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Abstract

Bootstrap methods are attractive empirical procedures for assessment of errors in problems of statistical
estimation, and allow highly accurate inference in a vast range of parametric problems. Conventional
parametric bootstrapping involves sampling from a fitted parametric model, obtained by substituting the
maximum likelihood estimator for the unknown population parameter. Recently, attention has focussed on
modified bootstrap methods which alter the sampling model used in the bootstrap calculation, in a
systematic way that is dependent on the parameter of interest. Typically, inference is required for the
interest parameter in the presence of a nuisance parameter, in which case the issue of how best to handle the
nuisance parameter in the bootstrap inference arises. In this paper, we provide a general analysis of the
error reduction properties of the parametric bootstrap. We show that conventional parametric
bootstrapping succeeds in reducing error quite generally, when applied to an asymptotically normal pivot,
and demonstrate further that systematic improvements are obtained by a particular form of modified
scheme, in which the nuisance parameter is substituted by its constrained maximum likelihood estimator,
for a given value of the parameter of interest.
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1. Introduction

Suppose that Y ¼ fY 1; . . . ;Y ng is a random sample from an unknown underlying distribution
F ðy; ZÞ; indexed by a multi-dimensional parameter Z 2 Rd ; and let y ¼ gðZÞ be a scalar parameter
of interest, for suitably smooth g : Rd ! R: Typically, we will have Z ¼ ðy; xÞ; with inference
required for the interest parameter y in the presence of the nuisance parameter x:
Let uðY ; yÞ be a function of the data sample Y and the unknown interest parameter y; such that

a one-sided confidence set of nominal coverage 1� a for y is I ¼ fc : uðY ;cÞp1� ag: We speak
of uðY ; yÞ as a ‘confidence set root’. A notational point is of importance here. In our development,
we will denote by y the true parameter value, with c denoting a generic point in the parameter
space, a ‘candidate value’ for inclusion in the confidence set.
A simple example of such a construction concerns the signed root likelihood ratio statistic.

Suppose that it may be assumed that Y has probability density f Y ðy; ZÞ belonging to a specified
parametric family, depending on an unknown parameter vector Z ¼ ðy; xÞ: Inference about y may
be based on the profile log-likelihood lpðyÞ ¼ lðy;bxyÞ; and the associated likelihood ratio statistic
wpðyÞ ¼ 2flpðbyÞ � lpðyÞg; with lðy; xÞ ¼ log f Y ðy; y; xÞ the log-likelihood, bZ ¼ ðby;bxÞ the overall
maximum likelihood estimator of Z; and bxy the constrained maximum likelihood estimator of x;
for fixed y: As the parameter of interest is scalar, inference is conveniently based on the signed
root likelihood ratio statistic, rpðyÞ ¼ sgnðby� yÞwpðyÞ

1=2: We have that rp is distributed as Nð0; 1Þ
to error of order Oðn�1=2Þ; and therefore a confidence set of nominal coverage 1� a for y is
fc : uðY ;cÞp1� ag; with

uðY ;cÞ ¼ FfrpðcÞg

and F the Nð0; 1Þ distribution function. Monotonicity in c of uðY ;cÞ implies that the confidence
set is of the form ðbyl ;1Þ; where the lower confidence limit byl is obtained by solving FfrpðcÞg ¼
1� a: The coverage error of the confidence set is of order Oðn�1=2Þ: The error may be reduced to
order Oðn�3=2Þ by analytically adjusted versions of rp of the form

ra ¼ rp þ r�1p logðup=rpÞ;

that are distributed as Nð0; 1Þ to error of order Oðn�3=2Þ; and the associated confidence set root
uðY ;cÞ ¼ FfraðcÞg: see for example, Barndorff-Nielsen (1986). Here the statistic up depends on
specification of an ancillary statistic, a function of the minimal sufficient statistic that is
approximately distribution constant.
Alternative forms of confidence set root uðY ; yÞ may be based on other forms of asymptotically

Nð0; 1Þ pivot, such as score and Wald statistics, etc.: examples are given in Section 3.
The parametric bootstrap (Efron, 1979) provides an attractive empirical procedure for the

reduction of the coverage error of the confidence set I:
In its conventional form, bootstrapping amounts to replacing the parametric model F ðZÞ by

F ðbZÞ: For example, the sampling distribution of rpðyÞ under sampling from the unknown
underlying distribution F ðy; ZÞ is estimated by the distribution of rpðbyÞ under sampling from the
known distribution Fðy;bZÞ: Here, as before, by denotes the maximum likelihood estimator of y;
constructed from the observed data sample. DiCiccio and Romano (1995) demonstrated that this
bootstrap scheme succeeds in estimating the true sampling distribution to error of order Oðn�1Þ; to
be compared with the level of error Oðn�1=2Þ obtained by the Nð0; 1Þ approximation.
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Recently, DiCiccio et al. (2001) demonstrated, for particular confidence set roots based on the
signed root likelihood ratio statistic described above, that lower levels of error than those derived
from conventional bootstrapping may be obtained by a particular modified parametric
bootstrapping scheme. The key feature of such a modified scheme is that the conventional
bootstrap model F ðbZÞ is replaced by a family of models, F ðbZcÞ which is explicitly constrained to
depend on the candidate value c of the parameter of interest. The particular proposal of DiCiccio
et al. (2001) is to take bZc ¼ ðc;bxcÞ; replacing the nuisance parameter by its constrained maximum
likelihood estimator for any candidate value of the interest parameter. This proposal is the
principal focus of our analysis in this paper, though we discuss also another natural alternative, in
which bZc ¼ ðc;bxÞ:
Our purpose in this paper is to provide a general analysis of the error reduction properties of

both conventional and alternative constrained bootstrap procedures. We consider confidence set
roots uðY ; yÞ ¼ FðTÞ based on a general class of asymptotically Nð0; 1Þ pivot TðY ; yÞ; which
includes the signed root likelihood ratio statistic as a special case, but is much more general and
includes those based on various analytically adjusted versions of rp; as well as Wald and score
statistics. The basic conclusions are striking. Conventional bootstrapping reduces error by
Oðn�1=2Þ quite generally, so that the error reduction effect noted by DiCiccio and Romano (1995)
is a general property of parametric bootstrapping, while appropriate constrained bootstrapping
reduces error quite generally by Oðn�1Þ: Our main results are described in Section 3. The results
are expressed by considering the prepivoting operation of both conventional and constrained
parametric bootstraps: this prepivoting perspective is detailed in Section 2. Numerical illustrations
are given in Section 4, and concluding remarks are made in Section 5.
2. The prepivoting perspective

From the prepivoting perspective (Beran, 1987, 1988), the bootstrap may be viewed simply as a
device by which we attempt to transform the confidence set root U ¼ uðY ; yÞ into a Unð0; 1Þ
random variable.
The underlying notion is that if U were exactly distributed as Unð0; 1Þ; the confidence set would

have coverage exactly equal to 1� a: PrZðy 2 IÞ ¼ PrZfuðY ; yÞp1� ag ¼ PrfUnð0; 1Þp1� ag ¼
1� a: But U is typically not Unð0; 1Þ; so the coverage error ofI is non-zero. By bootstrapping, we
hope to produce a new confidence set root u1 so that the confidence set fc : u1ðY ;cÞp1� ag has
lower coverage error for y: The error properties of different bootstrap schemes can be assessed by
measuring how close to uniformity is the distribution of U1 ¼ u1ðY ; yÞ:
In the conventional bootstrap approach, the distribution function Gðx; Z;cÞ of uðY ;cÞ is

estimated by

bGðxÞ � Gðx;bZ;byÞ ¼ Pr�fuðY �;byÞpxg

and we define the conventional prepivoted root by

bu1ðY ;cÞ ¼ bGfuðY ;cÞg

for each candidate parameter value c: Here Pr� denotes the probability under the drawing of
bootstrap samples Y � from the fitted maximum likelihood model F ðbZÞ:
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The basic idea here is that if the bootstrap estimated the sampling distribution exactly, so that bG
was the true (continuous) distribution function G of uðY ; yÞ; then bu1ðY ; y) would be exactly
Unð0; 1Þ in distribution, as a consequence of the probability integral transform: if Z is a random
variable with continuous distribution function HðÞ; then HðZÞ is distributed as Unð0; 1Þ:
Therefore, the confidence set fc : bu1ðY ;cÞp1� ag would have exactly the desired coverage. Use
of bG in place of G incurs an error, though in general the error associated with bu1ðY ;cÞ is smaller in
magnitude than that obtained from uðY ;cÞ:
Instead of using a single fitted distribution, FðbZÞ; as the basis for prepivoting, we can utilise a

family of models, explicitly constrained to depend on the candidate value c of the parameter of
interest.
In detail, within our prepivoting formulation of bootstrapping, the constrained bootstrap

replaces bu1ðY ;cÞ by the prepivoted root

~u1ðY ;cÞ ¼ ~GfuðY ;cÞ;cg; (1)

with

~Gðx;cÞ � Gðx;bZc;cÞ ¼ PryfuðY y;cÞpxg:

Now, Pry denotes the probability under the drawing of bootstrap samples Y y from the
model FðbZcÞ: In the proposal of DiCiccio et al. (2001) we have bZc ¼ ðc;bxcÞ; though a simple
plausible alternative takes bZc ¼ ðc;bxÞ: It is one of our primary contributions in this paper to show
that better bootstrap inference may, quite systematically, be obtained from modified, or
constrained, bootstrap schemes, in particular the DiCiccio et al. (2001) proposal. We establish
also that the alternative scheme in which bZc ¼ ðc;bxÞ offers no improvement over conventional
bootstrapping, and general conditions on bZc which ensure reduction in the level of bootstrap
error.
3. Theory

As before, we consider a parametric model indexed by Z ¼ ðZ1; . . . ; ZdÞ 2 Rd ; and interest is in
inference for a scalar function y ¼ gðZÞ of Z: We denote by lðZÞ the log-likelihood based on a
random sample Y ¼ fY 1; . . . ;Y ng: Denote derivatives of g and l as gi ¼ @g=@Zi; li ¼ @l=@Zi; lij ¼

@2l=@Zi@Zj; and so on, all evaluated at the true value of Z: Let bZ ¼ argmaxZ lðZÞ be the global
maximum likelihood estimator and let, to be specific, bZy ¼ argmaxZflðZÞ : gðZÞ ¼ yg be the
constrained maximum likelihood estimator of Z:
Standard Lagrangian arguments show that

bZi
y � Zi ¼ �Lij lj � ðlagbL

ab=s2ÞLijgj þOpðn
�1Þ;

where s2 ¼ �gagbL
ab; Lij ¼ EðlijÞ and the matrix ½Lij� with components Lij is the inverse of the

matrix ½Lij�; and we have assumed the convention in which summation is intended over the range
1; . . . ; d for any index appearing once as a subscript and once as a superscript.
Consider a pivot T ¼ TðY ; yÞ which admits an expansion of the form

T ¼ �s�1galbLab þ Dn; (2)
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where Dn ¼ Opðn
�1=2Þ can be expanded as a sum of non-random multiples, possibly depending on

n, of products of quantities li; lij � EðlijÞ; lijk � EðlijkÞ; . . . ; etc. Suppose also that, for some b 2

f1; 2; . . .g; the distribution function of T admits an expansion of the form

GZðxÞ ¼ PrZðTpxÞ ¼ FðxÞ þ n�b=2dðZ;xÞfðxÞ þ n�ðbþ1Þ=2eðZ; xÞfðxÞ þOðn�ðbþ2Þ=2Þ; (3)

where dðÞ and eðÞ are Oð1Þ and do not depend on n, and f denotes, as usual, the Nð0; 1Þ density
function. We note below that expansions (2) and (3) hold for a wide class of pivot T. The
assumptions imply that the coverage error of the confidence set I derived from the root uðY ; yÞ ¼
FðTÞ is of order Oðn�b=2Þ:

PrZfy 2 Ig ¼ PrZfuðY ; yÞp1� ag ¼ PrZfTpF�1ð1� aÞg ¼ 1� aþOðn�b=2Þ:

Constrained parametric bootstrapping which fixes the model parameter as bZy yields
GbZyðxÞ ¼ FðxÞ þ n�b=2dðbZy;xÞfðxÞ þ n�ðbþ1Þ=2eðbZy; xÞfðxÞ þOpðn

�ðbþ2Þ=2Þ

¼ GZðxÞ þ n�b=2ðbZi
y � ZiÞ

@d

@Zi
ðZ;xÞfðxÞ þOpðn

�ðbþ2Þ=2Þ

¼ GZðxÞ � n�b=2½Liala þ LiagaðlrgsL
rs=s2Þ�

@d

@Zi
ðZ; xÞfðxÞ þOpðn

�ðbþ2Þ=2Þ

¼ GZðxÞ � n�b=2AðxÞfðxÞ þOpðn
�ðbþ2Þ=2Þ;

say, where AðÞ is of order Opðn
�1=2Þ:

To examine the effect of constrained prepivoting, note that

PrZfGbZyðTÞpxg ¼ PrZfGZðTÞ � n�b=2AðTÞfðTÞpxg þOðn�ðbþ2Þ=2Þ

¼ PrZfTpG�1
Z ðxÞ þ n�b=2AðzxÞg þOðn�ðbþ2Þ=2Þ;

where zx ¼ F�1ðxÞ; and we note that n�b=2AðzxÞ is Opðn
�ðbþ1Þ=2Þ:

Applying results in McCullagh (1987, Section 3.4) and noting that Dn ¼ Opðn
�1=2Þ we see that

varfT � n�b=2AðzxÞg � varðTÞ ¼ �2n�b=2s�1gaL
abEflbAðzxÞg þOðn�ðbþ2Þ=2Þ:

But

EflbAðzxÞg ¼
@d

@Zi
ðZ; zxÞLiaf�Lab � gaðgsLrbLrs=s2Þg

¼
@d

@Zi
ðZ; zxÞ½�di

b � gbgjL
ij=s2�;

where di
j denotes the Kronecker delta, so that

gaL
abEflbAðzxÞg ¼

@d

@Zi
ðZ; zxÞ½�gaL

ai þ gjL
ij� ¼ 0; (4)

and

varfT � n�b=2AðzxÞg � varðTÞ ¼ Oðn�ðbþ2Þ=2Þ:
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It is immediate from McCullagh (1987, Section 3.4) that other cumulants of T � n�b=2AðzxÞ and T

differ by Oðn�ðbþ2Þ=2Þ; so that the two distributions differ by the same order. Hence,

PrZfT � n�b=2AðzxÞpG�1
Z ðxÞg ¼ PrZfTpG�1

Z ðxÞg þOðn�ðbþ2Þ=2Þ ¼ x þOðn�ðbþ2Þ=2Þ:

Thus,

PrZfGbZyðTÞpxg ¼ x þOðn�ðbþ2Þ=2Þ:

It is immediate from definition (1) of the constrained prepivoted confidence set root ~u1ðY ;cÞ that
the confidence set derived from the latter has coverage error of order Oðn�ðbþ2Þ=2Þ:
PrZf ~u1ðY ; yÞp1� ag � PrZfGbZyðTÞp1� ag:
By comparison, consider now the conventional parametric bootstrap, based on the global

maximum likelihood estimator bZ:
Note that

bZi
� Zi ¼ �Lij lj þOpðn

�1Þ;

so that

GbZðxÞ ¼ GZðxÞ � n�b=2 @d

@Zi
ðZ;xÞLij ljfðxÞ þOpðn

�ðbþ2Þ=2Þ:

Then

PrZfGbZðTÞpxg ¼ PrZ T � n�b=2 @d

@Zi
ðZ; zxÞLij ljpG�1

Z ðxÞ

� �
þOðn�ðbþ2Þ=2Þ:

Now, we have

var T � n�b=2 @d

@Zi
ðZ; zxÞLij lj

� �
� varðTÞ

¼ �2n�b=2s�1
@d

@Zi
ðZ; zxÞLijLabgaEflbljg þOðn�ðbþ2Þ=2Þ

¼ �2n�b=2s�1 gjL
ij @d

@Zi
ðZ; zxÞ

� �
þOðn�ðbþ2Þ=2Þ:

Other cumulants differ by Oðn�ðbþ2Þ=2Þ; so that

PrZfGbZðTÞpxg ¼ PrZfTpG�1
Z ðxÞg

� n�b=2s�1 gjL
ij @d

@Zi
ðZ; zxÞ

� �
zxfðzxÞ þOðn�ðbþ2Þ=2Þ;

where we note that the second term in this latter expression is of order Oðn�ðbþ1Þ=2Þ; and nonzero
in general. It is therefore immediately seen that the conventional, unconstrained, bootstrap
reduces error by only Oðn�1=2Þ in general.

Remark 1. The effects of using ðc;bxÞ for the bootstrapping are similar to those of conventional,
unconstrained, bootstrapping using bZ ¼ ðby;bxÞ: This can be seen by applying exactly the same
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arguments used above for showing that the latter only reduces error by order Oðn�1=2Þ; but with
the index i running from 2 to d.

Remark 2. Failure of the parametric procedures based on either bZ or ðc;bxÞ to reduce error by the
order Oðn�1Þ obtained by bootstrapping at ðc;bxcÞmay be explained in more intuitive terms by the
fact that the unconstrained maximum likelihood estimator, or its sub-vector, fails in general to be
asymptotically uncorrelated with T, the condition crucial to reduction of error by Oðn�1Þ: see (4).

Remark 3. Pivots TðY ; yÞ which satisfy our assumptions (2) and (3) include, as well as the signed
root likelihood ratio statistic: the studentized maximum likelihood estimator, or Wald statistic, of
the form ðby� yÞ=bs; based on an estimator bs2 of the asymptotic variance s2 of by; the signed root of
�liðbZyÞljðbZyÞLijðbZyÞ; standardized versions of the profile score ð@=@yÞlðbZyÞ; and the signed root of
various adjusted forms of the likelihood ratio statistic (see, for example, DiCiccio et al., 2001 for a
summary of possible adjustments). All these forms of pivot T have b ¼ 1

2
: Other cases to which the

theory applies include the analytically adjusted version ra of the signed root likelihood ratio
statistic due to Barndorff-Nielsen (1986), for which b ¼ 3

2
; as well as various approximations to ra;

such as the stably adjusted directed likelihood of Barndorff-Nielsen and Chamberlin (1994) and
that detailed by DiCiccio and Martin (1993), for which typically b ¼ 1: Of course, the constrained
prepivoting approach might also be applied with other pivots T which provide the same levels of
accuracy as ra; such as mean and variance corrected forms of the signed root of the adjusted or
unadjusted likelihood ratio (DiCiccio et al., 2001), or even (iterating the concept) the prepivoted
signed root likelihood ratio statistic, for which b ¼ 3

2 ; if constrained bootstrapping is used in the
construction of the latter.

Remark 4. Technically, the assumptions on the underlying distribution for (2) and (3) to hold are
that the log-likelihood function is continuously differentiable with respect to Z up to a sufficiently
high order, satisfies certain uniform continuity conditions which allow differentiations to
commute with integrations over the sample space, and that partial derivatives of lðZÞ have finite
ðbþ 4Þth moments and satisfy Cramér’s condition.

Remark 5. We note that, by contrast with the conventional bootstrap approach, in principle at
least, constrained bootstrapping requires a different fitted distribution in the confidence set
construction for each candidate parameter value. In the context of the example described in
Section 1, for instance, the confidence set is fc : rpðcÞpc1�aðc;bxcÞg; where c1�aðc;bxcÞ denotes the
ð1� aÞ quantile of the sampling distribution of rpðcÞ when the true parameter value is ðc;bxcÞ; so
that a different bootstrap quantile is applied for each candidate c: However, computational
shortcuts which reduce the demands of constrained bootstrapping are possible. These include the
use of stochastic search procedures, such as the Robbins–Monro procedure, which allow
construction of the confidence set without a costly simulation at each candidate parameter value.
The essential characteristic of the Robbins–Monro procedure when applied in the current context
is that the required confidence limit may be obtained by a construction which requires only
generation of a single simulated data sample, at each of a moderate number (say, a few hundred)
of candidate parameter values c: for implementational details see Garthwaite and Buckland
(1992); Carpenter (1999); Lee and Young (2003).
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4. Numerical illustrations

Illustration 1: Normal distributions with common mean: We consider first the problem of
parametric inference for the mean, based on a series of independent normal samples with the same
mean but different variances, a version of the Behrens–Fisher problem. We observe Y ij ; i ¼
1; . . . ; g; j ¼ 1; . . . ; ni; independent Nðy;s2i Þ: The common mean y is the parameter of interest, with
orthogonal nuisance parameter x ¼ ðs1; . . . ;sgÞ: In such a model, the adjusted signed root statistic
ra is intractable, though readily computed approximations are available, such as the
approximation ~ra described by DiCiccio and Martin (1993). Other approximations, which may
be preferable in practice in this problem but may be more awkward to construct, are described by
Severini (2000, Chapter 7). It is not our intention in this brief paper to provide an extensive
comparison between bootstrapping and the various analytic approximations, and we provide
numerical results for the approximation ~ra in this example purely out of curiosity.
We consider the specific problem of inference on the common mean, set equal to 0, of six

normal distributions, with unequal variances ðs21; . . . ; s
2
6Þ; which are set equal to

ð1:32; 1:93; 2:22; 2:19; 1:95; 0:11Þ; these figures being the variances for the data of Example 7.15
of Severini (2000, Chapter 7), which represent measurements of strengths of six samples of cotton
yarn.
We compare coverages of confidence sets derived from FðrpÞ; Fð~raÞ; the conventional bootstrap,

which bootstraps at the overall maximum likelihood estimator ðby;bxÞ; and the constrained
bootstrap, which uses bootstrapping at the constrained maximum likelihood estimator ðc;bxcÞ;
for 50,000 datasets from this model, with sample sizes ni all equal to 5. All bootstrap
confidence sets are based on R ¼ 1; 999 bootstrap samples. Also considered are the corres-
ponding coverages obtained from FðW Þ and FðSÞ and their conventional and constrained
bootstrap versions, where W and S are Wald and score statistics respectively, defined as the
signed square roots of the statistics (3.33) and (3.35) of Barndorff-Nielsen and Cox (1994,
Chapter 3).
The coverage figures shown in Table 1 confirm that the simple bootstrap approach improves

over asymptotic inference based on any of the statistics rp;S; or W. Further, the bootstrap
approach is clearly more accurate than the approach based on ~ra; and it is possible to discern
advantages to the constrained bootstrap approach compared to the conventional bootstrap.
Coverage figures for the bootstrap approach which bootstraps at ðc;bxÞ are indistinguishable from
those obtained by conventional bootstrapping, and are therefore not shown.

Illustration 2: Variance components model: As a further illustration of a practically important
inference problem, we consider the one-way random effects model considered by Skovgaard
(1996) and DiCiccio et al. (2001). Here we have

Y ij ¼ yþ ai þ eij ; i ¼ 1; . . . ;m; j ¼ 1; . . . ; ni;

where the ai’s and the eij’s are all independent normal random variables of mean 0 and variances
s2a and s2e ; respectively. Inference is required for y; all other parameters being treated as nuisance.
If the group sizes n1; . . . ; nm are not all equal the maximum likelihood estimators do not have
closed-form expressions, and must be found iteratively. More importantly, ancillary statistics are
not available to determine the analytic adjustment up to the signed root likelihood ratio statistic
rp; so again approximate forms such as ~ra must be used.
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Table 2

Coverages (%) of confidence intervals for random effects example, estimated from 50,000 data sets with bootstrap size

R ¼ 1; 999

Nominal 1.0 2.5 5.0 10.0 90.0 95.0 97.5 99.0

FðrpÞ 1.5 3.4 6.5 11.9 88.2 93.6 96.6 98.5

MLE bootstrap 1.0 2.5 5.1 10.2 90.0 95.0 97.6 99.1

Constrained MLE bootstrap 1.0 2.5 5.1 10.1 90.0 95.0 97.6 99.1

Fð~raÞ 0.6 1.8 4.1 8.9 91.1 95.9 98.1 99.3

MLE bootstrap 1.0 2.5 5.1 10.2 90.0 95.0 97.6 99.1

Constrained MLE bootstrap 1.0 2.5 5.1 10.1 90.0 95.0 97.6 99.1

FðW Þ 0.5 2.0 5.1 10.9 89.2 94.9 98.0 99.5

MLE bootstrap 1.0 2.5 5.1 10.2 90.0 95.0 97.6 99.1

Constrained MLE bootstrap 1.0 2.5 5.1 10.2 90.0 95.0 97.6 99.1

FðSÞ 0.4 2.0 5.1 10.9 89.2 95.0 98.0 99.5

MLE bootstrap 1.0 2.5 5.1 10.2 90.0 95.0 97.6 99.1

Constrained MLE bootstrap 1.0 2.5 5.0 10.1 90.0 95.0 97.6 99.1

Table 1

Coverages (%) of confidence intervals for normal mean example, estimated from 50,000 data sets with bootstrap size

R ¼ 1; 999

Nominal 1.0 2.5 5.0 10.0 90.0 95.0 97.5 99.0

FðrpÞ 3.0 5.7 9.3 15.1 85.3 91.2 94.6 97.2

MLE bootstrap 1.1 2.7 5.2 10.2 90.3 95.0 97.5 98.9

Constrained MLE bootstrap 0.9 2.5 5.1 10.1 90.4 95.2 97.6 99.0

Fð~raÞ 1.5 3.4 6.4 11.9 88.7 93.9 96.7 98.5

FðW Þ 6.7 9.6 13.3 18.7 82.0 87.3 90.8 93.6

MLE bootstrap 1.1 2.7 5.3 10.2 90.2 95.0 97.4 98.9

Constrained MLE bootstrap 0.9 2.4 5.0 9.9 90.5 95.3 97.6 99.1

FðSÞ 0.6 2.1 5.1 10.9 89.6 95.2 98.0 99.5

MLE bootstrap 1.2 2.7 5.2 10.1 90.4 95.1 97.4 98.8

Constrained MLE bootstrap 1.1 2.5 5.2 10.2 90.3 95.1 97.5 99.0
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We performed a simulation analogous to that described in Illustration 1 for the case m ¼ 10;
ni ¼ i; sa ¼ 1; se ¼ 0:04: Coverage figures obtained for the various confidence set constructions
are given in Table 2, again as derived from a series of 50,000 simulations, with bootstrap
confidence sets being based on R ¼ 1; 999 bootstrap samples. Included in the study in this case are
coverage figures obtained by applying both conventional and constrained prepivoting to the
initial confidence set root uðY ;cÞ ¼ Ff~raðcÞg: normal approximation to the distribution of ~ra itself
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yields poor coverage accuracy, and it is worthwhile considering prepivoting the confidence set
root constructed from ~ra: The effectiveness of bootstrapping is again apparent.
It is our general experience that analytic approaches based on ra are typically highly accurate

when the dimensionality of the nuisance parameter is small and ra itself is readily constructed, as
in, say, a full exponential family model, where no ancillary statistic is required. In such
circumstances, the argument for bootstrapping rests primarily on maintaining accuracy while
avoiding cumbersome analytic derivations. In more complicated settings, in particular when the
nuisance parameter is high dimensional or analytic adjustments ra must be approximated, the
bootstrap approach is typically preferable both in terms of ease of implementation and accuracy.
In all the examples we have studied, it is striking that conventional bootstrapping already
produces very accurate inference. Though constrained bootstrapping is advantageous from a
theoretical perspective, in practice the gains are typically rather slight.
5. Concluding remarks

The theoretical effects of constrained bootstrapping in the nonparametric context are analyzed
for various classes of problem by Lee and Young (2003). The basic conclusion is the same as that
found here: if the initial confidence set root uðY ; yÞ is uniformly distributed to order Oðn�b=2Þ;
then, quite generally, the conventional prepivoted root bu1ðY ; yÞ is uniform to order Oðn�ðbþ1Þ=2Þ;
while a constrained prepivoted root ~u1ðY ; yÞ is uniform to order Oðn�ðbþ2Þ=2Þ: The basic notion in
that context of constrained bootstrapping is that of a family of distributions, indexed by c; which
represent re-weighted versions of the empirical distribution function of the data sample Y. Lee
and Young (2003) show that the conclusions hold for quite general constructions of the re-
weighted distributions, but in practice the difficulty of choosing the re-weighting scheme most
appropriately reduces the effectiveness of the constrained bootstrap approach. In the parametric
framework of the current paper, such difficulties do not arise, and constrained bootstrapping can
be seen as an attractive alternative to conventional bootstrapping. Constrained bootstrapping
provides a systematic theoretical reduction in the order of the error, and yields worthwhile
benefits compared to alternative analytical approaches. The illustrations presented here, and the
analyses considered by DiCiccio et al. (2001), demonstrate that in practice excellent levels of
accuracy are obtained by the constrained bootstrap approach, which is easily implemented,
without risk of impaired performance relative to conventional bootstrap methodology. Our
theoretical analysis of constrained bootstrapping highlights the importance of appropriate
handling of the nuisance parameter in achieving reduction in the levels of error, but that these
reductions are obtained for confidence sets based on quite general asymptotically normal pivots T,
and not just for specific constructions.
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