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Summary. We present a variance stabilizing transformation for inference about a scalar param-
eter that is estimated by a function of a multivariate M-estimator.The transformation proposed is
automatic, computationally simple and can be applied quite generally. Though it is based on an
intuitive notion and entirely empirical, the transformation is shown to have an appropriate justifi-
cation in providing variance stabilization when viewed from both parametric and nonparametric
perspectives. Further, the transformation repairs deficiencies of existing methods for variance
stabilization. The transformation proposed is illustrated in a range of examples, and its effec-
tiveness to yield confidence limits having low coverage error is demonstrated in a numerical
example.
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1. Introduction

This paper concerns variance stabilization for inference about a scalar parameter that is esti-
mated by a function of a multivariate M-estimator; to fix the notation, say that a scalar γ=g.θ/
is estimated by γ̂=g.θ̂/, where θ is a q-dimensional parameter and its estimator θ̂ is obtained by
M-estimation based on independent observations X1, . . . , Xn. The principal focus is on non-
parametric inference, with a view towards constructing bootstrap confidence limits; however,
parametric inference is also considered. A concise description of bootstrap confidence limits
has been given by Davison and Hinkley (1997), section 5.2. Two popular methods are the basic
percentile method and the bootstrap t method. The basic percentile method is motivated by the
assumption that n1=2.γ̂−γ/ is pivotal. The motivating assumption for the bootstrap t method
is that n1=2.γ̂−γ/=σ̂ is pivotal, where σ̂2 is some n1=2-consistent estimator of σ2, the asymptotic
variance of n1=2.γ̂−γ/; typically, σ̂2 is derived by using the delta method or the bootstrap. There
is considerable practical evidence that the basic percentile bootstrap method and the bootstrap
t method are likely to be most accurate when applied in terms of a reparameterization φ=h.γ/

that is essentially a location parameter, which can be achieved, at least approximately, by a
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variance stabilizing transformation; see, for example, Tibshirani (1988), Efron and Tibshirani
(1993), section 12.6, Canty et al. (1996) and Davison and Hinkley (1997), section 5.7.

A main device for identifying variance stabilizing transformations is the variance parameter
plot, which is a scatterplot of the points .γ̂Å

b , σ̂Å2
b /, b=1, . . . , B. These points are B-versions of

.γ̂, σ̂2/ based on B bootstrap samples drawn from the fitted model; in the nonparametric case,
the fitted model is the empirical distribution function. Tibshirani (1988) recommended drawing
a smooth curve through these points to obtain a variance function v̂.γ/ and then applying the
standard transformation for variance stabilization:

h.γ/=
∫ γ

γ̂
v̂.t/−1=2 dt:

A drawback of this approach is that h.γ/ does not have a closed form expression; typi-
cally, numerical integration is necessary to compute the variance-stabilized parameterization.
Davison and Hinkley (1997), sections 3.9 and 5.2, recommended the variance parameter plot as
a diagnostic tool; a convenient transformation is deemed variance stabilizing if no systematic
trend is evident in its variance parameter plot. They provided examples demonstrating that, in
many situations, very simple transformations, such as logarithms and square roots, provide an
adequate degree of variance stabilization. The drawback of their approach is that it does not
automatically identify a suitable transformation. In each case, a scatterplot must be examined
and some judgment must be used to recommend possible transformations.

The primary goal of the present work is to provide an automatic and general method to
identify convenient variance stabilizing transformations in both parametric and nonparametric
problems. The method that is proposed here is based on an asymptotic quantity k̂ of order Op.1/

such that

k̂ = n

σ̂3 E{.γ̂Å − γ̂/.σ̂Å2 − σ̂2/}
to error of order O.n−1=2/ given the sample values, where the expectation is taken with respect
to the distribution of the bootstrap random variable .γ̂Å, σ̂Å2/. Any parameterization for which
the variance parameter plot shows no systematic linear trend would have k̂ near 0. The method
proposed is to choose, from a suitable class of transformations, a reparameterization for which
k̂ = 0. Motivated by the simple transformations that Davison and Hinkley (1997) found to be
effective, the class of Box–Cox transformations is used here. However, other classes of trans-
formations could in principle be considered.

An advantageous property of the method proposed is that it requires no bootstrap resam-
pling. If a resampling technique is to be used for inference about γ, then preparing a variance
parameter plot is unlikely to demand much additional computation. However, if a non-
resampling method, such as the large sample normal approximation to the Studentized
statistic n1=2.γ̂−γ/=σ̂, is to be used, then the resampling that is required for the variance param-
eter plot could increase the computational burden unacceptably. Davison and Hinkley (1997),
section 5.2, remarked that variance stabilizing transformations can be effective for improving
the standard normal approximation to the distribution of the Studentized statistic. Further-
more, saddlepoint approximations allow bootstrap inference without resampling; see Davison
and Hinkley (1988). For example, Daniels and Young (1991) and DiCiccio et al. (1994) con-
sidered saddlepoint approximations to bootstrap distributions of Studentized statistics and, in
this context, the techniques that are developed here are especially convenient for choosing an
appropriate parameterization in which to express the Studentized statistic.

Another troublesome aspect of the variance parameter plot is that it depends exclusively on
the fitted model; no family of models that is indexed by the interest parameter γ is explicitly
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considered. Consequently, it is difficult to understand precisely the sense in which transforma-
tions that are derived from variance parameter plots are variance stabilizing. This problem is
overcome in an alternative approach to variance stabilizing transformations that are based on
least favourable families.

Frequentist inference about γ in the presence of nuisance parameters may be achieved by con-
sidering a data-dependent subclass of models that is indexed by γ known as a least favourable
family. In the nonparametric context, a least favourable family is a class of multinomial distri-
butions that is determined by a vector of probabilities defined on the data points X1, . . . , Xn.
In parametric models where maximum likelihood estimation is used, a least favourable family
is given by the fitted model under the constrained maximum likelihood estimator of θ for a
given value of γ. Let σ̃2.γ/ be the asymptotic variance function for inference about the interest
parameter under sampling from the least favourable family corresponding to the specified value
of γ. A key property of the least favourable family is that σ̃2.γ̂/ is an n1=2-consistent estimator
of σ2. Assume that the estimator σ̂2 satisfies

σ̂2 = σ̃2.γ̂/+O.n−1/

given the sample values; typically, σ̂2 = σ̃2.γ̂/. For nonparametric inference, DiCiccio and Tib-
shirani (1987) and Hall and Presnell (1999) suggested that variance stabilizing transformations
be constructed by using this variance function in the standard way. Unfortunately, as in the case
of variance parameter plots, this approach typically yields transformations that have no closed
form expression, so numerical integration is again required.

Another major aim of the present paper is to establish a formal connection between the two
approaches to variance stabilization. In particular, it is shown that

k̂ = 1
σ̂

dσ̃2.γ/

dγ

∣∣∣∣
γ=γ̂

.1:1/

to error of order O.n−1=2/ given the sample values. In many important cases, identity (1.1) holds
exactly. It follows from expression (1.1) that, given the sample values,

σ̃2.γ/

σ̃2.γ̂/
=1−n−1=2tk̂ +O.n−1/, .1:2/

for values of γ such that γ− γ̂ is of order O.n−1=2/, where t =n1=2.γ̂−γ/=σ̂ is the usual Student-
ized statistic. Expression (1.2) shows that

σ̃2.γ/= σ̃2.γ̂/+O.n−1=2/

in general; however, if the parameter γ has k̂ =0, then

σ̃2.γ/= σ̃2.γ̂/+O.n−1/:

Thus, identity (1.1) establishes that the method of variance stabilization based on variance
parameter plots offers a considerable degree of variance stabilization along the least favourable
family locally near γ̂, as does the automatic method of variance stabilization that is proposed
here.

The condition k̂ =0 does not, in general, imply exact variance stabilization. In practice, even
when a reparameterization is used for which the second term on the right-hand side of equa-
tion (1.2) vanishes, the effect of higher order terms, particularly the quadratic term, can still
be apparent. Variance parameter plots for the transformed parameter often show a parabolic
trend; see, for example, the right-hand panels of Fig. 12.2 of Efron and Tibshirani (1993), page
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166, and Fig. 5.1 of Davison and Hinkley (1997), page 201. None-the-less, the extent of fluctu-
ation in the variance across the relevant range of the interest parameter is typically much less
for the transformed parameter than it is in the original parameterization.

Expansion (1.2) provides another interpretation of k̂. Suppose that φ= h.γ/ is some re-
parameterization, and let φ̂=h.γ̂/. In obvious notation,

σ̃2
φ.φ/

σ̃2
φ.φ̂/

=1− .φ̂−φ/

σ̂φ
k̂φ+O.n−1/

=1− .γ̂−γ/

σ̂γ
k̂φ+O.n−1/,

since

.φ̂−φ/=σ̂φ= .γ̂−γ/=σ̂γ +O.n−1/:

It follows that

k̂φ= n1=2

c

[
σ̃2
φ{h.γ̂+n−1=2cσ̂γ/}− σ̃2

φ{h.γ̂/}
σ̃2
φ{h.γ̂/}

]
+O.n−1=2/,

for any constant c, since σ̃2
φ.φ̂/= σ̃2

φ{h.γ̂/}= σ̂2
φ+O.n−1/. Consequently, n−1=2ck̂φ represents,

to error of order O.n−1/, the relative change in variance on the φ-scale between the values
γ̂+n−1=2cσ̂γ and γ̂ of the interest parameter γ. This observation implies that the quantity k̂ can
be used directly as a guide to distinguish between competing parameterizations in terms of their
ability to stabilize variance. If φ1 = h1.γ/ and φ2 = h2.γ/ are two reparameterizations having
|k̂φ1 |< |k̂φ2 |, then σ̃2

φ1
is likely to be relatively less variable locally near φ̂1 than σ̃2

φ2
is near φ̂2.

The fundamentals of our proposed method for variance stabilization are described in Sec-
tion 2, where examples are given which compare the results of our approach with results from
other variance stabilization techniques. In Section 3, the particular case of maximum likelihood
estimation in parametric models is considered; the formal sense in which variance stabilization
is achieved is elucidated and a numerical study is used to demonstrate the effectiveness of the
proposed method for yielding confidence limits having low coverage error. These ideas and
results are extended to nonparametric problems in Section 4.

2. A variance stabilizing transformation

2.1. The inference problem
Let X be a random vector, and let θ= .θ1, . . . , θq/′ be an M-estimand defined by

E{ψ.X, θ/}=0,

where ψ.X, θ/ = .ψ1.X, θ/, . . . ,ψq.X, θ//′ is a vector of estimating functions. Given a random
sample X1, . . . , Xn from the same distribution as that of X, the M-estimator θ̂ of θ satisfies the
equation

n∑
i=1

ψ.Xi, θ̂/=0:

Now suppose that the scalar parameter of interest is γ=g.θ/, where g.θ/ is a smooth function,
and let γ̂=g.θ̂/. Under regularity conditions (Huber (1981), page 132), n1=2.θ̂−θ/ is normally
distributed asymptotically, so the asymptotic distribution of n1=2.γ̂−γ/ is N.0,σ2/.
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The formulae for σ2 and k require some additional notation. Let

ga.θ/= @g.θ/=@θa,

gab.θ/= @2g.θ/=@θa @θb,

ψa=b.X, θ/= @ψa.X, θ/=@θb,

ψa=bc.X, θ/= @2ψa.X, θ/=@θb @θc,

and so forth .a, b=1, . . . , q/, and let

Aa=b =E{ψa=b.X, θ/},

Σab =E{ψa.X, θ/ψb.X, θ/}:

Furthermore, define q × q matrices A = .Aa=b/, A−1 = .Aa=b/, Σ = .Σab/ and V = .V ab/ =
A−1Σ.A−1/′. Note that V is the asymptotic covariance matrix of n1=2.θ̂−θ/. Then

σ2 =g′
.1/Vg.1/,

where g.1/ = .g1, . . . , gq/′.
Estimates of the preceding quantities can be obtained by replacing expectations with their

corresponding sample averages and substituting θ̂ for θ; a circumflex is used to denote such
estimates. Thus, Â= .Âa=b/ and Σ̂= .Σ̂ab/, where

Âa=b =n−1 ∑
ψa=b.Xi, θ̂/

and

Σ̂ab =n−1 ∑
ψa.Xi, θ̂/ψb.Xi, θ̂/;

ĝ.1/ =.ĝ1, . . . , ĝq/′,where ĝa =ga.θ̂/. Inparticular, σ̂2 = ĝ′
.1/V̂ ĝ.1/,where V̂ =.V̂ ab/= Â−1Σ̂.Â−1/′.

Variance stabilizing transformations are examined here in terms of the quantity k which is
defined by

k =−[ηaηbηc E{ψa.X, θ/ψb.X, θ/ψc.X, θ/}+4ηaηbδc E{ψa.X, θ/ψb=c.X, θ/}
+2ηaδbδc E{ψa=bc.X, θ/}−2δaδbgab]=σ3, .2:1/

where ηa =Ab=agb and δa =−V abgb. In this expression and subsequently, we adopt the standard
convention by which summation over the range 1, . . . , q is assumed for any index that appears
both as a subscript and as a superscript. Calculations of DiCiccio and Monti (2002) show that

k = n

σ3 E{.γ̂−γ/.σ̂2 −σ2/} .2:2/

to error of order O.n−1=2/.
Our proposal for variance stabilization stems from equation (2.2) and the property that the

quantity k is not parameterization invariant. Let φ= h.γ/ be any monotonically increasing
smooth transformation of γ. Then, in obvious notation,

kφ=kγ +2σγ h.2/.γ/=h.1/.γ/, .2:3/

where h.j/.γ/=djh.γ/=dγj, j =1, 2.
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The quantity k can be estimated by its sample version

k̂ =
[

1
n

∑
ÎF

3
i +4

d
d"

1
n

∑
ÎFiη̂

′ψ.Xi, θ̂+ "δ̂/

∣∣∣∣
"=0

−2
d2

d"2

1
n

∑
η̂′ψ.Xi, θ̂+ "δ̂/

∣∣∣∣
"=0

+2
d2

d"2 g.θ̂+ "δ̂/

∣∣∣∣
"=0

]/
σ̂3,

where η̂= .η̂1, . . . , η̂q/′, δ̂ = .δ̂1, . . . , δ̂q/′, η̂a = Âb=aĝb, δ̂a = −V̂ abĝb and ÎFi = −η̂′ψ.Xi, θ̂/ =
−η̂aψa.Xi, θ̂/ is the empirical influence function for γ at Xi. Note that σ̂2 and k̂ can be computed
easily by using numerical differentiation; analytical expressions for the partial derivatives of g.θ/
and ψ.X, θ/ are unnecessary. Both σ2 and k are of order O.1/, and the differences σ̂2 −σ2 and
k̂ −k are both of order Op.n−1=2/.

Analogously to equation (2.3), the quantity k̂ satisfies the transformation rule

k̂φ= k̂γ +2σ̂γ h.2/.γ̂/=h.1/.γ̂/, .2:4/

which can be used to find a data-dependent transformation φ=h.γ/ satisfying k̂φ=0.

2.2. The transformation
Formula (2.2) permits a more formal understanding of the graphical approach to variance sta-
bilization of Davison and Hinkley (1997), sections 3.9 and 5.2. The distribution of the bootstrap
random variable .γ̂Å, σ̂Å2/ has

k̂ = n

σ̂3 E{.γ̂Å − γ̂/.σ̂Å2 − σ̂2/}
to error of order O.n−1=2/ given the sample values. If k̂ =0, then γ̂Å and σ̂Å2 are nearly uncorre-
lated. A transformation for which the variance parameter plot shows no systematic linear trend
would have k̂ near 0.

Our proposal, therefore, is to find, from some suitable class of transformations, a reparam-
eterization φ= h.γ/ for which k̂φ = 0. The transformation rule (2.4) would require that the
reparameterization satisfies

d[log{h.1/.γ/}]
dγ

∣∣∣∣
γ=γ̂

=−1
2

k̂γ

σ̂γ
: .2:5/

The choice of parameterization is entirely empirical, depending only on the data. In subsequent
sections, we show, however, that this proposal does indeed have variance stabilization properties
in both parametric and nonparametric problems.

Convenient classes of transformations to consider for deriving variance stabilizing reparame-
terizations are provided by the Box–Cox transformations (Box and Cox, 1964). If the parameter
γ is positive, then the class of Box–Cox transformations

h.γ/= γλ−1
λ

.2:6/

can be considered; equation (2.5) shows that k̂φ=0 when

λ=1− 1
2 γ̂k̂γ=σ̂γ : .2:7/

If the parameter γ is not restricted to be positive, then the Box–Cox transformations can be
applied to exp.γ/. This approach leads to the parameterization φ=h.γ/ with
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h.γ/= exp.λγ/−1
λ

, .2:8/

and expression (2.5) shows that k̂φ=0 when

λ=− 1
2 k̂γ=σ̂γ : .2:9/

More generally, a class of monotonically increasing transformations can be obtained by apply-
ing the Box–Cox transformations to an initial parameterization f.γ/, where f.γ/ is a positive
function. In this approach, the parameterization φ=h.γ/ is given by

h.γ/= ±{f.γ/λ−1}
λ

, .2:10/

the negative sign being used when f.γ/ is monotonically decreasing. Expression (2.5) shows that
k̂φ=0 when

λ=− 1
F1.γ̂/

{
1
2

k̂γ

σ̂γ
+F2.γ̂/

}
, .2:11/

where F1.γ/=d[log{f.γ/}]=dγ and F2.γ/=d{log |F1.γ/|}=dγ.

2.3. Further remarks
If the goal is to identify a parameterization for which the variance parameter plot shows no
systematic trend, and in particular no linear trend, then it might seem more natural to work
with ρ, the correlation between γ̂ and σ̂2

γ , than to use the quantity k. The transformation rule
for the correlation is

ρφ= kφ

.k2
φ−k2

γ +υγ/1=2
,

where υγ =nE{.σ̂2
γ=σ2

γ − 1/2}, and the condition that a monotonically increasing transforma-
tion φ=h.γ/ must satisfy for ρ̂φ=0 is identical to expression (2.5). For this reason, and since,
as discussed in Section 1, the quantity k̂ has a meaningful interpretation in terms of measuring
the change in relative variance locally near γ̂, it is convenient to work directly with k̂ instead of
using the correlation coefficient.

Although the development here is in terms of independent and identically distributed observa-
tions, only the independence assumption is crucial. In many situations, such as regression mod-
els, the ψ-function varies across observations, so that the M-estimator θ̂ satisfies Σψi.Xi, θ̂/=0,
where

ψi.Xi, θ/= .ψi
1.Xi, θ/, . . . ,ψi

q.Xi, θ//′

is the ψ-function for observation Xi. Here, A = .Aa=b/ and Σ = .Σab/ are defined in obvious
notation to have entries

Aa=b =E
{

n−1 ∑
ψi

a=b.Xi, θ/
}

and

Σab =E
{

n−1 ∑
ψi

a.Xi, θ/ψi
b.Xi, θ/

}
:

The results extend in a direct manner to such situations by substituting ψi.Xi, θ/ for ψ.Xi, θ/ in
the calculation of σ̂2 and k̂.
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The smooth function of means framework (Hall (1992), section 2.4), where X= .X1, . . . , Xq/′
and the parameter of interest γ= g.µ/ is a smooth function of the vector mean µ=E.X/, is a
special case of M-estimation with ψ.X,µ/=X−µ. In this situation, the expressions for k and k̂

simplify considerably. In particular, V =Σ=E{.X−µ/.X−µ/′}, σ2 =g′
.1/Σg.1/, η=−g.1/ and

δ=−Σg.1/. Hence,

k = [E{.X−µ/′g.1/}3 +2δ′g.2/δ]=σ3,

where g.2/ = @2g.µ/=@µ @µ′; furthermore,

k̂ =
{

n−1 ∑
ÎF

3
i +2

d2

d"2 g.θ̂+ "δ̂/

∣∣∣∣
"=0

}/
σ̂3,

where ÎFi = .Xi − X̄/′ĝ.1/, δ̂ = −Σ̂ĝ.1/, σ̂2 = ĝ′
.1/Σ̂ĝ.1/, X̄ = n−1ΣXi, ĝ.1/ = g.1/.θ̂/ and Σ̂ =

n−1Σ.Xi − X̄/.Xi − X̄/′.
Although the transformation method that was proposed in Section 2.2 is not generally param-

eterization invariant, it is insensitive to some choices of initial parameterization. If the parameter
γ is positive, then the Box–Cox class (2.6) with the exponent λγ given by equation (2.7) can be
used; alternatively, the class (2.10) could be used with initial parameterization f.γ/=γr for any
power r, in which case the exponent that is obtained from equation (2.11) is λγr =λγ=r. The
transformations that are obtained this way from classes (2.6) and (2.10) would differ only by a
scalar multiple, so they would perform identically in terms of variance stabilization. Similarly,
if the parameter γ takes negative values, then the class (2.8) is available or, alternatively, the
class (2.10) can be used with initial parameterization f.γ/ = exp.cγ/ for any non-zero scalar
c. For this choice of initial parameterization, the exponent that is given by equation (2.11) is
λγ=c, where λγ is the exponent (2.9) for use with the class (2.8), so the transformations that are
obtained from classes (2.8) and (2.10) would perform identically.

The lack of parameterization invariance requires that care should be taken when choosing
a parameterization in which the method proposed is to be applied. In particular, the method
seems to work better when used with a parameterization that has no range constraints beyond
the positivity of γ that is required for the Box–Cox class (2.6) or, more generally, the positivity
of the function f.γ/ that is required for class (2.10). If the parameter γ has an upper limit c and γ̂
is close to c, then using the initial parameterization f.γ/=c−γ is likely to produce better results
than using γ directly; similarly, if γ̂ is close to a lower limit c, then f.γ/=γ− c is preferred to
γ. Issues relating to the initial choice of parameterization are examined further in Section 3.4.

2.4. Examples
2.4.1. Example 1: air-conditioning data failure ratio problem of Davison and Hinkley (1997)
In the first example, there are two samples of sizes n1 = 12 and n2 = 24 drawn from two pop-
ulations having positive means µ1 and µ2, and the parameter of interest is γ=µ2=µ1. Because
inference is based on two independent samples, of different sizes, from two distributions, this
problem is not in the smooth function framework, but it can be handled by the more general
M-estimation approach of Section 2.3. Davison and Hinkley (1997), page 219, demonstrated the
effectiveness of the logarithmic transformation for these data to stabilize variance. Formula (2.7)
yields λγ =−0:08949, which agrees closely with their choice of transformation.

2.4.2. Example 2: city population data problem of Davison and Hinkley (1997)
In the second example, there is a sample of size n=10 from a bivariate distribution having mean
.µ1,µ2/, where µ1 and µ2 are both positive. The parameter of interest is γ=µ2=µ1. In contrast
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Fig. 1. Standard deviation versus parameter plots for ratio of means γDµ2=µ1 .B D999/: (a) γ; (b) log.γ/;
(c) φ, the Box–Cox transformation applied to γ

with example 1, this problem is in the smooth function framework. Davison and Hinkley (1997),
page 113, used this example to demonstrate the Tibshirani (1988) method of variance stabil-
ization based on smoothing the variance parameter plot. Formula (2.7) yields λγ =−2:1275.
Fig. 1 shows standard deviation versus parameter plots based on B = 999 bootstrap samples:
Fig. 1(a) shows σ̂Å

γ =σ̂γ versus γ̂Å; Fig. 1(b) shows σ̂Å
log.γ/=σ̂log.γ/ versus log.γ̂Å/; Fig. 1(c) shows

σ̂Å
φ=σ̂φ versus φ̂Å, where φ is the Box–Cox parameterization based on γ. The Box–Cox trans-

formation is clearly effective for reducing trend in the plot; the sample correlations for these
plots are 0:868, 0:738 and −0:051, respectively for Figs 1(a), 1(b) and 1(c). A comparison with
Fig. 3.11 of Davison and Hinkley (1997) shows that the Box–Cox transformation works com-
parably with Tibshirani’s method. Based on 5 million bootstrap samples, the 95% confidence
interval for γ from the bootstrap t applied on the original scale is [1:245, 2:096], applied on the
log-scale is [1:232, 2:147] and applied on the Box–Cox scale is [1:204, 2:367]. Based on 10000
bootstrap samples, each with 500 subsamples used for variance estimation, Tibshirani’s method
yields the interval [1:139, 2:470]. The Box–Cox transformation appears to be making a similar
adjustment to that of the Tibshirani method; the upper end point is noticeably larger, whereas
the lower end point is smaller.

Davison and Hinkley (1997), section 3.10.2, discussed the use of bootstrap scatterplots to
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determine a transformation h.γ/ such that h.γ̂Å/ is close to its linear approximation. They
considered the Box–Cox family of transformations (2.6) in connection with the city population
data problem and showed that linearity is almost achieved when λ=−2, which is very close
to the value λγ =−2:1275 that is obtained from equation (2.7). Davison and Hinkley (1997),
example 3.25, argued that use of this transformation improves the normal approximation to the
distribution of the Studentized statistic.

2.4.3. Example 3: cd4 count data analysed by DiCiccio and Efron (1996)
The data set for the third example consists of a sample of size n = 20 drawn from a bivariate
distribution. If the parameter of interest γ is the largest eigenvalue of the covariance matrix of
the underlying bivariate population, formula (2.7) yields λ=0:52032. Canty et al. (1996) dem-
onstrated that the square-root transformation is variance stabilizing in this situation, which
agrees with the present finding.

Now suppose that the parameter of interest is ρ, the correlation of the bivariate population;
here, ρ̂=0:72317 and σ̂=0:35547. If the Box–Cox transformation is applied to ρ directly, then
formula (2.7) yields λρ=3:0237. If ρ̂ is large and positive, then it is reasonable to apply the Box–
Cox transformation in terms of the parameterization 1 −ρ, which has the benefit of mapping
the limit ρ=1 to 0. Formula (2.7) yields λ1−ρ=0:22531. Similarly, it is reasonable to apply the
Box–Cox transformation to

ξ= .1+ρ/=.1−ρ/,

whose range is the entire positive axis, and equation (2.7) yields λξ =−0:05571, indicating that
Fisher’s transformation is appropriate. Fig. 2 shows standard deviation versus parameter plots
based on B=999 bootstrap samples: Fig. 2(a) shows σ̂Å

ρ =σ̂ρ versus ρ̂Å; Fig. 2(b) shows σ̂Å
φρ

=σ̂φρ
versus φ̂Å

φρ
, where φρ is the Box–Cox transformation applied to ρ; Fig. 2(c) shows σ̂Å

φ1−ρ=σ̂φ1−ρ
versus φ̂Å

1−ρ, where φ1−ρ is the Box–Cox transformation applied to 1 − ρ; Fig. 2(d) shows
σ̂Å
φξ

=σ̂φξ versus φ̂Å
ξ , where φξ is the Box–Cox transformation applied to ξ. The sample correl-

ations for these plots are −0:798, 0:073, −0:062 and 0:064 respectively.
To illustrate the effect in this example of the choice of initial parameterization for the Box–

Cox transformation, Table 1 reports nominal 90% and 99% equitailed confidence intervals for
ρ derived from the standard normal approximation to the distributions of various Studentized
pivots. The Studentized pivots are based on the original parameterization ρ and parameteriza-
tions that are obtained by applying the Box–Cox transformation to ρ, exp.ρ/, 1−ρ, e− exp.ρ/

and .1+ρ/=.1−ρ/. For the 90% confidence intervals, the Box–Cox parameterizations all yield
similar intervals, and these intervals are noticeably different from the interval that is based on
ρ. As the coverage level increases, however, differences emerge between the intervals that are
obtained by applying the Box–Cox transformation to ρ and exp.ρ/ on the one hand and those
that are obtained by applying the transformation to 1−ρ, e−exp.ρ/, and .1+ρ/=.1−ρ/ on the
other.

3. Maximum likelihood estimation in parametric models

3.1. General background
Consider a parametric model that is indexed by θ= .θ1, . . . , θq/, and let l.θ; X/ denote the log-
likelihood function that is based on a single observation X. Take ψa.X, θ/ = la.θ; X/, where
la.θ; X/=@l.θ; X/=@θa .a=1, . . . , q/, so that M-estimation corresponds to maximum likelihood
estimation. It is shown in Appendix A that
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Fig. 2. Standard deviation versus parameter plots for correlation coefficient ρ .B D 999/: (a) ρ; (b) φρ, the
Box–Cox transformation applied to ρ; (c) φ1�ρ, the Box–Cox transformation applied to 1�ρ; (d) φξ , the Box–
Cox transformation applied to ξD .1Cρ/=.1�ρ/

Table 1. Equitailed confidence intervals for example 3, the correlation coefficient ρ,
based on standard normal approximations to the distributions of Studentized pivots†

Parameterization λ Confidence intervals for
the following nominal
two-sided coverages:

90% 99%

ρ [0.5924, 0.8539] [0.5184, 0.9279]
Box–Cox, ρ 3.02369 [0.5567, 0.8354] [0.3809, 0.8873]
Box–Cox, exp.ρ/ 2.79838 [0.5604, 0.8346] [0.4191, 0.8850]
Box–Cox, 1−ρ 0.22531 [0.5664, 0.8320] [0.4513, 0.8767]
Box–Cox, e− exp.ρ/ 0.42641 [0.5649, 0.8326] [0.4440, 0.8787]
Box–Cox, .1+ρ/=.1−ρ/ −0.05571 [0.5678, 0.8314] [0.4582, 0.8750]

†Point estimate ρ̂=0:7232.
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k =−{ηaηbηc.@λbc=@θa/−2ηaηbgab}=σ3, .3:1/

where λab =E.lab/, lab =@2l.θ; X/=@θa @θb, ηa =λabgb and σ2 =−λabgagb, and .λab/ is the q×q

matrix inverse of .λab/. In the parametric context, k can be approximated to error of order
Op.n−1=2/ by evaluating expression (3.1) at the maximum likelihood estimator θ̂, so take k̂=k.θ̂/.
Similarly, let σ̂2 =−λ̂abĝaĝb.

3.2. Scalar parameter models
Consider the case q = 1 so that θ= θ1, and suppose that the parameter of interest is γ= θ. In
this situation, σ2 =−λ11 =−1=λ11; expression (3.1) yields

k = dλ11

dθ
.−λ11/3=2

= 1
σ

dσ2

dθ
, .3:2/

so expression (1.1) is readily seen to hold. Approximate variance stabilization is achieved locally
near θ̂ if k̂ = 0, since that condition implies dσ2=dθ|θ=θ̂ = 0. However, if k = 0 for all θ, then
global variance stabilization is achieved as, in that case, dσ2=dθ=0 for all θ, i.e. σ2 is constant.

3.2.1. Example 4: binomial distribution having probability p

The variance stabilizing transformation for this example model is sin−1.p1=2/. To apply the
Box–Cox transformation in terms of p, note that σ2

p =p.1−p/; expression (3.2) yields

kp = .1−2p/={p.1−p/}1=2,

from which expression (2.7) produces λp = .1− p̂/=2. Alternatively, it is reasonable to apply the
Box–Cox transformation in terms of the odds ω=p=.1−p/, since the range of ω is the positive
axis. Note that

σ2
ω =ω.1+ω/2 =p=.1−p/3,

kω = .1+3ω/=
√
ω,

λω = .1− ω̂/=.2+2ω̂/:

Fig. 3 shows plots of the variance stabilizing transformation (full curve), φω = .ωλ − 1/=λ
(broken curve) and φp = .pλ − 1/=λ (chain curve). Fig. 3(a) is for p̂ = 0:7 and Fig. 3(b) is for
p̂ = 0:9. The curves in Fig. 3 are standardized to take value 0 and to have slope 1 at p̂. The
Box–Cox transformation based on the odds ω is extremely effective, even for p̂=0:9.

3.2.2. Example 5: bivariate normal distribution having known means and variances and
unknown correlation coefficient ρ
In example 5 the maximum likelihood estimator is not the usual sample correlation coefficient.
Assume that the means are 0 and the variances are 1; from observations .X1

i , X2
i /, i=1, . . . , n,

the maximum likelihood estimator ρ̂ is found as a root of a cubic equation, namely

S12 + .n−S11 −S22/ρ̂+S12ρ̂
2 −nρ̂3 =0,

where Srs =ΣXr
i X

s
i . Furthermore, σ2

ρ = .1 − ρ2/2=.1 + ρ2/, and the variance stabilizing trans-
formation is
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Fig. 3. Variance stabilizing transformations h.p/ for the binomial parameter p ( , exact variance stabil-
izing transformation; – – –, Box–Cox transformation applied to odds ωD p=.1 � p/; � – � – �, Box–Cox trans-
formation applied to p): (a) p̂ D0:7; (b) p̂ D0:9

1
2

log
(

1− τ

1+ τ

)
− 1

21=2 log
(

1−21=2τ

1+21=2τ

)
, τ = ρ

.1+ρ2/1=2 :

If ρ is large and positive, then it is reasonable to apply the Box–Cox transformation in terms of
the parameterization 1−ρ, for which

k1−ρ=2ρ.3+ρ2/=.1+ρ2/3=2,

λ1−ρ= .1−3ρ̂+3ρ̂2 −3ρ̂3/=.1− ρ̂4/:

Note that λ1−ρ=1 when ρ̂=0. It is also sensible to apply the Box–Cox transformation in terms
of Fisher’s parameterization ζ= tanh−1.ρ/, for which

kζ =−2ρ.1−ρ2/=.1+ρ2/3=2,

λζ = ρ̂.1− ρ̂2/=.1+ ρ̂2/,

where λζ is obtained from equation (2.9). The identical transformation would be obtained by
applying the Box–Cox method with λ given by equation (2.7) to the parameterization .1 +
ρ/=.1 − ρ/. Fig. 4 shows plots of the exact variance stabilizing transformation (full curve),
φζ ={exp.λζ/−1}=λ (broken curve) and φ1−ρ={.1−ρ/λ−1}=λ (chain curve): Fig. 4(a) is for
ρ̂= 0:4; Fig. 4(b) is for ρ̂= 0:7; Fig. 4(c) is for ρ̂= 0:95. The curves in Fig. 4 are standardized
to take value 0 and to have slope 1 at ρ̂. The Box–Cox transformation that is based on ζ pro-
vides excellent approximations to the true variance stabilizing transformation, and the Box–Cox
transformation that is based on 1−ρ works extremely well for larger values of ρ.

3.3. Multiparameter models
Now consider the general case in which nuisance parameters are present. It follows from equa-
tion (3.1) that

k =− 1
σ3 η

a @σ2.θ/

@θa
, .3:3/

since σ2.θ/=−λbcgbgc and @λbc=@θa =−λbdλce@λde=@θa.
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Fig. 4. Variance stabilizing transformations h.ρ/ for the correlation coefficient ρ ( , exact variance sta-
bilizing transformation; – – –, Box–Cox transformation applied to Fisher’s parameter ζD tanh�1.ρ/; � – � – �,
Box–Cox transformation applied to 1�ρ): (a) ρ̂D0:4; (b) ρ̂D0:7; (c) ρ̂D0:95

Let θ̃= θ̃.γ/ be the constrained maximum likelihood estimator of θ for a given value of γ, i.e.
θ̃.γ/ maximizes the log-likelihood function Σ l.θ; Xi/ subject to the constraint g.θ/ = γ. Then
θ̃.γ/={θ̃1.γ/, . . . , θ̃q.γ/} is a curve through the parameter space for which θ̃.γ̂/= θ̂. Standard
calculations show that

dθ̃a.γ/

dγ

∣∣∣∣
γ=γ̂

= Iabĝb

Ibcĝbĝc

=− 1
σ̂2 η̂

a +Op.n−1=2/, a=1, . . . , q, .3:4/

where .Iab/ is the q × q inverse of .Iab/, the observed information matrix, whose elements are
Iab =−Σ lab.θ̂; Xi/; note that Iab =n−1λ̂ab +Op.n−3=2/.

Now define σ̃2.γ/ to be the asymptotic variance along the constrained maximum likelihood
curve, so that σ̃2.γ/=σ2{θ̃.γ/}. It follows from expression (3.4) that

dσ̃2.γ/

γ

∣∣∣∣
γ=γ̂

=− 1
σ̂2 η̂

a @σ2.θ/

@θa

∣∣∣∣
θ=θ̂

+Op.n−1=2/, .3:5/
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and a comparison of expression (3.5) with expression (3.3) shows that expression (1.1) holds to
error of order O.n−1=2/ given the sample values. For models in which the expected and observed
information coincide, i.e. Iab = nλab .a, b = 1, . . . , q/, the error term on the right-hand side of
equation (3.4) vanishes, and expression (1.1) holds exactly.

As the following example illustrates, the variance stabilizing transformations that are pro-
posed here can be useful for improving the normal approximation to the distribution of the
Studentized statistic in the parametric case.

3.3.1. Example 6: bivariate normal distribution having unknown means, variances and
correlation coefficient ρ
In example 6, σ2

ρ= .1−ρ2/2, and Fisher’s parameterization ζ= tanh−1.ρ/ is variance stabilizing.
As in example 5, if ρ is large and positive, it makes sense to apply the Box–Cox transformation
to 1−ρ, for which

k1−ρ=4ρ,

λ1−ρ= .1− ρ̂/=.1+ ρ̂/:
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Fig. 5. Standard deviation plots for the correlation coefficient ρ ( , φ1�ρ, Box–Cox transformation
applied to 1�ρ; – – –, ρ): (a) ρ̂D0:4; (b) ρ̂D0:7; (c) ρ̂D0:95
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Fig. 5 shows standard deviation versus parameter plots of σ̃ρ=σ̂ρ (broken curve) and σ̃φ1−ρ=σ̂φ1−ρ
(full curve) versus ρ: Fig. 5(a) is for ρ̂=0:4; Fig. 5(b) is for ρ̂=0:7; Fig. 5(c) is for ρ̂=0:95. The
variance of ρ̂ changes extremely rapidly, and the extent of variance stabilization that is afforded
by the Box–Cox transformation φ1−ρ={.1−ρ/λ−1}=λ is quite remarkable.

A simulation study was performed in this example to assess the efficacy of the method pro-
posed. Table 2 shows properties of nominal 90% and 95% equitailed confidence intervals based
on samples of size n=20 drawn from bivariate normal populations having ρ=0:7 and ρ=0:9.
The confidence intervals are derived from the standard normal approximation to the distribu-
tions of Studentized statistics based on four parameterizations: the untransformed parameter
ρ; the parameters that are obtained by using the Box–Cox transformation applied to 1−ρ with
the exponents λ1−ρ= .1 − ρ̂/=.1 + ρ̂/ and λ0

1−ρ= .1 −ρ/=.1 +ρ/, where λ0
1−ρ is regarded as the

‘true’ value of λ1−ρ; Fisher’s parameter tanh−1.ρ/. The results that are reported in Table 2 are
based on 100000 simulations.

The confidence intervals that are obtained from using ρ without transformation are unsatis-
factory in terms of both their coverage errors and their expected lengths. The Box–Cox intervals
are much better; their properties are closer to those of the Fisher intervals. It is interesting that
the Box–Cox intervals that are based on λ1−ρ, the ‘estimated’ exponent, are better than the
intervals that are based on λ0

1−ρ, the ‘true’ exponent. The end points of the Box–Cox confidence

Table 2. Simulated coverages and lengths of equitailed confidence intervals for the correlation
coefficient ρ†

Parameterization Nominal two-sided One-sided Two-sided Interval length
coverage (%) coverage error (%) coverage (%)

Mean Standard
Lower Upper Total deviation
limit limit

ρ=0.7
Normal 90 −7.84 2.65 10.48 84.81 0.374 0.117
Box–Cox, λ1−ρ −2.13 0.05 2.18 87.92 0.385 0.115
Box–Cox, λ0

1−ρ −2.84 −0.84 3.68 86.32 0.386 0.119
Fisher −0.66 0.91 1.57 90.25 0.411 0.119
Normal 95 −7.05 1.60 8.65 89.54 0.445 0.140
Box–Cox, λ1−ρ −1.48 0.01 1.49 93.53 0.465 0.136
Box–Cox, λ0

1−ρ −2.07 −0.98 3.05 91.95 0.466 0.144
Fisher −0.46 0.42 0.89 94.96 0.493 0.139

ρ=0.9
Normal 90 −9.22 4.14 13.37 84.92 0.144 0.063
Box–Cox, λ1−ρ −2.56 0.21 2.78 87.65 0.154 0.065
Box–Cox, λ0

1−ρ −2.76 −0.10 2.86 87.14 0.154 0.066
Fisher −1.00 1.25 2.25 90.25 0.167 0.070
Normal 95 −8.26 2.37 10.63 89.11 0.172 0.075
Box–Cox, λ1−ρ −1.69 −0.01 1.70 93.30 0.189 0.079
Box–Cox, λ0

1−ρ −1.90 −0.36 2.26 92.74 0.189 0.081
Fisher −0.53 0.68 1.21 95.15 0.205 0.084

†ρ=0:7, 0:9; n=20; simulation size, 100000. Normal intervals are derived from the Studentized version
of ρ; λ1−ρ= .1− ρ̂/=.1+ ρ̂/; λ0

1−ρ= .1−ρ/=.1+ρ/; the Fisher intervals are derived from the tanh−1.ρ/
transformation. If .θL, θU/ is a nominal 1−α confidence interval for θ, the upper and lower one-sided
coverage errors are P.θ< θU/ − .1 −α=2/ and P.θ> θL/ − .1 −α=2/ respectively. The total one-sided
coverage error is the sum of the absolute values of the upper and lower one-sided coverage errors.
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intervals that are based on λ1−ρ are highly correlated to the end points of the Fisher intervals;
the lower end points of the Box–Cox intervals tend to be larger than those of the Fisher intervals
and the upper end points tend to be smaller. Thus, the Box–Cox intervals have lower coverage
overall levels than the Fisher intervals and shorter expected lengths.

The values of λ0
1−ρ for ρ= 0:7 and ρ= 0:9 are 0.177 and 0.052 respectively. For ρ= 0:7,

the mean and standard deviation of λ1−ρ are 0.191 and 0.098; when ρ= 0:9, the mean and
standard deviation are 0.056 and 0.029. It appears that λ1−ρ estimates λ0

1−ρ satisfactorily in
both instances; certainly, the variability in λ1−ρ is not detrimental to the performance of the
confidence intervals.

3.4. Choice of initial parameterization
Suppose that φ=h.γ/ is a reparameterization having k̂φ=0. Taking a further term in expansion
(1.2) yields

σ̃2
φ.φ/

σ̂2
φ

=1+ 1
2

n−1t2
d2σ̃2

φ.φ/

dφ2

∣∣∣∣
φ=φ̂

+O.n−3=2/, .3:6/

which suggests that variance stabilization is more effectively achieved by the transformation
h.γ/ when the second-order derivative on the right-hand side of expression (3.6) is small in
magnitude. It can be shown that

d2σ̃2
φ.φ/

dφ2

∣∣∣∣
φ=φ̂

= d2σ̃2
γ.γ/

dγ2

∣∣∣∣
γ=γ̂

− k̂2
γ +2σ̂2

γ

d2[log{h.1/.γ/}]
dγ2

∣∣∣∣
γ=γ̂

: .3:7/

Expression (3.7) can elucidate the effect of the choice of initial parameterization f.γ/ for
transformation (2.10) with λ given by equation (2.11). In this context,

d2[log{h.1/.γ/}]
dγ2

∣∣∣∣
γ=γ̂

=−1
2

k̂γ

σ̂γ
F2.γ̂/−F2.γ̂/2 +F3.γ̂/, .3:8/

where F3.γ/ = d2{log |F1.γ/|}=dγ2 = dF2.γ/=dγ; thus, d2σ̃2
φ.φ/=dφ2

∣∣
φ=φ̂ can be obtained by

substituting expression (3.8) into expression (3.7). To simplify the notation in the following
examples, denote d2σ̃2

φ.φ/=dφ2
∣∣
φ=φ̂ by K̂f.γ/.

3.4.1. Example 4 (continued)
In the case of the binomial distribution having probability p,

K̂p =−.1− p̂/−1,

K̂.1−p/ =−p̂−1,

K̂p=.1−p/ =2:

Applying the method directly on the p-scale would work well for p̂ near 0, but it would work
poorly for p̂ near 1. In Fig. 3, the chain curves, which correspond to φp, show noticeable cur-
vature; the curvature is more pronounced for p̂ = 0:9 than it is for p̂ = 0:7, which reflects the
behaviour of K̂p. Similarly, using the initial parameterization f.p/=1−p would work well for
p̂ near 1, but it would work poorly for p̂ near 0. In contrast, K̂p̂=.1−p̂/ is not unbounded, so the
initial parameterization f.p/=p=.1−p/ can be expected to produce good results regardless of
the value of p̂.



298 T. J. DiCiccio, A. C. Monti and G. A.Young

3.4.2. Example 6 (continued)
For the correlation coefficient problem,

K̂ρ=−8,

K̂exp.ρ/ =−4.1+ ρ̂2/,

K̂1−ρ=−4.1− ρ̂/,

K̂1+ρ=−4.1+ ρ̂/:

Thus, using the initial parameterization f.ρ/ = exp.ρ/, i.e. using equation (2.8), would work
well for ρ̂ near 0, but its performance would deteriorate for ρ̂ near 1 or −1. Using f.ρ/=1−ρ
is advisable for ρ̂ near 1, whereas f.ρ/ = 1 + ρ is recommended for ρ̂ near −1. In this case,
log{.1+ρ/=.1−ρ/} is exactly variance stabilizing, so K̂.1+ρ/=.1−ρ/ =0.

The preceding two examples are typical, as the following general considerations show. Suppose
that γ is a positive parameter having upper limit c, and suppose that σ̃2.γ/ has the expansion

σ̃2.γ/= .c−γ/d1 + 1
2

.c−γ/2d2 + 1
6

.c−γ/3d3 +O{.c−γ/4},

so that limγ→c{σ̃2.γ/}= 0. It follows from expressions (3.6) and (3.7) that, to error of order
O{.c− γ̂/2/},

K̂γ =


− 1

.c− γ̂/
d1 − d1

c
− 1

2
d2 − .c− γ̂/

(d1

c2 + d2

c
− 1

4
d2

2

d1
− 1

6
d3

)
, if d1 �=0,

−d2 − .c− γ̂/
(d2

c
+ 1

3
d3

)
, if d1 =0,

whereas

K̂c−γ =


1
2

d2 + .c− γ̂/
(1

4
d2

2

d1
+ 2

3
d3

)
, if d1 �=0,

1
6

.c− γ̂/d3, if d1 =0.

Example 4 has d1 =1 and example 6 has d1 =0. As γ̂ approaches c, K̂γ is unbounded when d1 �=0
and tends to −d2 when d1 =0; in contrast, K̂c−γ tends to d2=2 when d1 �=0 and tends to 0 when
d1 = 0. Thus, in both cases, when γ̂ is close to c, using f.γ/= c −γ as initial parameterization
in transformation (2.10) is recommended over using f.γ/=γ.

4. Nonparametric inference

The goal of the present section is to extend the previous results to the nonparametric frame-
work; in particular, it is shown that the proposal for parameter transformation stabilizes variance
appropriately along least favourable families (DiCiccio and Romano, 1990).

To specify one least favourable family, consider the family of probability distributions that is
indexed by θ that arises in empirical likelihood (Owen, 1988). In this construction, we consider
the probability distribution p.θ/={p1.θ/, . . . , pn.θ/} that is defined on X1, . . . , Xn where pi.θ/
is given by

pi.θ/= 1
n{1+νa.θ/ψa.Xi, θ/} , i=1, . . . , n,
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and ν1.θ/, . . . , νq.θ/ satisfy

n∑
i=1

ψa.Xi, θ/pi.θ/=0, a=1, . . . , q: .4:1/

The empirical likelihood function for θ is L.θ/ = Πpi.θ/, which is maximized at θ̂ satisfying
pi.θ̂/=n−1 .i=1, . . . , n/. It follows from equation (4.1) that

n∑
i=1

ψ.Xi, θ̂/=0,

so θ̂ is the usual M-estimator.
A related family of probability distributions p.θ/ = {p1.θ/, . . . , pn.θ/} that can be used for

constructing a least favourable family is Efron’s (1981) empirical exponential family; see also
DiCiccio and Efron (1992). Empirical likelihood and empirical exponential family likelihood
were discussed by Davison and Hinkley (1997), section 10.2.

Given a probability distribution p.θ/, consider observations XÅ
1 , . . . , XÅ

n that are drawn from
X1, . . . , Xn according to the probabilities p1.θ/, . . . , pn.θ/, and let θ̂Å be the corresponding
M-estimator of θ, i.e. Σψ.XÅ

i , θ̂Å/=0. Let γ̂Å =g.θ̂Å/. Then, in somewhat abusive notation,

varp.θ/{n1=2.γ̂Å −γ/}=σ2.θ/+Op.n−1=2/,

where g.θ/=γ, σ2.θ/=V abgagb, .V ab/=A−1Σ.A−1/′, A= .Aa=b.θ// and Σ= .Σab.θ//, with

Aa=b.θ/=Ep.θ/{ψa=b.XÅ, θ/}=
n∑

i=1
ψa=b.Xi, θ/pi.θ/,

Σab.θ/=Ep.θ/{ψa.XÅ, θ/ψb.XÅ, θ/}=
n∑

i=1
ψa.Xi, θ/ψb.Xi, θ/pi.θ/:

.4:2/

This notation is consistent with the previous notation in the sense that quantities Âa=b, Σ̂ab,
V̂ ab and σ̂2 that were defined previously coincide with Aa=b.θ̂/, Σab.θ̂/, V ab.θ̂/ and σ2.θ̂/ respec-
tively.

For a given value of γ, let θ̃.γ/ be the constrained M-estimator of θ, i.e. θ̃.γ/ is the point at
which L.θ/=Πpi.θ/ is maximized subject to the constraint g.θ/=γ. The least favourable family
is the probability distribution that is indexed by γ given by p{θ̃.γ/}. Then σ̃2.γ/=σ2{θ̃.γ/} is
the asymptotic variance along the least favourable family.

It is shown in Appendix A that expression (1.1) holds, i.e.

k̂ = 1
σ̂

dσ̃2.γ/

dγ

∣∣∣∣
γ=γ̂

: .4:3/

Note that expression (4.3) offers an alternative method of computing k̂ by numerical differ-
entiation of σ̃2.γ/ at γ̂. However, this method would explicitly involve calculation of the least
favourable family, whereas the method that is given in Section 2.1 which is based on numer-
ical differentiation requires no constrained maximization. A referee has conjectured that, in
principle, Tibshirani’s (1988) method and the least favourable family approach of DiCiccio and
Romano (1990) may be less sensitive to the choice of initial parameterization than is the proposal
of this paper, and this topic deserves further investigation.

The maximizations that are necessary to compute the constrained M-estimation curve for
least favourable families derived from the empirical likelihood and empirical exponential family
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likelihood can be avoided by using Efron’s (1987) exponential tilt family to approximate θ̃.γ/

and p{θ̃.γ/}. In the exponential tilt family that is indexed by a scalar β, the probability pi{θ̃.γ/}
is approximated by

p̆i.β/= exp{β.ÎFi/}∑
exp{β.ÎFi/}

,

where ÎFi =−η̂aψa.Xi, θ̂/ is the empirical influence function for γ at Xi .i=1, . . . , n/, and θ̃.γ/

is approximated by θ̆.β/ that satisfies∑
ψ{Xi, θ̆.β/} exp{β.ÎFi/}∑

exp{β.ÎFi/}
=0;

β is related to γ by the equation γ.β/ = g{θ̆.β/}. The exponential tilt family was used in the
following two examples.

4.1. Example 2 (continued)
Recall that, in example 2, the parameter of interest is γ=µ2=µ1. Fig. 6(a) shows standard devi-
ation versus parameter plots: σ̃γ.γ/=σ̂γ versus γ (broken curve) and σ̃φγ .γ/=σ̂φγ versus γ (full
curve) where φγ is the Box–Cox transformation based on γ. The extent of variance stabilization
is striking.

4.2. Example 3 (continued)
Suppose in the cd4 count data that the parameter of interest is γ=σ2

1, the variance of the first
component. Fig. 6(b) shows standard deviation versus parameter plots: σ̃γ.γ/=σ̂γ versus γ (bro-
ken curve) and σ̃φγ .γ/=σ̂φγ versus γ (full curve) where φγ is the Box–Cox transformation based
on γ. In this case, equation (2.7) yields λ=0:27371.
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Fig. 6. Standard deviation plots ( , φγ , Box–Cox transformation applied to γ; – – –, γ): (a) parameter
of interest γDµ1=µ2, the ratio of means; (b) parameter of interest γDσ2

1, the variance of the first component
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5. Discussion

In this paper, we have presented an automatic and general method to identify a variance stabiliz-
ing transformation when making inference about a scalar parameter. The procedure is applicable
to parametric problems, though the work was motivated primarily by interest in nonparametric
inference, where it is well known that commonly used inference methods such as the bootstrap
work more effectively when the parameter of interest is essentially a location parameter, which
can be induced by a variance stabilizing transformation. The current work was motivated spe-
cifically by interest in the properties of nonparametric profile likelihood, and in adjustments
which reduce the bias of the profile score. Adjustments which are especially convenient for the
nonparametric context are analogues of the parametric case adjustments that were devised by
Cox and Reid (1993), which avoid the requirement of orthogonal nuisance parameters, but,
unfortunately, lack the desirable property of parameterization invariance. Numerical evidence
in the nonparametric case suggests that such adjustments will work best when applied in terms
of a variance-stabilized parameterization.

Inference on the parameter γ of interest is typically based on the Studentized statistic t =
.γ̂−γ/=σ̂, which is asymptotically normally distributed. In parametric contexts, the importance
of skewness reduction in improving the accuracy of a normal approximation to the distribu-
tion of t is well appreciated: see, for example, Sprott (1980). In many parametric problems,
variance stabilization does reduce skewness, but skewness reducing transformations are often
more effective than variance stabilizing transformations for inducing normality. DiCiccio and
Monti (2002) demonstrated how accurate inference about γ may be obtained when skewness is
taken into account, by means of skewness reducing transformations. Their transformations were
derived without explicit consideration of least favourable families. A natural issue is whether
these transformations reduce skewness along the least favourable family, as we have demon-
strated that the transformations in the present paper stabilize variance. In the current paper
we have established a general machinery and framework of variance stabilization, and we now
aim to investigate the effectiveness of variance stabilization in terms of inferential accuracy,
compared with skewness reducing transformation, of procedures that are based on the normal
approximation to the distribution of the Studentized statistic t, as well as procedures that are
based on bootstrap methods and allied saddlepoint techniques. In many nonparametric cases,
the two types of transformation are seen to be very close in examples, and it would be of interest
to characterize cases where the two transformations might be expected to be close. More gener-
ally, it will be of interest to investigate the theoretical inferential properties, such as confidence
interval coverage, of procedures which incorporate the empirical variance stabilization.

In parametric problems, interest often lies in conditional inference, given an ancillary statis-
tic, rather than in unconditional inference. It will be of interest to examine the properties of the
variance stabilizing transformations of the current paper from the perspective of conditional
variance.
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Appendix A

A.1. Proof of formula (3.1)
Let labc = @3l.θ; X/=@θa @θb @θc, and define λabc =E.labc/, λa,b =E.lalb/, λa,bc =E.lalbc/ and λa,b,c =E.lalblc/
.a, b, c =1, . . . , q/. Note that the λs are of order O.1/. It follows from the identity λa,b =−λab that Aa=b =
−Σab =λab, σ2 = −λabgagb and ηa = δa =λabgb, where .λab/ is the q × q matrix inverse of .λab/. Hence,
formula (2.1) reduces to

k =−{ηaηbηc.λa,b,c +4λa,bc +2λabc/−2ηaηbgab}=σ3:

Furthermore, the identities λa,b,c =−λa,bc −λb,ac −λc,ab −λabc and @λbc=@θa =λa,bc +λabc yield

k =−{ηaηbηc.λa,bc +λabc/−2ηaηbgab}=σ3

=−{ηaηbηc.@λbc=@θa/−2ηaηbgab}=σ3,

as required.

A.2. Proof of formula (4.3)
By definition,

dσ̃2.γ/

dγ

∣∣∣∣
γ=γ̂

= @σ2.θ/

@θa

∣∣∣∣
θ=θ̂

dθ̃a.γ/

dγ

∣∣∣∣
γ=γ̂

: .A:1/

Calculations in the appendix of DiCiccio and Monti (2001) show that

dθ̃a.γ/

dγ

∣∣∣∣
γ=γ̂

= V̂ abĝb

V̂ bcĝbĝc

=− δ̂a

σ̂2
, a=1, . . . , q: .A:2/

Moreover, differentiation of σ2.θ/=V abgagb yields

@σ2.θ/

@θa
=−V bdV ce @Vde.θ/

@θa
gbgc −2gabδ

b

=−@Vbc.θ/

@θa
δbδc −2gabδ

b, .A:3/

where V −1 = .Vab/=A′Σ−1A. Since Vab =ΣcdAc=aAd=b, it follows that

@Vbc.θ/

@θa
=−Σdf Σeg @Σfg.θ/

@θa
Ad=bAe=c +Σde @Ad=b.θ/

@θa
Ae=c +ΣdeAd=b

@Ae=c.θ/

@θa
: .A:4/

Recall that δa =−V abgb =−Aa=cΣcdAb=dgb and ηa =Ab=agb, so ΣabAb=cδ
c =−ηa. Thus, substitution of equa-

tion (A.4) into equation (A.3) and subsequent substitution of expressions (A.2) and (A.3) into expres-
sion (A.1) yield

dσ̃2.γ/

dγ

∣∣∣∣
γ=γ̂

=− 1
σ̂2

{
@Σbc.θ/

@θa

∣∣∣∣
θ=θ̂
δ̂aη̂bη̂c +2

@Ab=c.θ/

@θa

∣∣∣∣
θ=θ̂
δ̂aη̂bδ̂c −2ĝabδ̂

aδ̂b

}
: .A:5/

A key feature of any family of probability distributions p.θ/ = {p1.θ/, . . . , pn.θ/} that yields a least
favourable family p{θ̃.γ/} by evaluation along the constrained M-estimation curve is that

@pi.θ/

@θa

∣∣∣∣
θ=θ̂
δ̂a = 1

n
ψb.Xi, θ̂/η̂b, i=1, . . . , n:

Thus, differentiating the equations in expression (4.2) and substituting the results into expression (A.5)
give
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dσ̃2.γ/

dγ

∣∣∣∣
γ=γ̂

=− 1
σ̂2

{
η̂aη̂bη̂c 1

n

n∑
i=1
ψa.Xi, θ̂/ψb.Xi, θ̂/ψc.Xi, θ̂/+4η̂aη̂bδ̂c 1

n

n∑
i=1
ψa.Xi, θ̂/ψb=c.Xi, θ̂/

+2η̂aδ̂bδ̂c 1
n

n∑
i=1
ψa=bc.Xi, θ̂/−2ĝabδ̂

aδ̂b

}

= σ̂k̂,

which is the desired result.
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