for all eµ(0, D].

3·2. Percentile method

Efron’s (1979) percentile method takes

R
n
(X, c)=P*(h@*>c)

as the root for constructing a bootstrap confidence interval {c : R
n
(X, c)�1−a}. We can

easily show by (7) that

R
n
(X, h )=W(T )−w(T ){n−1/2p

1
(Z9 , T )−n−1p

2
(Z9 , T )+ . . .}.
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It follows from (8) and Proposition 2 that R
n
(X, h ) is asymptotically Un(0, 1) to

O(n−1/2 ) and the weighted prepivoted R
n,m

(X, h ) is asymptotically Un(0, 1) to
O(n−(2m+1)/2 ).
A different version of the percentile method sets R

n
(X, c)=P*(h@*−h@∏h@−c), so that

R
n
(X, h )=W(T )+w(T ){n−1/2p

1
(Z9 , T )+n−1p

2
(Z9 , T )+ . . .},

and the above conclusion still holds.

3·3 Inverse testing method

DiCiccio & Romano’s (1990) nonparametric inverse testing method and a version of
Carpenter’s (1999) test inversion confidence interval both take R

n
(X, c)=g(X9 )=h@ and

obtain the root by one iteration of weighted prepivoting, yielding

R
n,1

(X, c)=P†
c
(h@ †∏h@ ).

Note that

R
n,1

(X, c)=P†
c
{n1/2(h@ †−c)/s@

c
∏n1/2(h@−c)/s@

c
},

where s@2
c
denotes the asymptotic variance of n1/2h@ † conditional on X. Substituting

W

i
p
i
(h )z
i
for m

Z
and putting x=n1/2(h@−h )/s@

h
in (7), we obtain an expansion for R

n,1
(X, h ).

It then follows from (2) and (5) that

R
n,1

(X, h )=W(T )+w(T )[n−1/2{p
1
(Z9 , T )−T 2D(Z9 , s−1 )}+O

p
(n−1 )].

We show in the Appendix that

p
1
(z, t)−q

1
(z, t)=t2D(z, s−1 ) (9)

and so R
n,1

(X, h ) is asymptotically Un(0, 1) to O(n−1 ) by (8). Proposition 2 then implies
that R

n,m+1
(X, h ) is asymptotically Un(0, 1) to O(n−(m+1) ).

3·4. Percentile-t method

Efron (1981) modifies the percentile method by studentising h@ . The resulting percentile-t
method chooses the root R

n
(X, c) to be

R
n
(X, c)=P*{n1/2(h@*−h@ )/s@*∏n1/2(h@−c)/s@},

so that R
n
(X, h ) admits the expansion

W(T )+w(T ){n−1/2q
1
(Z9 , T )+n−1q

2
(Z9 , T )+ . . .}

by (6). Applying Proposition 2 and (8), we have that R
n,m

(X, h ) is asymptotically Un(0, 1)
to O(n−(m+1) ).

3·5. Studentised test inversion bootstrap method

Carpenter (1999) generalises Efron’s (1981) percentile-t method by inverse testing.
Application of this method to a nonparametric setting amounts to prepivoting the
root R

n
(X, h )=W(T ) by weighted bootstrapping once. It follows immediately from

Proposition 2 that R
n,m

(X, h ) is asymptotically Un(0, 1) to O(n−(2m+1)/2 ). In particular,
R
n,1

(X, h ) is Un(0, 1) up to O(n−3/2 ), which strengthens the result of Carpenter (1999)
who obtains an order of O(n−1 ) for the error.
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4. M-

LetX= (X1 , . . . , Xn ) denote an independent and identically distributed random sample.
Consider a score functionY=(Y1 , . . . ,Yk)∞. The parameter of interest is h=g{g(F )},where
g is a smooth function and g(F ) is the unique k-vector satisfying EY{X1 , g(F )}=0. The
M-estimator of h is defined as h@=g(g@ ), where g@ is the unique solution to

∑
n

i=1
Y(X
i
, g@ )=0.

Under smoothness assumptions onY, we may define, for each i and each jµRk, a d-vector
z
i
(X, j) consisting of components of the form

a
v

u=1

∂m
u
Y
l
u

(X
i
, j)

∂j
j
u1

. . . ∂j
j
umu

,

for l
u
=1, . . . , k, m

u
=0, 1, . . . , M, v=1, 2, . . . , N, and for some sufficiently large positive

integers M and N. The asymptotic variance s2, as seen from the general formula (A7),
depends on the expectations of the above components for m

u
=0, 1 and v=1, 2, whence

it can be regarded as a function of m
Z
: s2=s(m

Z
)2. If we assume Lahiri’s (1992a) regularity

conditions, (1) holds for a variety of choices of R
n,j

(X, c).
Note that the sampling weights p=p(c) should be chosen in this context to minimise

D
r
( p) subject to the conditions g(j)=c and Wn

i=1
p
i
Y(X
i
, j)=0, for some k-vector j.

We prove in the Appendix that p(h ) satisfies (2) and (5). Weighted sampling from Z
using weights p(c) amounts to selecting X

i
from X with probability p

i
(c).

If we argue as in Bhattacharya & Ghosh (1978), T=n1/2 (h@−h )/s@ and S=n1/2 (h@−h )/s
are essentially smooth functions of means of independent and identically distributed terms
and admit Edgeworth expansions of the types (6) and (7). Bootstrap versions of these
expansions follow from the rigorous proof presented in Lahiri (1992a). Results specific to
bootstrap applications discussed in §§ 3·2–3·5 also hold in the context of M-estimation.

5. L 

Consider a linear regression set-up, where X= ((x1 , Y1 ), . . . , (xn , Yn )), Y
i
is the ith

observed response and x
i
is a k-vector of covariates corresponding to Y

i
. It is assumed

that

Y
i
=x∞
i
g(F )+e

i
(i=1, . . . , n),

where the e
i
are independent and identically distributed random errors independent of the

x
i
and g(F ) is a k-variate regression parameter.
Let h=g{g(F )} be a real parameter of interest, for some smooth function g. Estimation
of g(F ) typically amounts to solving the k equations

∑
n

i=1
x
i
y(Y
i
−x∞
i
g@ )=0

for g@ , for some smooth function y satisfying Ey(e1 )=0. Then h is estimated by h@=g(g@ ).
There exist two major bootstrap strategies for estimating the sampling distribution of

h@ or its studentised version. The first strategy, known as the paired bootstrap, treats the
(x
i
, Y
i
) as independent and identically distributed pairs, rendering the problem a special
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case of M-estimation with score function

Y(x
i
, Y
i
, j)=x

i
y(Y
i
−x∞
i
j).

Results of § 4 then carry over immediately.
The second strategy, known as the residual bootstrap and first introduced by Efron

(1979), assumes fixed covariates x
i
and requires more detailed discussion in our context

of weighted prepivoting. Assuming smoothness of y, denote by y(m) the mth derivative of
y. Define, for each jµRk, z

i
(X, j) to be a d-vector consisting of components of the form

a
v

u=1
y(m
u
)(y
i
−x∞
i
j) (m

u
=0, 1, . . . , M, v=1, . . . , N),

for some sufficiently large positive integers M and N. Again we have from (A7) that s2
depends on expectations of the above components for m

u
=0, 1 and v=1, 2 and can be

treated in general as s2=s(m
Z
)2. Weighted sampling from Z amounts to drawing a

weighted bootstrap sample of residuals (e†
1
, . . . , e†

n
) from (y

1
−x∞
1
j, . . . , y

n
−x∞
n
j) for some

hypothesised or pilot value j of the regression parameter. The corresponding weighted
bootstrap sample X†= ((x

1
, Y †
1
). . . . , (x

n
, Y †
n
)) is reconstructed by setting

Y †
i
=x∞
i
j+e†

i
(i=1, . . . , n).

The bootstrap version of h@ is given by h@ †=g(g@ † ), where g@ † solves the equations

∑
n

i=1
x
i
y(Y †
i
−x∞
i
g@ † )=0.

Assume that the x
i
are independent and identically distributed with sufficiently many finite

moments. Then, modifying Lahiri’s (1992b) regularity condition on y and the distribution
of e
i
by strengthening the smoothness assumption, we can prove (1) for many variants of

R
n,j

(X, h ).
As inM-estimation, the sampling weights p=p(c) are found by minimising D

r
( p) subject

to the conditions g(j)=c and Wn
i=1

p
i
x
i
y(Y
i
−x∞
i
j)=0, for some k-vector j; see the

Appendix for a proof of (2) and (5) for such sampling weights.
Hall (1992, § 5.4) outlines the key steps for proving the Edgeworth expansions (6) and

(7) for T and S, where h is specialised to the slope parameter in a simple linear regression
set-up and y(x)=x. The proof can readily be adapted, following Lahiri’s (1992b) more
general approach, to yield similar expansions in our general setting. Note in particular
that cumulants relevant to the expansions are calculated for weighted sums of independent
random variables, which does not however affect the form of the expanions under the
aforementioned regularity conditions. Our discussion in §§ 3·2–3·5 thus carries over to the
present context.

6. A 

As noted above, Efron’s (1979) percentile method takes

R
n
(X, c)=P*(h@*>c)

as the root for constructing a bootstrap confidence interval of nominal level a. The
one-sided interval is I*= (−2, h@*

a
), where h@*

a
is the a quantile of the distribution of h@

under the drawing of bootstrap samples from X. The coverage error of I* is of order
O(n−1/2 ).
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For this root,

GC
0
(x)=P*{P**(h@**>h@ )∏x},

where h@** is the version of h@ calculated on a second-level uniform bootstrap sample X**
drawn from a first-level uniform bootstrap sample X*, and P** refers to the probability,
given X*, under the drawing of X**. Construction of the confidence interval from the
prepivoted root R

n,1
yields an upper nominal a level confidence limit which is the solution,

in c, of

R
n,1

(X, c)=GC
0
{R
n,0

(X, c)}=1−a.

This is easily seen to be the solution of

P*(h@*∏c)=aA ,

where aA is the a quantile of P**(h@**∏h@ ), under the drawing of bootstrap samples X*
from X.
The iterated interval is I**= (−2, h@*

aA
). It is seen that the prepivoting amounts to

making an additive adjustment to the nominal coverage of the confidence interval. The
coverage error of I** is of order O(n−1 ).
Denote by h@ †* the version of h@ calculated on a second-level uniform bootstrap sample

X†* drawn from a first-level weighted bootstrap sample X†. Let P†* be the probability,
given X†, under the drawing of X†*. Now

GB
0
(x |c)=P†

c
{P†*(h@ †*>c)∏x},

so construction of the confidence interval from the weighted prepivoted root R
n,1
yields

an upper nominal a-level confidence limit which is the solution, L †*(X), in c, of

R
n,1

(X, c)=GB
0
{R
n,0

(X, c) |c}=1−a.

The weighted bootstrap iterated interval is I†*= (−2, L †*(X)). The coverage error of
I†* is of order O(n−3/2 ).
An alternative to Efron’s percentile method interval is the noniterated, weighted boot-

strap interval I† based on the root R
n,1

(X, c)=P†
c
(h@ †∏h@ ) described in §3·3. We may pre-

pivot R
n,1

(X, c) by either uniform or weighted bootstrap sampling. Denote by X*† and
X†† the generic second-level weighted bootstrap samples drawn from a first-level uniform
bootstrap sample X* and a first-level weighted bootstrap sample X† respectively, and by
P*†
c
and P††

c
the probability measures induced by the drawing of the second-level samples

conditional on their respective first-level bootstrap samples. Similarly, let h@*† and h@ †† be
the versions of h@ calculated on X*† and X†† respectively.
Prepivoting R

n,1
(X, c) by uniform bootstrap sampling yields an interval I*†=

(−2, L *†(X)), where the endpoint L *†(X) solves

GC
1
[R
n,1

{X, L *†(X)}]=P*[P*†
h@

(h@*†∏h@*)∏R
n,1

{X, L *†(X)}]=1−a.

On the other hand, prepivoting R
n,1

(X, c) by weighted bootstrap sampling yields an
interval I††= (−2, L ††(X)), where L ††(X) is the solution, in c, to the equation

GB
1
{R
n,1

(X, c) |c}=P†
c
{P††
c

(h@ ††∏h@ † )∏R
n,1

(X, c)}=1−a.

The theoretical coverage errors of I†, I*† and I†† are of orders O(n−1 ), O(n−3/2 ) and
O(n−2 ) respectively.
Figures 1–3 present graphically the results of a small numerical study, in which the
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practical effect on coverage accuracy of weighted bootstrap prepivoting, as opposed to
conventional uniform bootstrap prepivoting, was studied for two cases, in each case for
a standard Gaussian population. In the first case, Figs 1 and 2, the parameter of interest
h¬1 is the population variance, defined within the smooth function model of § 3, so that
the estimator h@ is the usual sample variance. In the second, the estimator h@ is the
M-estimator of scale described by Hampel et al. (1986, p. 107). In the notation of § 4,
h¬1 is the solution of EY(X1 , h )=0, whereY(x, j)=sgn{ |x/j |−W−1 (F)}, so that h@ is the
median of the absolute values of the observations X1 , . . . , Xn , multiplied by the factor
1/W−1 (F). The general theory described in § 4 holds for a slightly smoothed version of the
score function Y, and can readily be extended to the present example by a limiting
argument.
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Fig. 1. Coverage accuracies of I†, I*† and I††, normal variance: (a) noncoverage of lower 95% confidence
limit, (b) standard deviation of lower confidence limit, (c) noncoverage of upper 95% confidence limit, and

(d) standard deviation of upper confidence limit.

In each case, for a range of sample sizes n, a series of 2000 samples were generated from
the parent population N(0, 1), and from each of these various intervals were constructed.
Figure 1 compares the coverage accuracies of the intervalsI†,I*† andI†† in the variance
case. Figures 1(a), (b) refer to the case a=0·05, corresponding to construction of a lower
confidence limit, while Figs 1(c), (d) refer to the case a=0·95, corresponding to an upper
confidence limit. In Figs 1(a), (c) ‘lower noncoverage’ and ‘upper noncoverage’ refer to the
estimated probabilities that h lies below and above the interval respectively, each nominally
0·05. Figure 2 provides the corresponding comparison betweenI* and its iterated versions
I** and I†*. Figure 3 presents the same comparison as Fig. 1, but for the M-estimator
of scale example. Also plotted are the standard deviations, over the 2000 replications, of
the interval endpoints.
The results of the study show that the effectiveness of weighted bootstrap prepivoting

depends both on the choice of initial pivot and on whether an upper or lower confidence
limit is being constructed. Figure 1(a) shows that, for lower confidence limits, weighted
prepivoting is, at least for small sample sizes, effective compared to conventional bootstrap
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Fig. 2. Coverage accuracies of I*, I** and I†*, normal variance: (a) noncoverage of lower 95% confidence
limit, (b) standard deviation of lower confidence limit, (c) noncoverage of upper 95% confidence limit, and

(d) standard deviation of upper confidence limit.
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Fig. 3. Coverage accuracies of I†, I*† and I††, M-estimator of scale: (a) noncoverage of lower 95%
confidence limit, (b) standard deviation of lower confidence limit, (c) noncoverage of upper 95% confidence

limit, and (d) standard deviation of upper confidence limit.

prepivoting. We note also that weighted prepivoting produces more stable interval end-
points than does conventional prepivoting in this context. In the case of upper confidence
limits, weighted prepivoting is less effective in terms of coverage error, but yields dramatic
improvements over conventional prepivoting in terms of interval stability. This same broad
picture is repeated in Fig. 2, and in other examples which we have studied but which are
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not reported here. From Fig. 3 we see that the weighted bootstrap interval I†† yields
improvements in theM-estimator example over the conventional iterated interval I*†, in
terms of both upper and lower noncoverage. Again, relative stability of the weighted
bootstrap interval is noted. It is worth remarking also that in this example the relatively
good coverage accuracy of the noniterated interval I†, which contrasts with what is seen
in the variance example of Figs 1 and 2, is achieved at the expense of high variability.
We conclude this section with a brief discussion of computational issues relating to

weighted bootstrap prepivoting, and with practical recommendations on its implemen-
tation and potential usefulness. Our primary remark is that the numerical requirements
of weighted prepivoting are readily packaged in such a way as to provide algorithms
which do not add significantly to the computational demands of conventional prepivoting
algorithms.
Note that, in the context of the study reported above, prepivoting by weighted boot-

strapping will generally require a search, over c, for the confidence limit. An optimal set
of sampling weights has to be determined specifically for each trial value of c. These are,
however, easily obtained using standard numerical techniques. In our empirical study,
sampling weights were obtained using simple routines for sequential programming avail-
able in both the  and  numerical packages. The search over values of c required
by the weighted bootstrap schemes is efficiently implemented by the Robbins–Monro
stochastic search algorithm, as detailed by Garthwaite & Buckland (1992), and
recommended also by Carpenter (1999).
In the problem of null distribution estimation, no search algorithm such as the

Robbins–Monro algorithm is necessary, as a particular single value c is specified.
We have investigated different approaches to choice of sampling weights with weighted

bootstrap iteration, and recommend use of Owen’s (1988) empirical likelihood weights.
This approach was used in the numerical study, and seems both effective and reliable.
We contrast these requirements of weighted bootstrapping with construction of the

conventional prepivoted percentile intervalI**, described above, which requires no search
over values of c and operates under a fixed set of sampling weights.
Detailed comparison of the computational demands of weighted and conventional boot-

strap iteration depends on the problem being studied, and on the particular implemen-
tation of the optimisation and stochastic search components of the weighted bootstrap
prepivoting. However, expressed in general terms for the current problem of confidence
set construction, conventional iteration will generally require a Monte Carlo simulation
involving the drawing of, say, C second-level bootstrap samples from each of B first-level
bootstrap samples drawn from X, a total of B(C+1) bootstrap samples. By contrast, for
weighted bootstrap iteration, for each of t values of c used in the Robbins–Monro algor-
ithm, it is necessary only to draw B+1 first-level weighted bootstrap samples, with C
second-level bootstrap samples being drawn from the (B+1)st of these, giving a total of
t(B+C+1) bootstrap samples. In the study reported above, we set t=B=C=1000,
though it is our belief that it would be reasonable to reduce this value of t somewhat.
Specific timing comparisons between weighted and conventional prepivoting algorithms

depend, among other factors, on the initial choice of root, the sample size n, the inference
problem and the particular numerical implementation of the weighted bootstrap approach.
In broad terms, however, it is our experience that, with the implementation as described
above, weighted bootstrap prepivoting is in typical problems quite comparable with con-
ventional prepivoting in terms of computational time. For the context described in Figs 1
and 2, for example, for sample size n=30, computational loads in construction of the
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intervals I†† and I*† were observed to be very similar: those for I** are only marginally
less than for I†*. For smaller sample sizes n, the numerical optimisations required by
weighted prepivoting have a larger impact on computational timings. For n=10, for
example, computational loads are about 20% less forI*† than forI††, whileI** requires
only about 25% of the computation of the theoretically favoured I†*.
We conclude from our numerical investigations that, while the theoretical reductions

in the rate of convergence of the coverage error with sample size n obtained by weighted
prepivoting are not particularly apparent in typical practical settings, weighted prepivoting
can be easily implemented in such a way as to be computationally quite comparable to
conventional prepivoting algorithms, and it can yield levels of coverage error which are
quite acceptable compared to those obtained from conventional schemes, with improved
stability. Its use in place of conventional bootstrap iteration procedures is strongly justified,
on both theoretical and practical grounds.
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A

Proofs

Proof of Proposition 1. Let the polynomials q
i
be as defined in (6). Our proof uses the

following result.

L A1. Consider

R=W(T )+w(T ){n−1/2r
1
(Z9 , T )+n−1r

2
(Z9 , T )+ . . .},

where the r
i
(z, t) are polynomials in t with coeYcients depending smoothly on z. T hen we have

pr (R∏x)=x−w(z
x
)[n−1/2{r

1
(m
Z
, z
x
)−s
1
(m
Z
, z
x
)}+n−1{r

2
(m
Z
, z
x
)−s
2
(m
Z
, z
x
)}+ . . .]

(A1)

uniformly over xµ[e, 1−e] for all eµ(0, D], where each s
i+1

(m
Z
, z
x
) is a polynomial in z

x
depending

on the r
k

only for k∏ i, for i=1, 2, . . . . In particular, we have

s
1
(m
Z
, z
x
)=q
1
(m
Z
, z
x
),

s
2
(m
Z
, z
x
)=q
2
(m
Z
, z
x
)+r
1
(m
Z
, z
x
)[r∞
1
(m
Z
, z
x
)−q∞
1
(m
Z
, z
x
)−z
x
{r
1
(m
Z
, z
x
)−q
1
(m
Z
, z
x
)}]

−s(m
Z
)−1z
x
D{m
Z
, r
1
( . , z
x
)},

where r∞
1
, q∞
1

denote the first derivatives with respect to the second arguments of r1 , q1 respectively.

Proof of L emma A1. For xµ[e, 1−e], we can show by standard algebraic inversion that R∏x
if and only if TB ¬T+n−1/2w1 (Z9 , zx )+n−1w2 (Z9 , zx )+ . . .∏z

x
for some smooth functions w

i
, where

in particular w1 (z, t)=r1 (z, t), w2 (z, t)=r2 (z, t)−r1 (z, t)r∞1 (z, t)+tr
1
(z, t)2/2, and so on. Taylor-

expanding TB in the order of successive powers of n−1/2 and hence obtaining asymptotic expansions
for the cumulants of TB , we derive the Edgeworth expansion for the distribution function of TB and
(A1) follows immediately using arguments similar to the proof of Proposition 3.1 in Hall (1992).

%

Lemma A1 enables us to define recursively functions e1=s1 , e2=s2 , . . . such that

E=W(T )+w(T ){n−1/2e
1
(Z9 , T )+n−1e

2
(Z9 , T )+ . . .}
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is exactly Un(0, 1). In particular, e1=q1 and

e
2
(m
Z
, z
x
)=q
2
(m
Z
, z
x
)−s(m

Z
)−1z
x
D{m
Z
, q
1
( . , z
x
)},

and so on.
To prove Proposition 1, we first apply Lemma A1 to R

n,j
(X, h ) and extend its distribution

expansion (3) to include an explicit n−(j
0
+1)/2 term, in terms of the difference between R

n,j
(X, h )

and the exactly uniform E. A weighted bootstrap version of this extended distribution expansion
will be employed to obtain the difference between R

n,j+1
(X, h ) and E. This difference can then be

used to update the distribution expansion of R
n,j

(X, h ) to that of R
n,j+1

(X, h ), up to and including
the n−(j

0
+1)/2 term, which will complete the proof.

To be specific, letting R=R
n,j

(X, h ) in Lemma A1 and comparing (3) with (A1), we see that
necessarily r

i
(m
Z
, z
x
)=e
i
(m
Z
, z
x
) for i< j0 , and r

j
0

(m
Z
, z
x
)=e
j
0

(m
Z
, z
x
)+d(m

Z
, z
x
). For zµRd and

tµR, define dA (z, t)=r
j
0
+1

(z, t)−e
j
0
+1

(z, t). Then we have

R
n,j

(X, h )=W(T )+w(T )[n−1/2{e
1
(Z9 , T )+D

n
(Z9 , T )}+n−1e

2
(Z9 , T )

+n−3/2e
3
(Z9 , T )+ . . .+O

p
(n−(j
0
+2)/2 )], (A2)

where D
n
(z, t)=n−(j

0
−1)/2d(z, t)+n−j

0
/2dA (z, t). Noting that e

1
=q
1
and applying Lemma A1 with r1

replaced by q1+Dn and r
i
by e
i
for i>1, we have

P{R
n,j

(X, h )∏x}=x−w(z
x
){n−j

0
/2d(m

Z
, z
x
)+n−(j

0
+1)/2b(m

Z
, z
x
)+O(n−(j

0
+2)/2 )} (A3)

uniformly over xµ[e, 1−e] for all eµ(0, D], where

b(z, t)=dA (z, t)+s(z)−1tD{z, d( . , t)}−d∞(z, t)−td(z, t)}{q
1
(z, t)+d

j
0
1
d(z, t)}

and d
kl
denotes the Kronecker delta function. The Edgeworth expansion for the weighted bootstrap

distribution of R
n,j

(X, h ) can be obtained by replacing m
Z
with W

i
p
i
(h )z
i
{X, g(F )} in the expansion

(A3) and applying (2) to the coefficients of polynomials d and b, which yields

GB
j
(x |h )=x−w(z

x
) (n−j

0
/2d(Z9 , zx )+n−(j

0
+1)/2[H{m

Z
, T , d( . , z

x
)}+b(m

Z
, z
x
)])+O

p
(n−(j
0
+2)/2 )
(A4)

uniformly over xµ[e, 1−e] for all eµ(0, D]. Without loss of generality we restrict consideration
to samples X for which R

n,j
(X, h )µ[e, 1−e]. Substituting (A2) for x in (A4), we obtain an asymp-

totic expansion for the prepivoted function R
n,j+1

(X, h )=GB
j
{R
n,j

(X, h ) |h}:

R
n,j+1

(X, h )=E−n−(j
0
+1)/2w(T )[H{m

Z
, T , d( . , T )}+s−1TD{m

Z
, d( . , T )}]+O

p
(n−(j
0
+2)/2 ).

(A5)

Note that (A5) is similar to (A2) with d and dA set to 0 and−H{m
Z
, T , d( . , T )}−s−1T D{m

Z
, d( . , T )}

respectively. The expansion (4) then follows from (A3), which completes the proof of
Proposition 1. %

Proof of (5) for D
r
-based sampling weights.We consider a general set-up encompassing the three

settings discussed in §§ 3–5. Let X= (X1 , . . . , Xn ) be independent random vectors having a joint
distribution F. The parameter of interest is h=g{g(F )} for some smooth function g, where g(F ) is
a k-vector satisfying Ek

i
{X
i
, g(F )}=0, for i=1, . . . , n, and each k

i
is smooth in its second argument,

with values in Rk. Define an estimator g@ of g(F ) implicitly by the equations Wn
i=1
k
i
(X
i
, g@ )=0. Set

h@=g(g@ ). Hu & Kalbfleisch (2000) propose an estimating function bootstrap procedure for this
general set-up by resampling the summands k

i
(X
i
, g@ ). Hu & Zidek (1995) specialise this method

to a linear model set-up.
For each i=1, . . . , n, let z

i
{X, g(F )} be a d-vector which depends on X only through X

i
. The

sampling weights p(c) are chosen to minimise D
r
(p) subject to constraints that

∑
n

i=1
p
i
k
i
(X
i
, j)=0, g(j)=c, (A6)

for some k-vector j.
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This set-up covers the three cases considered in §§ 3–5: for the smooth function model of § 3,
the X

i
are independent and identically distributed random k-vectors, k

i
(X
i
, j)=X

i
−j and the

constraints (A6) reduce to g(W
i
p
i
X
i
)=c; for the M-estimation scenario of § 4, the X

i
are indepen-

dent and identically distributed random vectors and k
i
(X
i
, j)=Y(X

i
, j); and, for the linear

regression scenario of § 5, for the paired bootstrap the X
i
are independent and identically distrib-

uted, X
i
= (x
i
, Y
i
) and k

i
(x
i
, Y
i
, j)=x

i
y(Y
i
−x∞
i
j), whereas for the residual bootstrap the X

i
are

independent, X
i
=Y
i
and k

i
(Y
i
, j)=x

i
y(Y
i
−x∞
i
j).

It follows from the regularity conditions described in §§ 3–5 that

n−1 ∑
n

i=1
E
∂k
i

∂j∞
(X
i
, j) K
j=g(F)

=M+O(n−1 ),

n−1 ∑
n

i=1
E[k
i
{X
i
, g(F )}k

i
{X
i
, g(F )}∞]=V+O(n−1 ),

for some nonsingular k×k matrices M and V. Denote by Vg the gradient of g. Define

f
i
=Vg{g(F )}∞M−1k

i
{X
i
, g(F )}, f:=n−1 ∑

n

i=1
f
i
.

Then

Ef
i
=0, n−1 ∑

n

i=1
Ef2
i
=Vg{g(F )}∞M−1V (M∞)−1Vg{g(F )}+O(n−1 ).

Taylor expansion yields h@−h=−f:+O
p
(n−1 ). We may therefore set

s2=Vg{g(F )}∞M−1V (M∞)−1Vg{g(F )}. (A7)

It follows that, for any smooth function f on Rd,

D(m
Z
, f )=−n−1V f (m

Z
)∞ ∑
n

i=1
E[f
i
z
i
{X, g(F )}].

Using standard Lagrangian arguments, we can show that the optimal p satisfies

p
i
=qA∑j pr

j B1/(r−1) C1−lVg(j)∞ q∑
j

p
j
∂k
j

∂j∞
(X
j
, j)r−1 ki (Xi , j)D1/(r−1) (rN1),

exp C∑
j

p
j
log p
j
−lVg(j)∞ q∑

j
p
j
∂k
j

∂j∞
(X
j
, j)r−1 ki (Xi , j)D (r=1),

where l is the Lagrangian multiplier chosen such that g(j)=h and W
j
p
j
k
j
(X
j
, j)=0. In either

case, we see that l=O
p
(n−1/2 ), p

i
=n−1{1+O

p
(n−1/2 )} and

∑
j

p
j
∂k
j

∂j∞
(X
j
, j)=M+O

p
(n−1/2 ).

It follows by expanding each p
i
around n−1 that

p
i
(h )=n−1{1+n−1/2s−1T f

i
+O
p
(n−1 )}.

Expanding f [W
i
p
i
(h )z
i
{X, g(F )}] around f (Z9 ) yields

f C∑
i

p
i
(h )z
i
{X, g(F )}D− f (Z9 )=−n−1/2s−1TD(m

Z
, f )+O

p
(n−1 ),

which confirms the relationship (5). %

Proof of (9). Assume without loss of generality that g is defined on Rd. Theorem 2.2 of Hall
(1992) gives explicit expressions for p1 and q1 if we let A(Z9 )={g(Z9 )−g(m

Z
)}/s(m

Z
) and A(Z9 )=
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{g(Z9 )−g(m
Z
)}/s(Z9 ) respectively. With Hall’s notation and by straightforward differentiation, aij is

the (i, j )th entry of s−1(∂2g/∂z ∂z∞) (m
Z
) in the former case and that of

s−1(∂2g/∂z ∂z∞) (m
Z
)+Vg(m

Z
)Vs−1(m

Z
)∞+Vs−1(m

Z
)Vg(m

Z
)∞

in the latter case, and a
i
is the ith component of s−1Vg(m

Z
) in both cases. Using (2.32) and (2.33)

of Hall (1992) and noting that

s2=Vg(m
Z
)∞ var[z

1
{X, g(F )}]Vg(m

Z
),

we see that the values of A1 for p1 and q1 differ by −D(m
Z
, s−1 ), and those of A2 differ by

−6D(m
Z
, s−1 ). It then follows from (2.36) of Hall (1992) that

p
1
(m
Z
, t)−q

1
(m
Z
, t)=D(m

Z
, s−1 )+D(m

Z
, s−1 ) (t2−1)=t2D(m

Z
, s−1 ). %
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