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Abstract: For estimation of a d-variate mean vector θ based on a random sample

of size n drawn from a distribution of a location family, a generalized Stein esti-

mator Tn,S may be defined which shrinks the sample mean towards a proper linear

subspace L of R
d. In general, the conventional parametric bootstrap consistently

estimates the limit distribution of n
1/2(Tn,S −θ) when θ 6∈ L, but fails to be consis-

tent otherwise. We establish consistency of two modified forms of the parametric

bootstrap for any θ ∈ R
d, which are therefore useful for statistical inference about

θ. In the context of constructing confidence sets for θ, we show that the first ap-

proach, which is based on the m out of n bootstrap, yields coverage error of order

O(n−1/4) for all θ, provided that the bootstrap resample size m has an order deter-

mined by a minimax criterion. The second approach bootstraps from a distribution

with an adaptively estimated mean vector, and is shown to yield coverage error of

exponentially small order for θ ∈ L and of order O(n−1) for θ 6∈ L. Iterated versions

of the two approaches are also developed to give improved orders of coverage error.

A simulation study is reported to illustrate our asymptotic findings.

Key words and phrases: Confidence set, consistency, coverage error, iterated boot-

strap, m out of n parametric bootstrap, minimax, Stein estimator.

1. Introduction

Consider a location family {p(x − θ) : θ ∈ R
d} generated by a known, zero-

mean, density function p. Let X1, . . . , Xn be independent and identically dis-

tributed random d-vectors drawn from p(x − θ), for an unknown location pa-

rameter θ. In the special case where p is the standard d-variate normal density

and d ≥ 3, James and Stein (1961) constructed an estimator of θ by shrinking

X̄ =
∑n

i=1 Xi/n toward the origin and showed that it has a smaller risk, with

respect to quadratic loss, than X̄ . The technique of shrinking may be applied

more generally to shrink X̄ toward a proper linear subspace L of R
d to yield an

estimator Tn,S, termed the generalized Stein estimator, with similar efficiency

properties for a broad class of densities p. It can be shown that if θ 6∈ L, the root

n1/2(Tn,S − θ) is asymptotically normal, but that if θ ∈ L, the root converges to
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a non-normal distribution. The disparity between the two cases makes (asymp-

totic) inference about θ based on Tn,S rather difficult when, as is typically the

case in real applications, no information about whether θ ∈ L is available.

A conventional application of the parametric bootstrap in the present context

amounts to estimating the distribution of n1/2(Tn,S−θ) by that of n1/2(T ∗
n,S−X̄),

or of n1/2(T ∗
n,S − Tn,S), where T ∗

n,S is the generalized Stein estimator calculated

from a parametric bootstrap sample drawn from p(x−X̄), or from p(x−Tn,S), re-

spectively. When θ 6∈ L, the bootstrap distribution converges weakly, conditional

on X1, . . . , Xn, to the correct normal limit. However when θ ∈ L, the bootstrap

distribution converges weakly to a random measure and therefore fails to be con-

sistent. We suggest two modified parametric bootstrap approaches to alleviate

the problem of inconsistency, yielding asymptotically correct procedures for all

θ. The first approach, which is commonly known as the m out of n bootstrap,

differs from the conventional bootstrap in that parametric bootstrap samples of

size m are drawn, instead of samples of size n. The second approach, which we

term the adaptive parametric bootstrap, bootstraps from p(x− θ̂n) for an adap-

tively constructed estimate θ̂n of θ. We show that both approaches consistently

estimate the distribution of n1/2(Tn,S − θ) irrespective of the true value of θ, and

thus provide reliable methods for making inference about θ.

The idea of reducing a bootstrap resample size from n to m dates to Bre-

tagnolle (1983). That such a device can yield consistent estimators of sampling

distributions in some generality was established by Shao (1994), who considered

the properties of the m out of n bootstrap in a number of nonregular contexts.

Though the m out of n bootstrap is often effective in yielding consistency, typi-

cally there is some asymptotic loss of efficiency when it is used in circumstances

where a standard n out of n bootstrap is known to work successfully. Bickel,

Götze and van Zwet (1997) examine such efficiency loss, and describe various

devices which can reduce this. Beran (1997) discussed similar results to ours,

and both the adaptive and m out of n bootstrap, but not the iterated versions of

these procedures in the special case that L is the subspace of vectors with equal

components and p is standard d-variate normal, d ≥ 4.

Attention has previously been paid to the effectiveness of the m out of n

bootstrap in yielding consistency of a bootstrap distribution estimator. In this

paper we focus on the related, but more sophisticated, problem of constructing

confidence sets for θ based on the generalized Stein estimator. The motivation for

constructing a confidence set from the Stein estimator is straightforward. Though

a confidence set of exact coverage may be based on the distribution of the sample

mean X̄, a confidence set based on Tn,S may be expected to have substantially

reduced volume. An explicit example of how confidence sets of smaller volume
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may be constructed, using non-standard bootstrap procedures which maintain

high coverage accuracy, is given in Section 6.3. This same motivation underlies

previous work on the confidence set problem: see, for example Casella and Hwang

(1983, 1986), Robert and Casella (1990), and references therein. The present

paper is the first to give a detailed analysis of the use of bootstrap schemes

in the construction of confidence sets of low coverage error based on the Stein

estimator.

Specifically, we derive the coverage error entailed by the m out of n paramet-

ric bootstrap method, and show that setting m ∝ n1/2 yields an error of order

O(n−1/4) that is minimax for the two cases θ ∈ L and θ 6∈ L. In other words, the

m out of n bootstrap procedure, with m chosen as suggested above, is consistent

with a guaranteed coverage error of order O(n−1/4). On the other hand, we ob-

tain uniformly more accurate coverages using the adaptive parametric bootstrap

approach that have errors of order O(e−An1−2r
) and O(n−1) for θ ∈ L and θ 6∈ L,

respectively, for some A > 0 and r ∈ (0, 1/2). We note that Beran (1995) has

examined the properties of Stein confidence sets under a different asymptotic

regime than considered in the current paper.

The iterated bootstrap is known to be effective in reducing the error of the

conventional n out of n bootstrap by an order of magnitude, asymptotically in

regular situations: see, for example, Hall and Martin (1988). It is of interest

to investigate the effects of iterating our modified parametric bootstrap schemes

in the current context of Stein estimation. We find that iterating the m out

of n parametric bootstrap in an intuitive manner does not work, in the sense

that it fails to make any asymptotic improvement. We develop instead a special

scheme for iterating the m out of n parametric bootstrap that successfully re-

duces the minimax coverage error to an order of O(n−1/3), and thus significantly

improves upon the non-iterated method. Iteration of the adaptive parametric

bootstrap approach can be done in a natural way, and reduces the coverage error

to O(n−3/2) when θ 6∈ L.

Our contribution is twofold. First, we address an important inference prob-

lem where consistency of the conventional bootstrap depends on the parameter

value, and suggest two modified bootstrap approaches which are consistent for

all θ. The orders of their respective coverage errors are also established. The

implementation of the m out of n bootstrap is specifically constructed to balance

the error in the two regimes where θ ∈ L and θ 6∈ L. Second, we show that

application of bootstrap iteration to the two approaches improves their cover-

age accuracy. In the case of the m out of n bootstrap, where intuitive iteration

does not work satisfactorily, we establish a novel double bootstrap algorithm for

reducing the order of error.
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Applications of the m out of n nonparametric bootstrap and its iterated

versions have been explored by Lee (1999) and Cheung, Lee and Young (2005)

for regular and nonregular situations, respectively. In those applications, the

objective was reduction of the coverage error of bootstrap confidence intervals

when the conventional n out of n bootstrap is valid and when an appropriate

m out of n bootstrap is necessary, respectively. The perspective adopted in this

paper is somewhat different. The choices of m and other resample sizes used in

the iterative scheme are defined specifically to achieve minimaxity of the orders

of coverage error over two scenarios: θ ∈ L and θ 6∈ L. Such a treatment is

apparently new to the bootstrap literature.

Section 2 revisits Stein estimation and the relevant asymptotic theory in its

generalized form. Sections 3 and 4 investigate, respectively, the m out of n and

adaptive parametric bootstrap methods for building confidence sets for θ based

on a general root, and establish their asymptotic coverages. Both non-iterated

and iterated versions of the bootstrap methods are treated there. Section 5

presents theorems corresponding to those in Sections 3 and 4, but for circum-

stances where the true θ shrinks toward L. These theorems show that the rate

at which θ approaches L is crucial to the effectiveness of the m out of n and

adaptive bootstrap methods, and their iterated versions. Section 6 presents a

simulation study which illustrates our theoretical findings. Technical proofs can

be found in the Appendix.

2. Stein Estimation Revisited

Recall that X1, . . . , Xn constitute a random sample from p(x − θ). For a

fixed proper linear subspace L of R
d, define J to be the projection matrix onto

the orthogonal complement of L in R
d. Denote by ‖ · ‖ the Euclidean norm in

R
d. The generalized Stein estimator of θ is

Tn,S = X̄ − n−1c‖JX̄‖−2JX̄, for any fixed c ≥ 0.

Morris (1983) provides an empirical Bayes motivation for Tn,S. In the special

case where p is standard d-variate normal, 0 ≤ q ≤ d− 3 and c fixed at d− q− 2,

Tn,S has, under normed quadratic loss and for any θ ∈ R
d, risk

n E‖Tn,S − θ‖2 = d − (d − q − 2)2E[V −1] < d,

where V has a noncentral chi-squared distribution with d− q degrees of freedom

and noncentrality parameter n‖Jθ‖2/2: see Morris (1983). This remarkable

result implies that Tn,S dominates X̄ for estimation of θ, uniformly in θ ∈ R
d.

Brandwein and Strawderman (1990) give an exposition of Stein estimation when
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p is spherically symmetric about the origin, and argue that similar savings in risk

are possible in this more general context.

Assume that X1 has finite covariance matrix Σ. Denote by Z a generic

Nd(0,Σ) random vector. Define W = Z − c‖JZ‖−2JZ. Write Zn = n1/2(X̄ − θ)

and Wn = Zn − c‖JZn‖
−2JZn. Then

n
1

2 (Tn,S − θ) = Zn − c‖JZn + n
1

2 Jθ‖−2
(

JZn + n
1

2 Jθ
)

. (1)

Note that Jθ = 0 if and only if θ ∈ L. We consider two cases.

1. If θ 6∈ L, then it follows from (1) that

n
1

2 (Tn,S − θ) = Zn − n− 1

2 c‖Jθ‖−2Jθ + Op(n
−1), (2)

so that n1/2(Tn,S − θ) is asymptotically Nd(0,Σ).

2. If θ ∈ L, then from (1) again, n1/2(Tn,S − θ) = Wn converges weakly to W .

We therefore see that when θ ∈ L, the asymptotic behaviour of n1/2(Tn,S − θ)

differs markedly from its behaviour when θ 6∈ L. This makes statistical inference

about θ based on the generalized Stein estimator, which typically requires estima-

tion of the distribution of n1/2(Tn,S − θ), particularly tricky in absent knowledge

about whether θ ∈ L or not.

In typical inference problems, confidence sets for θ are derived from a root

of the form f(n1/2(Tn,S − θ)), for some smooth real-valued function f defined on

R
d. The function f usually plays the role of a data depth, but will be defined

more generally in our subsequent discussion. Other common examples of f in-

clude coordinate projections, linear transformations and smooth loss functions.

The general case of a vector-valued f can be treated using essentially the same

arguments as those that follow, but the algebra involved becomes exceedingly

complicated and does not allow the same notational clarity as is possible for a

real-valued f .

Define

Gn(x) = P {f(Zn) ≤ x} , Hn(x) = P {f(Wn) ≤ x} ,

G(x) = P {f(Z) ≤ x} , H(x) = P {f(W ) ≤ x} .

Then it is immediate that f(n1/2(Tn,S − θ)) converges in distribution to a limit

with distribution function G or H according as θ 6∈ L or θ ∈ L, respectively.

Assume henceforth the following regularity conditions:

(C1)
∫

‖x‖4p(x) dx < ∞;

(C2) f is twice continuously differentiable almost everywhere in R
d.
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Conditions (C1) and (C2) enable us to establish Edgeworth-type expansions for

Gn and Hn as

Gn(x) = G(x) + n− 1

2 g(x) + O(n−1), (3)

Hn(x) = H(x) + n− 1

2 h(x) + O(n−1), (4)

for some smooth functions g and h on R.

3. First Approach: m out of n Parametric Bootstrap

We describe in this section the m out of n parametric bootstrap procedure for

constructing confidence sets for θ based on the root f(n1/2(Tn,S−θ)). Asymptotic

expansions for the coverage error of the non-iterated m out of n parametric

bootstrap confidence set are stated in Theorem 1, and those for the iterated

versions in Theorems 2 and 3.

3.1. Non-iterated version

Application of the parametric bootstrap in the present context amounts to

resampling from p(x − X̄) or p(x − Tn,S). For a unified treatment, we let

Yδ = X̄ − δn−1c‖JX̄‖−2JX̄

be the estimated mean, where δ = 0 or 1, so that Y0 = X̄ and Y1 = Tn,S . Let

X∗
1 , . . . , X∗

m be a random parametric bootstrap sample drawn from p(x−Yδ), and

X̄∗
m be the corresponding sample mean. Denote by T ∗

m,S the generalized Stein

estimator calculated from the bootstrap sample, so that

T ∗
m,S = X̄∗

m − m−1c‖JX̄∗
m‖−2JX̄∗

m.

Let x̂m,β be the βth quantile of f(m1/2(T ∗
m,S − Yδ)) conditional on X1, . . . , Xn.

A nominal level α confidence set for θ is

Sm(α) =
{

ϑ ∈ R
d : f(n

1

2 (Tn,S − ϑ)) ≤ x̂m,α

}

.

Define, for any z, ν ∈ R
d with J(z+ν) 6= 0, Ψ(z, ν) = f(z−c‖J(z+ν)‖−2J(z +ν))

and Ψ2(z, ν) = ∂Ψ(z, ν)/∂ν. Denote the gradient of f by ∇f . Define, for x ∈ R,

D(x) = H ′(x)E [Ψ2(Z, 0) | Ψ(Z, 0) = x], D̃(x) = G′(x)E [∇f(Z) | f(Z) = x], and

rδ(x) = E
[

Z − δc‖JZ‖−2JZ | Ψ(Z, 0) = x
]

. Note that Ψ(Z, 0) has the same

distribution as f(W ). The following theorem describes the asymptotic coverage

error of Sm(α) for any θ ∈ R
d. The proof is given in the Appendix.

Theorem 1. Assume (C1) and (C2), m = o(n) and m → ∞. Let α ∈ (0, 1) be

fixed. Then
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(i) if Jθ = 0,

P {θ ∈ Sm(α)}

= α + m
1

2 n− 1

2 D(H−1(α))Trδ(H
−1(α)) − m− 1

2 h(H−1(α))

+O(mn−1 + m−1); (5)

(ii) if Jθ 6= 0,

P {θ ∈ Sm(α)}

= α − (m− 1

2 − n− 1

2 )
{

g(G−1(α)) + c‖Jθ‖−2(Jθ)TD̃(G−1(α))
}

+O(m−1). (6)

Comparison of (5) and (6) allows us to describe the choice of m which mini-

mizes the maximum of the orders of the coverage errors over the cases (i) and (ii).

Dependence of the coverage errors on the unknown θ prevents explicit computa-

tion of the optimal, minimax, choice of m. However, the order of the asymptotic

minimax coverage error is known.

Corollary 1. Under the conditions of Theorem 1, the coverage error of Sm(α)

has a minimax order of O(n−1/4) over Jθ = 0 and Jθ 6= 0 , achieved by setting

m ∝ n1/2.

3.2. Iterated version

The iterated bootstrap is known as an effective strategy for enhancing boot-

strap accuracy in regular problems of estimation and confidence interval con-

struction. See Hall and Martin (1988) for a general discussion. In the context of

constructing confidence sets, Beran (1987) suggested calibration of the nominal

coverage of the confidence set by means of bootstrap prepivoting, which achieves

a reduction in coverage error by an order of magnitude in regular situations. In

this section, we investigate the effects of iterating the m out of n parametric

bootstrap on the coverage accuracy of Stein-based confidence sets.

An intuitive iterative scheme can be devised as follows. For a parametric

bootstrap sample X∗
1 , . . . , X∗

m drawn from p(x − Yδ), define

Y ∗
m,δ = X̄∗

m − δm−1c‖JX̄∗
m‖−2JX̄∗

m,

so that Y ∗
m,0 = X̄∗

m and Y ∗
m,1 = T ∗

m,S . Let X∗∗
1 , . . . , X∗∗

` constitute a second-level

bootstrap sample of size ` drawn from p(x − Y ∗
m,δ). It is natural to require that

` = o(m) and ` → ∞, in parallel with the conditions imposed on m. Note that

the same δ is used for both levels of bootstrap sampling. Define T ∗∗
m,`,S to be the
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generalized Stein estimator calculated from the second-level bootstrap sample.

Let

πm(β) = P

{

f(n
1

2 (Tn,S − θ)) ≤ x̂m,β

}

be the coverage probability of the m out of n parametric bootstrap confidence set

Sm(β). Beran’s [1] prepivoting idea attempts to recalibrate the nominal coverage

of the confidence set to β, say, in order to deliver exactly the required coverage

α: πm(β) = α. The second-level bootstrapping is used to provide an estimate of

πm(β), namely

π∗
m,`(β) = P

{

f(m
1

2 (T ∗
m,S − Yδ)) ≤ x̂∗

m,`,β | X1, . . . , Xn

}

,

where x̂∗
m,`,β denotes the βth quantile of the distribution of f(`1/2(T ∗∗

m,`,S −Y ∗
m,δ))

conditional on X∗
1 , . . . , X∗

m. The recalibrated nominal level α confidence set for

θ is then

S∗
m,`(α) = Sm(π∗−1

m,` (α)).

The asymptotic coverage of S∗
m,`(α) is given in the following theorem.

Theorem 2. Assume the conditions of Theorem 1, and that ` = o(m) and

` → ∞. Then

(i) if Jθ = 0,

P
{

θ ∈ S∗
m,`(α)

}

= α + (2m
1

2 n− 1

2 − `
1

2 m− 1

2 )D(H−1(α))Trδ(H
−1(α))

+ (`−
1

2 − m− 1

2 )h(H−1(α)) + O(`−1 + mn−1 + `m−1); (7)

(ii) if Jθ 6= 0,

P
{

θ ∈ S∗
m,`(α)

}

= α − (2m− 1

2 − n− 1

2 − `−
1

2 ) ×
{

g(G−1(α)) + c‖Jθ‖−2(Jθ)TD̃(G−1(α))
}

+ O(`−1). (8)

By comparing (7) and (8), we can deduce the minimax choices of m and `,

as detailed in the following corollary.

Corollary 2. Under the conditions of Theorem 2, the coverage error of S ∗
m,`(α)

has a minimax order of O(n−1/4) over Jθ = 0 and Jθ 6= 0, achieved by setting

m ∝ n3/4 and ` = 4m2n−1.
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We see from Corollary 2 that no asymptotic improvement, in terms of mini-

max coverage accuracy, is derived from the intuitive scheme for this Stein confi-

dence set problem, even with optimal, minimax, choice of the bootstrap sample

sizes.

We now describe a modified procedure for iterating the m out of n para-

metric bootstrap that does succeed in improving upon the non-iterated method

asymptotically. Define, for any β ∈ (0, 1), the confidence set Sm(β) and the cor-

responding coverage probability πm(β) as before. By contrast with the intuitive

iterated bootstrap, we perform two nested levels of parametric bootstrapping

independent of X∗
1 , . . . , X∗

m, the bootstrap sample used in construction of the re-

calibrated confidence set, with possibly different bootstrap sample sizes. Specifi-

cally, the first-level bootstrap sample, X †
1 , . . . , X

†
M , has size M and is drawn from

p(x − Yδ). Define X̄†
M =

∑M
i=1 X†

i /M and

Y †
M,δ = X̄†

M − δM−1c‖JX̄†
M‖−2JX̄†

M .

The second-level bootstrap sample consists of L independent observations, de-

noted by X††
1 , . . . , X††

L , drawn from p(x − Y †
M,δ). Denote by T †

M,S and T ††
M,L,S

the corresponding generalized Stein estimators calculated from the first- and

second-level bootstrap samples respectively. Let x̂†
M,L,β be the βth quantile of

the conditional distribution of f(L1/2(T ††
M,L,S − Y †

M,δ)) given X†
1 , . . . , X

†
M . Then

we estimate π(β) by

π†
M,L(β) = P

{

f(M
1

2 (T †
M,S − Yδ)) ≤ x̂†

M,L,β | X1, . . . , Xn

}

.

Our proposed level α confidence set for θ is

S†
m,M,L(α) = Sm(π†−1

M,L(α)).

The following theorem is a counterpart of Theorem 2 for S †
m,M,L(α).

Theorem 3. Assume the conditions of Theorem 1, and that L = o(M), M =

o(n) and L → ∞. Then

(i) if Jθ = 0,

P

{

θ ∈ S†
m,M,L(α)

}

= α +
[

(m
1

2 + M
1

2 )n− 1

2 − L
1

2 M− 1

2

]

D(H−1(α))Trδ(H
−1(α))

+(L− 1

2 −m− 1

2 )h(H−1(α))+O
(

(m+M)n−1 + LM−1+L−1+m−1
)

; (9)
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(ii) if Jθ 6= 0,

P

{

θ ∈ S†
m,M,L(α)

}

= α − (m− 1

2 + M− 1

2 − n− 1

2 − L− 1

2 )

×
{

g(G−1(α)) + c‖Jθ‖−2(Jθ)TD̃(G−1(α))
}

+O(L−1 + m−1). (10)

The next corollary, which follows directly from Theorem 3, describes the

minimax choices of m,M,L.

Corollary 3. Under the conditions of Theorem 3, the coverage error of S †
m,M,L(α)

has a minimax order of O(n−1/3) over Jθ = 0 and Jθ 6= 0, achieved by setting

m ∝ n1/3, M = (mn)1/2 and L = m.

We see from Corollary 3 that the minimax order O(n−1/3) for S†
m,M,L(α)

represents a significant improvement on the minimax order O(n−1/4) provided

by both Sm(α) and S∗
m,`(α). The only price to pay for the improvement is the

additional computational cost required by the two nested levels of bootstrapping

involved in the calculation of π†−1
M,L(α).

Interestingly, the iterative scheme we have described for constructing S †
m,M,L

(α) with minimax order of coverage error is identical to that developed by Che-

ung, Lee and Young (2005), though the scheme described there is based on a

nonparametric bootstrap and operates in the setting of a nonregular smooth

function model.

4. Second Approach: Adaptive Parametric Bootstrap

In the special case that L is the one-dimensional subspace of vectors with

equal components, Beran (1997) considers an adaptive estimator

θ̂n =

{

m(X̄)e, ‖X̄ − m(X̄)e‖ ≤ n− 1

4 ,

X̄, otherwise,

for θ, where e = [1, . . . , 1]T and m(x) denotes the mean of the d components

of x ∈ R
d. Beran’s adaptive estimator has a natural extension in our present

context, given by

θ̂n =

{

X̄ − JX̄, ‖JX̄‖ ≤ n−r,

X̄, ‖JX̄‖ > n−r,

for some fixed r ∈ (0, 1/2). We show that the latter condition on r, which

is weaker than Beran’s original proposal, suffices for consistency of Stein-based

confidence sets constructed using the adaptive parametric bootstrap approach.
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Theorems 4 and 5 state the orders of coverage error of these confidence sets for

the non-iterated and iterated cases, respectively.

4.1. Non-iterated version

Suppose that X̃ ∗ is a parametric bootstrap sample of size n taken from

p(x− θ̂n). Let X̃∗ and T̃ ∗
n,S be the sample mean and generalized Stein estimator,

respectively, calculated from X̃ ∗, so that

T̃ ∗
n,S = X̃∗ − n−1c‖JX̃∗‖−2JX̃∗.

Denote by x̃β the βth quantile of the distribution of f(n1/2(T̃ ∗
n,S−θ̂n)) conditional

on X1, . . . , Xn. The nominal level α adaptive parametric bootstrap confidence

set for θ, based on the adaptive estimator θ̂n, is then

I(α) =
{

ϑ ∈ R
d : f(n

1

2 (Tn,S − ϑ)) ≤ x̃α

}

.

The order of coverage error of I(α) is given in Theorem 4 under somewhat

stronger regularity conditions than those of Theorem 1. The proof is outlined in

the Appendix.

Theorem 4. Assume that (C2) holds, and that the cumulant generating function

of p is finite on an open neighbourhood containing the origin. Let α ∈ (0, 1) be

fixed. Then

(i) if Jθ = 0,

P {θ ∈ I(α)} = α + O
(

e−An1−2r
)

, (11)

for some constant A > 0;

(ii) if Jθ 6= 0,

P {θ ∈ I(α)} = α + O(n−1). (12)

It is clear from Theorem 4 that I(α) outperforms the m out of n parametric

bootstrap approach, iterated or not, for all θ ∈ R
d, by having a smaller order of

coverage error under the stronger regularity conditions assumed in the theorem.

Its asymptotic improvement is particularly remarkable for θ ∈ L, with its expo-

nentially small order of coverage error. One possible drawback of the adaptive

approach is its need for a problem-specific choice of the adaptive estimator θ̂n,

which makes it less attractive than the m out of n parametric bootstrap approach

as a general procedure for confidence set construction.

4.2. Iterated version

The iterated bootstrap may also be used to calibrate the nominal cover-

age level for the adaptive confidence set I(α). We describe below a conventional
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iterative scheme for the adaptive parametric bootstrap. Take a second-level para-

metric bootstrap sample X̃ ∗∗ of size n from p(x − θ̂∗n), where

θ̂∗n =

{

X̃∗ − JX̃∗, ‖JX̃∗‖ ≤ n−r,

X̃∗, ‖JX̃∗‖ > n−r.

Let X̃∗∗ and T̃ ∗∗
n,S be the sample mean and generalized Stein estimator calculated

from X̃ ∗∗ respectively. Denote by π̃(β) = P
{

f(n1/2(Tn,S − θ)) ≤ x̃β

}

the cover-

age probability of I(β), which is estimated by π̃∗(β) = P{f(n1/2(T̃ ∗
n,S − θ̂n)) ≤

x̃∗
β | X1, . . . , Xn}, where x̃∗

β denotes the βth quantile of the distribution of

f(n1/2(T̃ ∗∗
n,S − θ̂∗n)) conditional on X̃ ∗. Beran’s (1987) prepivoting method cali-

brates the nominal level to π̃∗−1(α) and yields the iterated adaptive parametric

bootstrap confidence set, of nominal level α,

I∗(α) = I(π̃∗−1(α)).

The following theorem states the asymptotic coverage error of I ∗(α).

Theorem 5. Assume the conditions of Theorem 4. Then

(i) if Jθ = 0,

P {θ ∈ I∗(α)} = α + O
(

e−An1−2r
)

, (13)

for some constant A > 0;

(ii) if Jθ 6= 0,

P {θ ∈ I∗(α)} = α + O(n− 3

2 ). (14)

Comparison of (12) and (14) shows that iteration of the adaptive parametric

bootstrap reduces coverage error by an order of O(n−1/2) for θ 6∈ L. For θ ∈ L,

the true effects of the iteration are not clear from the coverage results derived in

Theorems 4 and 5. Nevertheless, we expect in this case that the adaptive para-

metric bootstrap approach, iterated or not, produces very accurate confidence

sets as a result of its exponentially small order of coverage error.

5. θ close to L

So far, our asymptotic analysis has assumed θ is fixed, and we have dis-

tinguished between the two regimes θ ∈ L, θ /∈ L. It is conceivable that such

pointwise asymptotics may be misleading if θ /∈ L, but is near L. To examine

this, it is of interest to investigate the coverage properties of the various Stein

confidence sets which hold uniformly over shrinking neighbourhoods of the form

{θ : Jθ ≤ Cn−∆}, for some C,∆ > 0. To fix ideas we consider θ = θn such
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that Jθn = n−∆Ωn with Ωn → Ω 6= 0 as n → ∞. The results are embodied

in Theorems 6 to 9 below, which can be proved using arguments similar to, but

more tedious than, those establishing Theorems 1 to 5.

The first two theorems deal with the non-iterated and iterated m out of n

parametric bootstrap methods, respectively.

Theorem 6. Assume the conditions of Theorem 1. Then

(i) if ∆ > 1/2,

P {θ ∈ Sm(α)}

= α + m
1

2 n− 1

2 D(H−1(α))Trδ(H
−1(α)) − m− 1

2 h(H−1(α))

−n
1

2
−∆ΩT

nD(H−1(α)) + O(mn−1 + m−1 + n1−2∆);

(ii) if ∆ < 1/2,

P {θ ∈ Sm(α)}

= α − (m− 1

2 − n− 1

2 )
{

g(G−1(α)) + c n∆‖Ωn‖
−2ΩT

n D̃(G−1(α))
}

+O(m−1n2∆).

We see from Theorem 6 that when θn approaches L at a fast rate (case (i)),

the coverage error of the non-iterated m out of n parametric bootstrap confidence

set Sm(α) has the smallest order O(n−1/4 + n1−2∆) if we set m ∝ n1/2. Under

case (ii) where θn approaches L slowly, the coverage error can be minimized to

order O(εn), for any εn with n−1/2+∆ = o(εn), by choosing m sufficiently close

to n.

Theorem 7. Assume the conditions of Theorem 3. Then

(i) if ∆ > 1/2,

P

{

θ ∈ S†
m,M,L(α)

}

= α +
[

(m
1

2 + M
1

2 )n− 1

2 − L
1

2 M− 1

2

]

D(H−1(α))Trδ(H
−1(α))

+ (L− 1

2 − m− 1

2 )h(H−1(α)) − n
1

2
−∆ΩT

nD(H−1(α))

+O
(

(m + M)n−1 + LM−1 + L−1 + m−1 + n1−2∆
)

;

(ii) if ∆ < 1/2,

P

{

θ ∈ S†
m,M,L(α)

}

= α − (m− 1

2 + M− 1

2 − n− 1

2 − L− 1

2 )

×
{

g(G−1(α)) + c n∆‖Ωn‖
−2ΩT

nD̃(G−1(α))
}

+O
(

(L−1 + m−1)n2∆
)

.
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Under case (i), setting L = m ∝ n1/3 and M = (mn)1/2 yields the smallest

order O(n−1/3+n1/2−∆) of coverage error for S†
m,M,L(α). Under case (ii), choosing

L = m and L,M sufficiently close to n yields coverage error of order O(εn), for

any εn with n−1/2+∆ = o(εn).

The next two theorems concern the coverages of the non-iterated and iterated

adaptive methods respectively.

Theorem 8. Assume the conditions of Theorem 4. Then

(i) if ∆ > 1/2, P {θ ∈ I(α)} = α + O
(

n1/2−∆
)

;

(ii) if ∆ < 1/2 and ∆ < r, P {θ ∈ I(α)} = α + O(n−1+2∆).

Theorem 9. Assume the conditions of Theorem 5. Then

(i) if ∆ > 1/2, P {θ ∈ I∗(α)} = α + O
(

n1/2−∆
)

;

(ii) if ∆ < 1/2 and ∆ < r, P {θ ∈ I∗(α)} = α + O(n−3/2+3∆).

Comparison of Theorems 8 and 9 shows that iteration of the adaptive method

is effective in reducing coverage error under case (ii) but not under case (i).

In summary, in the present asymptotic regime where the true θ shrinks to-

ward L as the sample size n increases, provided ∆ 6= 1/2, both the m out of

n parametric bootstrap and the adaptive method produce confidence sets of

asymptotically correct coverage. If ∆ = 1/2, neither the m out of n paramet-

ric bootstrap nor the adaptive method, iterated or not, succeeds in producing

asymptotically correct confidence sets. Further, the theorems of this section indi-

cate that iteration improves the m out of n bootstrap in circumstances where the

true θ shrinks towards L rapidly, and improves the performance of the adaptive

bootstrap when θ shrinks towards L slowly.

To interpret the likely practical consequences of the theoretical dichotomy

between shrinking towards L slowly and shrinking towards L rapidly, is, of course,

awkward. But broadly, we certainly expect, in a finite sample situation, poor

coverage accuracy for some θ close to L, for all of the methods.

6. Simulation Study

We conducted a simulation study, in which random samples were generated

from N8(θ, I8) for construction of nominal level α confidence sets for θ, with

α = 0.05, 0.1, 0.5, 0.9 and 0.95. The subspace L was taken to be the set of vectors

in R
8 with equal components, and Tn,S was defined with c = 5, the version of

the generalized Stein estimator proposed by Lindley (1962). The important case

of spherical confidence sets was considered in the study by setting f(x) = ‖x‖.

Each coverage probability was estimated by the proportion of confidence sets

covering θ out of 1,600 simulations. Each bootstrap distribution was approxi-

mated from 1,000 parametric bootstrap samples. We set δ = 0 throughout, so
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that m out of n parametric bootstrapping was done from normal distributions

with means estimated by sample means. Results obtained taking δ = 1 or f(x)

to be the product of components of x are very similar, and therefore omitted

from the present report.

Section 6.1 compares the coverage performances of Sn(α), Sm(α), S†
m,M,L(α),

I(α) and I∗(α), when minimax bootstrap sample sizes were used for constructing

Sm(α) and S†
m,M,L(α). Section 6.2 makes comparisons between minimax and non-

minimax choices of m for Sm(α), and repeats similar comparisons for S †
m,M,L(α).

Section 6.3 illustrates the advantage of use of the generalized Stein estimator over

the sample mean for constructing confidence sets for θ, in terms of reduction in

the radii of the confidence sets.

6.1. Comparison of coverage probabilities

In this comparison study, we illustrate the extent to which our m out of n and

adaptive parametric bootstrap methods yield consistent coverages for different

values of θ and for different sample sizes. For the m out of n parametric bootstrap

approach, we set bootstrap sample sizes to be their asymptotically minimax

values, chosen according to Corollaries 1, 2 and 3. Specifically, we set m = n1/2

for Sm(α) and L = m = n1/3 and M = n2/3 for S†
m,M,L(α). For the adaptive

parametric bootstrap approach, we set r = 1/4 throughout, so that θ̂n = X̄−JX̄

if ‖JX̄‖ ≤ n−1/4 and = X̄ otherwise. The conventional Sn(α) was also included

for reference.

Figures 1(a) and (b) compare the coverage errors of various confidence sets for

two choices of θ: (a) θ=(1, 1, 1, 1, 1, 1, 1, 1)T ∈ L, and (b) θ=(2, 1, 1, 1, 1, 1, 1, 1)T

6∈ L, respectively, for sample sizes n = 100, 300, 500, 800 and 1,000. In case

(a) the n out of n parametric bootstrap fails to give accurate confidence sets

and yields unacceptably large coverage errors. The non-iterated m out of n

parametric bootstrap remedies the problem to a large extent. The coverage

error of the modified iterated m out of n parametric bootstrap confidence set

S†
m,M,L(α) is further reduced for α = 0.05, 0.1 and 0.5, and remains similar

to that of Sm(α) for other values of α. Both adaptive parametric bootstrap

confidence sets I(α) and I∗(α) have coverage accuracy comparable to S †
m,M,L(α),

except for large α and n = 100 where they are notably less accurate. When

θ 6∈ L, the n out of n bootstrap gives, as expected, very accurate coverage.

The adaptive parametric bootstrap method also produces very accurate sets and

yields coverage error comparable to Sn(α). The non-iterated Sm(α) registers a

loss in efficiency by comparison, which is restored to some extent by S †
m,M,L(α).

In all cases, bootstrap iteration is found to be very effective in reducing coverage

error of both the m out of n and adaptive parametric bootstrap methods.



60 K. Y. CHEUNG, STEPHEN M. S. LEE AND G. ALASTAIR YOUNG

0.04

PSfrag replacements

-0.4

-0.3

-0.2

-0.1

0.0

0.0

0.0

0.1

0.2

0.2

0.2

0.3

0.4

0.4

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

0.05

0.05

0.10

-0.30

-0.25

-0.20

-0.20

-0.18

-0.15

-0.15

-0.12

-0.10

-0.10

-0.10

-0.09

-0.08

-0.06

-0.05

-0.05

-0.04

-0.04

-0.03

-0.02

-0.02

-0.02

-0.01

-0.01

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.01

0.01

0.02

0.02

0.02

0.03

0.06

0.15

0.20

0.25

0.35

-0.005

0.000

0.005

0.010

(1)

(2)

(3)

C
ov

er
a
g
e

E
rr

o
r

n out of n

m out of n

modified iterated m out of n

adaptive

iterated adaptive

n
(a) (b)

0
0

00

00

00

0
0

500
500

500500

500500

500500

500
500

1000
1000

10001000

10001000

10001000

1000
1000

=0.95

=0.9

=0.5

=0.1

=0.05

α

α

α

α

α

α=0.05
α=0.1
α=0.5

α = 0.95
θ

θ
2

4

6

8

normalized radius
θ = (1, 1, 1, 1, 1, 1, 1, 1)T

θ = (1.1, 1, 1, 1, 1, 1, 1, 1)T

θ = (2, 1, 1, 1, 1, 1, 1, 1)T

Figure 1. Coverage errors of Sn(α),Sm(α),S†
m,M,L(α), I(α) and I∗(α) for

α = 0.05, 0.1, 0.5, 0.9 and 0.95, plotted against sample size n under (a) θ =

(1, 1, 1, 1, 1, 1, 1, 1)T and (b) θ = (2, 1, 1, 1, 1, 1, 1, 1)T.

To investigate the effect of the value of θ on the performance of our boot-

strap procedures, we constructed confidence sets for values of θ that shrink
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towards L, based on a fixed sample size n = 100. Specifically, we set θ =

(θ(1), 1, 1, 1, 1, 1, 1, 1), with θ(1) = 1, 1.1, 1.2, 1.5, 2, 2.5, 3 and 500. Note that

‖Jθ‖ increases as θ(1) increases. Figure 2 plots the coverage errors of Sn(α),

Sm(α), S†
m,M,L(α), I(α) and I∗(α) against θ(1) for various choices of α. For θ(1)

close to 1, the adaptive parametric bootstrap outperforms the m out of n para-

metric bootstrap for small α, and the situation is reversed for large α. The n out

of n parametric bootstrap still gives very poor coverages here. Such observations

agree with the trend noted in Figure 1(a) when θ(1) = 1. As θ(1) increases from

1 to 1.5, the m out of n parametric bootstrap confidence sets become less ac-

curate with their growing under-coverages. When θ(1) increases beyond 1.5, the

under-coverage problem starts to diminish and the sets become accurate again.

A similar trend is observed for the adaptive parametric bootstrap confidence sets,

though to a much lesser extent. On the other hand, the n out of n parametric

bootstrap continues to improve its coverage as θ(1) increases from 1. Coverage

probabilities of all five confidence sets become almost indistinguishable when θ (1)
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increases to 500, although Figure 2 does not display the latter cases for better

presentation of the results for small θ(1). Bootstrap iteration is again effective in

reducing coverage error of both the m out of n and adaptive parametric boot-

straps for different values of θ(1).

The numerical results shown in Figure 2 may, of course, be interpreted in

terms of the theoretical results of the previous section, which suggest that cov-

erage accuracy might be expected to deteriorate for θ /∈ L, but close to L. As θ

moves away from L, a threshold is reached, corresponding roughly to the situation

where ∆ has decreased from ∞ to 1/2. As θ moves further from L, corresponding

to ∆ decreasing from 1/2 towards 0, coverage accuracy improves.

6.2. Minimax vs non-minimax bootstrap sample sizes

In order to investigate the effects of bootstrap sample sizes on coverage accu-

racy of the m out of n parametric bootstrap confidence sets for θ ∈ L and θ 6∈ L,

other bootstrap sample sizes were selected in addition to the minimax choices to

construct Sm(α) and S†
m,M,L(α). Table 1 details the sample sizes chosen specif-

ically for this study, and summarizes the corresponding orders of coverage error

for θ ∈ L and θ 6∈ L separately. Note that the non-minimax sample sizes were

chosen in such a way that they yield confidence sets of more accurate coverage

in one case but less in the other case, when compared to the minimax choices.

Table 1. Asymptotic coverage errors of Sm(α) and S†
m,M,L(α) when (a)

θ ∈ L, and when (b) θ 6∈ L.

Confidence set Sm(α) Confidence set S†
m,M,L(α)

m (a) (b) m L M (a) (b)

(1) n1/3 O(n−1/3) O(n−1/6) * n1/3 n1/3 n2/3 O(n−1/3) O(n−1/3)

(2) * n1/2 O(n−1/4) O(n−1/4) n0.45 n0.45 n0.9 O(n−0.05) O(n−0.45)

(3) n2/3 O(n−1/6) O(n−1/3) n0.55 4n0.1 n0.55 O(n−0.45) O(n−0.05)

* Asymptotically minimax bootstrap sample sizes

Figures 3(a) and (b) plot the coverage errors of Sm(α) for the three choices of

m specified in the left panel of Table 1. In case (a), the numerical results generally

agree with our theoretical findings summarized in Table 1: the coverage error of

Sn2/3(α) is most often greater than that of the other two confidence sets by a

large margin; for α = 0.05, 0.1 and 0.5, Sn1/3(α) is more accurate than Sn1/2(α);

coverage performances of the two become similar for α = 0.9 and 0.95.

For case (b) we obtain results exactly consistent with our asymptotic predic-

tions, with Sn2/3(α) being the most accurate, followed by the minimax Sn1/2(α),

and then by Sn1/3(α).
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exponential: L/M/n, minmax
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and (b) θ = (2, 1, 1, 1, 1, 1, 1, 1)T.

Figure 4 displays the coverage errors of S †
m,M,L(α) for those combinations of

m,M,L described in the right panel of Table 1. We see from Figure 4(a) that the
minimax choice produces confidence sets of the smallest coverage error in case
(a), which is somewhat surprising in view of the theoretical orders of coverage



64 K. Y. CHEUNG, STEPHEN M. S. LEE AND G. ALASTAIR YOUNG

error given in Table 1. On the other hand, S †

n0.45, n0.9, n0.45(α) is evidently the least

accurate, which is consistent with our asymptotic deduction.
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Figure 4. Coverage errors of S†
m,M,L(α), with (1) L = m = n1/3, M = n2/3,

(2) L = m = n0.45, M = n0.9 and (3) M = m = n0.55, L = 4n0.1, for

α = 0.05, 0.1, 0.5, 0.9 and 0.95 under (a) θ = (1, 1, 1, 1, 1, 1, 1, 1)T and (b)

θ = (2, 1, 1, 1, 1, 1, 1, 1)T.
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In case (b), S†

n0.45, n0.9, n0.45(α) becomes the most accurate. The minimax

choice takes the second place for α = 0.05, 0.1 and 0.5, and is similar to

S†

n0.55, n0.55, n0.1(α) for α = 0.9 and 0.95.

6.3. Stein- vs sample-mean-based confidence sets

One major advantage of basing high-dimensional confidence sets on Tn,S,

rather than on the more natural X̄, is the reduction in volume as a consequence

of the smaller finite-sample risk of Tn,S . To illustrate this point we compare

the radii of the Stein-based confidence sets for θ = (θ(1), 1, 1, 1, 1, 1, 1, 1)T with

the classical normal approximation method based on the sample mean. Note

that the latter method is exact for the normal random samples considered in our

simulation study.

The normalized radius, proportional to (volume)1/8, of the level α confidence

set is equal to the αth quantile of the estimated distribution of the corresponding

root. Note that the classical level α confidence set for θ based on the sample mean

is

SCHI(α) =
{

ϑ ∈ R
d : n‖X̄ − ϑ‖2 ≤ χ2

8(α)
}

,

where χ2
8(α) denotes the αth quantile of the chi-squared distribution with 8

degrees of freedom, and the corresponding normalized radius of the set is
√

χ2
8(α).

The normalized radius of the Stein-based confidence set is the αth quantile of

the bootstrap distribution of n1/2‖Tn,S − θ‖.

Figure 5 displays the standardized smoothed histograms of the normalized

radii of the 95% m out of n and adaptive parametric bootstrap confidence sets for

the cases where θ(1) = 1, 1.1 and 2. The normalized radius of the exact confidence

set based on the sample mean, namely
√

χ2
8(0.95) = 3.9379 is also included for

comparison. Results for other nominal coverage levels are very similar and are

not reported here. The plots for θ(1) = 1 and 1.1 resemble each other. Radii

of the iterated bootstrap confidence sets S †
m,M,L(0.95) and I∗(0.95) are more

dispersed and have smaller means than their non-iterated counterparts, Sm(0.95)

and I(0.95), respectively. The adaptive parametric bootstrap method gives rise

to bimodal distributions for the radii of I(0.95) and I ∗(0.95), induced probably

by the two distinct definitions of the adaptive estimator θ̂n as determined by the

value of ‖JX̄‖. When θ(1) = 2, the radii of the bootstrap confidence sets increase,

with Sm(0.95) being the smallest, followed by S †
m,M,L(α) and then by I(0.95) and

I∗(0.95). Here the radii of I(0.95) and I∗(0.95) are unimodal, suggesting that the

adaptive method has a better chance to make the right choice when θ is further

away from L. In all cases the radii of the Stein-based sets are shorter than the

fixed radius of SCHI(0.95), by a margin which decreases as θ(1) increases.
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Figure 5. Standardized smoothed histograms of 1,600 replicates of normal-

ized radii of Sm(0.95),S†
m,M,L(0.95), I(0.95) and I∗(0.95) for n = 100 and
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vertical dotted line shows the normalized radius of the exact normal confidence

set based on X̄.

We conclude by comparing the computational demands of the parametric

bootstrap approaches to constructing confidence sets. Suppose that in each case

B first-level bootstrap samples and, if applicable, C second-level bootstrap sam-

ples from each first-level sample are drawn in the procedure, and that B,C → ∞

as n → ∞. It is clear that the m out of n parametric bootstrap, with its use of

smaller bootstrap sample sizes, is computationally much more efficient than the

adaptive method which uses the full bootstrap sample size n. With all bootstrap

sample sizes fixed at their minimax values, Sm(α), S∗
m,`(α) and S†

m,M,L(α) re-

quire O(Bn1/2), O(Bn3/4 +BCn1/2) and O(Bn2/3 +BCn1/3) observations to be

simulated respectively. We see that S∗
m,`(α) is computationally more expensive

than S†
m,M,L(α), despite the fact that the latter requires two separate rounds

of first-level bootstrap simulation. Construction of Sm(α) requires one level of

bootstrapping, based on a relatively small bootstrap sample size, and is compu-

tationally the most efficient confidence set.

A. Appendix

We outline proofs of the theorems stated in the previous sections of the paper.
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We write X
D
= Y for random vectors X and Y having the same distribution.

A.1. Proof of Theorem 1

Consider first the case Jθ = 0. Write Z∗
δ = m1/2(X̄∗

m − Yδ) and Sδ =

n1/2(Yδ − θ). Then Z∗
δ

D
= Zm for δ = 0 or 1, S0

D
= Zn and S1

D
= Wn. We have by

Taylor expansion and (4) that, for any x ∈ R,

P

{

f
(

m
1

2 (T ∗
m,S − Yδ)

)

≤ x | X1, . . . , Xn

}

= P

{

Ψ(Z∗
δ , 0) + (

m

n
)

1

2 Ψ2(Z
∗
δ , 0)TSδ ≤ x | X1, . . . , Xn

}

+ Op(
m

n
)

= H(x) + m− 1

2 h(x) − (
m

n
)

1

2 ST
δ D(x) + Op(m

−1 + m/n). (15)

Define, for β ∈ (0, 1), C(β) = H ′(H−1(β))−1D(H−1(β)) and C̃(β) = G′(G−1

(β))−1D̃(G−1(β)). Inversion of (15) shows that for each β ∈ (0, 1),

x̂m,β = H−1(β) + (
m

n
)

1

2 ST
δ C(β) − m− 1

2 H ′(H−1(β))−1h(H−1(β))

+Op(m
−1 + m/n). (16)

Recall that Zn = n1/2(X̄ − θ). It follows from (16) that

P

{

f
(

n
1

2 (Tn,S − θ)
)

≤ x̂m,α

}

= P

{

Ψ(Zn, 0) − (
m

n
)

1

2 ST
δ C(α)

≤ H−1(α) − m− 1

2 H ′(H−1(α))−1h(H−1(α))
}

+ O(m−1 +
m

n
)

= α − m− 1

2 h(H−1(α)) + (
m

n
)

1

2 H ′(H−1(α))C(α)Trδ(H
−1(α))

+O(m−1 + m/n),

which proves (5) in part (i).

Suppose now Jθ 6= 0. By decomposing X̄∗
m = m−1/2Z∗

δ + n−1/2Sδ + θ, we

deduce that

m
1

2 (T ∗
m,S − Yδ) = Z∗

δ − m− 1

2 c‖Jθ‖−2Jθ + Op(m
−1). (17)

Taylor expansion of f about Z∗
δ and use of (17) and (3) show that for any x ∈ R,

P

{

f
(

m
1

2 (T ∗
m,S − Yδ)

)

≤ x | X1, . . . , Xn

}

= P

{

f(Z∗
δ ) − m− 1

2 c‖Jθ‖−2(Jθ)T∇f(Z∗
δ ) ≤ x | X1, . . . , Xn

}

+ Op(m
−1)

= G(x) + m− 1

2

{

g(x) + c‖Jθ‖−2(Jθ)TD̃(x)
}

+ Op(m
−1). (18)
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Inversion of (18) yields, for β ∈ (0, 1), that

x̂m,β = G−1(β) − m− 1

2 c‖Jθ‖−2(Jθ)TC̃(β)

−m− 1

2 g(G−1(β))G′(G−1(β))−1 + Op(m
−1). (19)

Using (2) and (19), the coverage of Sm(α) then equals

P

{

f
(

n
1

2 (Tn,S − θ)
)

≤ x̂m,α

}

= P

{

f(Zn) − n− 1

2 c‖Jθ‖−2(Jθ)T∇f(Zn) ≤ x̂m,α

}

+ O(n−1)

= G
(

G−1(α) − m− 1

2

[

c‖Jθ‖−2(Jθ)TC̃(α) + g(G−1(α))G′(G−1(α))−1
])

+n− 1

2

{

g(G−1(α)) + c‖Jθ‖−2(Jθ)TD̃(G−1(α))
}

+ O(m−1),

which, on Taylor expansion of G(·) about G−1(α), proves (6) in part (ii).

A.2. Proofs of Theorems 2 and 3

We first prove Theorem 3.

Suppose that Jθ = 0. Write X̄††
M,L =

∑L
i=1 X††

i /L, Z††
δ = L1/2(X̄††

M,L −Y †
M,δ)

and S†
δ = M1/2(Y †

M,δ − θ). Then Z††
δ

D
= ZL for δ = 0 or 1. Write also Z†

δ =

M1/2(X̄†
M −Yδ)

D
= ZM and Sδ = n1/2(Yδ − θ) as in the proof of Theorem 1. Note

that

S†
δ = Z†

δ − δc‖JZ†
δ‖

−2JZ†
δ + Op(M

1

2 n− 1

2 ), (20)

so that S†
δ = Op(1). Denote by X and X †

M the samples (X1, . . . , Xn) and

(X†
1 , . . . , X

†
M ) respectively. It follows by Taylor expansion of Ψ and (4) that,

for any x ∈ R,

P

{

f
(

L
1

2 (T ††
M,L,S − Y †

M,δ)
)

≤ x | X ,X †
M

}

= P

{

Ψ(Z††
δ , 0) + (

L

M
)

1

2 Ψ2(Z
††
δ , 0)TS†

δ ≤ x | X ,X †
M

}

+ Op(
L

M
)

= H(x) + L− 1

2 h(x) − (
L

M
)

1

2 D(x)TS†
δ + Op(

L

M
+ L−1). (21)

Define C and C̃ as in Section A.1. Inversion of (21) shows that for each β ∈ (0, 1),

x̂†
M,L,β = H−1(β) − L− 1

2 h(H−1(β))H ′(H−1(β))−1 + (
L

M
)

1

2 C(β)TS†
δ

+Op(
L

M
+ L−1),
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so that

π†
M,L(β) = P

{

Ψ(Z†
δ , 0) + (

M

n
)

1

2 Ψ2(Z
†
δ , 0)

TSδ − (
L

M
)

1

2 C(β)TS†
δ

≤ H−1(β) − L− 1

2 h(H−1(β))H ′(H−1(β))−1 | X
}

+Op(
L

M
+ L−1 +

M

n
)

= β − (
M

n
)

1

2 ST
δ D(H−1(β)) + (

L

M
)

1

2 C(β)TTδ(β)

−L− 1

2 h(H−1(β)) + Op(
L

M
+ L−1 +

M

n
), (22)

where Tδ(β) = (∂/∂x)E{E[S†
δ | Ψ(Z†

δ , 0)]; Ψ(Z†
δ , 0) ≤ x | X}

∣

∣

x=H−1(β)
. Equating

(22) to α yields a solution for β, given by

β̂ ≡ π†−1
M,L(α)

= α + (
M

n
)

1

2 ST
δ D(H−1(α)) − (

L

M
)

1

2 C(α)TTδ(α)

+L− 1

2 h(H−1(α)) + Op(
L

M
+ L−1 +

M

n
).

Write yα = H−1(α) + (L−1/2 − m−1/2)H ′(H−1(α))−1h(H−1(α)). It follows by
substitution of β̂ for β in (16) that

x̂m,β̂ = yα +
[

(
M

n
)

1

2 + (
m

n
)

1

2

]

ST
δ C(α) − (

L

M
)

1

2 H ′(H−1(α))−1C(α)TTδ(α)

+Op(
L

M
+

M

n
+ L−1 +

m

n
+ m−1),

so that

P

{

f
(

n
1

2 (Tn,S − θ)
)

≤ x̂m,β̂

}

= P

{

Ψ(Zn, 0) −
[

(
M

n
)

1

2 +(
m

n
)

1

2

]

ST
δ C(α)

+ (
L

M
)

1

2 H ′(H−1(α))−1C(α)TTδ(α) ≤ yα

}

+O(
L

M
+

M

n
+ L−1 +

m

n
+ m−1)

= H(yα)+
[

(
M

n
)

1

2 +(
m

n
)

1

2

]

D(H−1(α))Trδ(H
−1(α))−(

L

M
)

1

2 H ′(H−1(α))−1

×C(α)T
∂

∂x
E {E [Tδ(α) | Ψ(Zn, 0)] ; Ψ(Zn, 0)≤x}

∣

∣

∣

∣

x=H−1(α)

+O(
L

M
+

M

n
+ L−1 +

m

n
+ m−1). (23)
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Using (4), (20) and the fact that Z†
δ

D
= ZM , we have Tδ(α) = H ′(H−1(α))rδ(H

−1

(α)) + Op(M
1/2n−1/2 + M−1/2), so that

∂

∂x
E {E [Tδ(α) | Ψ(Z, 0)] ; Ψ(Z, 0) ≤ x}

∣

∣

∣

∣

x=H−1(α)

= H ′(H−1(α))2rδ(H
−1(α)) + O(M

1

2 n− 1

2 + M− 1

2 ). (24)

Substitution of (24) into (23), and expansion of H(yα) about H(H−1(α)) = α,

leads to (9).

To prove part (ii), suppose Jθ 6= 0. Noting that Z ††
δ , M1/2(Y †

M,δ − Yδ) and

Sδ are all Op(1), we have

JX̄††
M,L = L− 1

2 JZ††
δ + J(Y †

M,δ − Yδ) + n− 1

2 JSδ + Jθ = Jθ + Op(L
− 1

2 ),

so that

L1/2(T ††
M,L,S − Y †

M,δ) = Z††
δ − L− 1

2 c‖Jθ‖−2Jθ + Op(L
−1). (25)

It follows from (25) and expansion (3) that, for any x ∈ R,

P

{

f
(

L
1

2 (T ††
M,L,S − Y †

M,δ)
)

≤ x | X ,X †
M

}

= P

{

f(Z††
δ ) − L− 1

2 c‖Jθ‖−2(Jθ)T∇f(Z††
δ ) ≤ x | X ,X †

M

}

+ Op(L
−1)

= G(x) + L− 1

2

{

g(x) + c‖Jθ‖−2(Jθ)TD̃(x)
}

+ Op(L
−1),

can be inverted to obtain, for β ∈ (0, 1), x̂†
M,L,β = wβ + Op(L

−1), where

wβ = G−1(β) − L− 1

2

{

g(G−1(β))G′(G−1(β))−1 + c‖Jθ‖−2(Jθ)TC̃(β)
}

.

Substituting x̂†
M,L,β, and noting (3) and that Z†

δ
D
= ZM , we have

π†
M,L(β) = P

{

f(Z†
δ) − M− 1

2 c‖Jθ‖−2(Jθ)T∇f(Z†
δ ) ≤ wβ | X

}

+ Op(L
−1)

= β − (L− 1

2 − M− 1

2 )
{

g(G−1(β)) + c‖Jθ‖−2(Jθ)TD̃(G−1(β))
}

+Op(L
−1).

Inversion of π†
M,L gives

β̂ ≡ π†−1
M,L(α)

= α + (L− 1

2 − M− 1

2 )
{

g(G−1(α)) + c‖Jθ‖−2(Jθ)TD̃(G−1(α))
}

+ Op(L
−1),
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so that, by (19),
x̂m,β̂ = vα + Op(L

−1 + m−1), (26)

where

vα = G−1(α) + (L− 1

2 − M− 1

2 − m− 1

2 )

×
{

g(G−1(α))G′(G−1(α))−1 + c‖Jθ‖−2(Jθ)TC̃(α)
}

.

It follows from (26), (2) and (3) that

P

{

f
(

n
1

2 (Tn,S − θ)
)

≤ x̂m,β̂

}

= P

{

f(Zn) − n− 1

2 c‖Jθ‖−2(Jθ)T∇f(Zn) ≤ vα

}

+ O(L−1 + m−1)

= G(vα) + n− 1

2 g(G−1(α)) + n− 1

2 c‖Jθ‖−2(Jθ)TD̃(G−1(α)) + O(L−1 + m−1),

which, on expanding G(vα) about G(G−1(α)) = α, verifies (10) of part (ii). The
proof of Theorem 3 is now complete.

Theorem 2 can be proved by essentially the same arguments as those outlined
above, with L,M set to `,m respectively.

A.3. Proof of Theorem 4

The conditions of Theorem 4 imply that we can find a constant C > 0
such that the Legendre transformation of X1 − θ is bounded below by Cε2 on
{x ∈ R

d : ‖x‖ ≥ ε} for any ε > 0. Standard large deviation theory then gives
that, for some positive constant A independent of n,

P
{

‖J(X̄ − θ)‖ ≥ ε
}

≤ e−Anε2 . (27)

In what follows we take A to mean, with some slight abuse of notation, a generic
positive constant independent of n, which may vary from occurence to occurence.

For Jθ = 0, setting ε = n−r in (27) gives that

P
(

‖JX̄‖ > n−r
)

= P
(

‖J(X̄ − θ)‖ > n−r
)

≤ e−An1−2r
. (28)

Fix a random sample X = (X1, . . . , Xn) satisfying ‖JX̄‖ ≤ n−r, for which θ̂n =

X̄ − JX̄ . Noting that n1/2(X̃∗ − θ̂n)
D
= Zn and Jθ̂n = 0, we have

P

{

f
(

n1/2(T̃ ∗
n,S − θ̂n)

)

≤ x | X
}

= P{f(Wn) ≤ x} = Hn(x),

so that x̃α = H−1
n (α) on X . It follows by (28) that

P

{

f
(

n
1

2 (Tn,S − θ)
)

≤ x̃α

}

= P
{

f(Wn) ≤ H−1
n (α); ‖JX̄‖ ≤ n−r

}

+ O
(

e−An1−2r
)

= α + O
(

e−An1−2r
)

,
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which proves (11) in part (i).

For Jθ 6= 0, setting ε = ‖Jθ‖/2 in (27) shows that for sufficiently large n,

P
(

‖JX̄‖ ≤ n−r
)

≤ P
(

‖J(X̄ − θ)‖ ≥ ‖Jθ‖/2
)

≤ e−An. (29)

Fix a sample X with ‖JX̄‖ > n−r, so that θ̂n = X̄ on X . It follows by decom-

posing X̃∗ = (X̃∗ − θ̂n) + n−1/2Zn + θ that

n
1

2

(

T̃ ∗
n,S − θ̂n

)

= n
1

2 (X̃∗ − θ̂n) − n− 1

2 c‖Jθ‖−2Jθ + Op(n
−1). (30)

Inverting the conditional distribution of (30) given X , using the expansion (3)

and the fact that n1/2(X̃∗ − θ̂n)
D
= Zn, we have

x̃α = ỹα + Op(n
−1), (31)

where ỹα = G−1(α) − n−1/2{g(G−1(α))G′(G−1(α))−1 + c‖Jθ‖−2(Jθ)TC̃(α)}.

Substitution of (31) shows the coverage probability of I(α) to be

P

{

f
(

n
1

2 (Tn,S − θ)
)

≤ x̃α

}

= P

{

f(Zn) − n− 1

2 c‖Jθ‖−2(Jθ)T∇f(Zn) ≤ ỹα

}

+ O(n−1)

= Gn(ỹα) + n− 1

2 c‖Jθ‖−2(Jθ)TD̃(G−1(α)) + O(n−1).

Part (ii) then follows by (3) and expanding G(ỹα) about G(G−1(α)) = α.

A.4. Proof of Theorem 5

Suppose first that Jθ = 0. As in the proof of Theorem 4(i), we fix a random

sample X satisfying ‖JX̄‖ ≤ n−r, so that Jθ̂n = 0. Then, for some A > 0,

P

(

‖JX̃∗‖ > n−r | X
)

= P

(

‖J(X̃∗ − θ̂n)‖ > n−r | X
)

≤ e−An1−2r

by a conditional analogue of (28) so that, with conditional probability 1 −

Op(e
−An1−2r

) given X , θ̂∗n = X̃∗ − JX̃∗ and hence x̃∗
β = H−1

n (β). It follows

that

π̃∗(β) = P
{

f(Wn) ≤ H−1
n (β)

}

+ Op(e
−An1−2r

) = β + Op(e
−An1−2r

),

and that

β̃ ≡ π̃∗−1(α) = α + Op(e
−An1−2r

). (32)
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Using (32), and arguing as in the proof of Theorem 4(i), we see that x̃β̃ = H−1
n (β̃)

on X , and that

P

{

f
(

n1/2 (Tn,S − θ)
)

≤ x̃β̃

}

= P

{

f(Wn) ≤ H−1
n (β̃); ‖JX̄‖ ≤ n−r

}

+ O
(

e−An1−2r
)

= P
{

f(Wn) ≤ H−1
n (α); ‖JX̄‖ ≤ n−r

}

+ O
(

e−An1−2r
)

= α + O
(

e−An1−2r
)

,

which proves Theorem 5 (i).

Suppose now that Jθ 6= 0. Fix a random sample X that satisfies ‖J X̄‖ > n−r

and ‖J(X̄−θ)‖ ≤ ‖Jθ‖/2. It follows from (29) that, for a positive constant A and

sufficiently large n, both of the events {‖JX̄‖ ≤ n−r} and {‖J(X̄−θ)‖ > ‖Jθ‖/2}
have probabilities bounded above by e−An. It follows that X is observed with
probability 1 − O(e−An). Conditional on X , we have θ̂n = X̄ and then, for

sufficiently large n,

P

{

‖JX̃∗‖ ≤ n−r | X
}

≤ P

{

‖J(X̃∗ − θ̂n)‖ ≥ ‖Jθ‖/4 | X
}

≤ e−An, (33)

by setting ε = ‖Jθ‖/4 in a conditional analogue of (27).
Define, for any ν ∈ R

d and x ∈ R, Hn(x | ν) = P{Ψ(Zn, n1/2ν) ≤ x}. Note
that Hn(x | ν) = G(x) + O(n−1/2) for any fixed ν 6= 0. It follows from (33) that,

with conditional probability 1 − Op(e
−An) given X , θ̂∗n = X̃∗ and

Hn(x̃∗
β | n1/2X̃∗) = β. (34)

Write Z̃∗ = n
1

2 (X̃∗ − θ̂n)
D
= Zn. Define

ε∗n = n−1c‖Jθ‖−2JZ̃∗ − 2n−1c‖Jθ‖−4
(

Z̃∗TJθ
)

Jθ,

εn = n−1c‖Jθ‖−2JZn − 2n−1c‖Jθ‖−4
(

ZT
n Jθ

)

Jθ.

Noting that JX̃∗ = n−1/2JZ̃∗ + JX̄ on X , we have

Hn(x | n
1

2 X̃∗) = Hn(x | n
1

2 X̄) + ε∗Tn D̃(x) + Op(n
− 3

2 ). (35)

It follows from (34) and (35) that

π̃∗(β) = P

{

Hn(Ψ(Z̃∗, n
1

2 X̄) | n
1

2 X̃∗) ≤ β | X
}

+ Op(e
−An)

= P

{

Hn(Ψ(Z̃∗, n
1

2 X̄) | n
1

2 X̄) + ε∗Tn D̃(f(Z̃∗)) ≤ β | X
}

+ Op(n
− 3

2 )

= β − E

[

ε∗Tn | f(Z̃∗) = G−1(β)
]

D̃(G−1(β)) + Op(n
− 3

2 )

= β − n−1`(β) + Op(n
− 3

2 ), (36)
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where

`(β) = c‖Jθ‖−4
{

‖Jθ‖2D̃(G−1(β))T−2
[

D̃(G−1(β))TJθ
]

θT
}

×JE[Z | f(Z)=G−1(β)].

Inversion of (36) gives that

β̃ ≡ π̃∗−1(α) = α + n−1`(α) + Op(n
− 3

2 ). (37)

Arguments similar to those reaching (35) give that

Hn(x | n
1

2 X̄) = Hn(x | n
1

2 θ) + εT
n D̃(x) + Op(n

− 3

2 ). (38)

It follows from (37) and (38) that the coverage probability of I∗(α) is

P {θ ∈ I∗(α)}

= P

{

Hn(Ψ(Zn, n
1

2 θ) | n
1

2 X̄) ≤ β̃
}

+ O(e−An)

= P

{

Hn(Ψ(Zn, n
1

2 θ) | n
1

2 θ) + εT
n D̃(f(Zn)) ≤ α + n−1`(α)

}

+ O(n− 3

2 ).

The latter expression is equivalent, up to Op(n
−3/2), to (36) with β = α+n−1`(α),

since Z̃∗ D
= Zn and ε∗n

D
= εn. Part (ii) then follows by noting that α + n−1`(α) −

n−1`(α + n−1`(α)) = α + O(n−2)
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