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I am a probabilist, who is also interested in analysis, statistics and math-
ematical finance. The ongoing theme of most of my work is limit theorems
in probability. This is inseparable from tail behaviour – that is, the (small)
probabilities of very large, very small or otherwise extreme values. The proto-
typical results here are the Law of Large Numbers (LLN) (or rather Laws, as
there are many such results) – the Law of Averages of the man in the street;
the Central Limit Theorem (CLT) – the Law of Errors of the physicist in
the street; the Law of the Iterated Logarithm (LIL), specialised enough to
be generally known only to probabilists, which splits the difference between
the two; and the Large Deviation Principle (LDP), which focusses on expo-
nential rates of decay of very small probabilities of extreme events. Things
are simplest in the classical setting – independent and identically distributed
(iid) real-valued random variables. But one may generalise independence to
weak dependence (in various ways) – the point being that the LLN is about
cancellation, and even weakly dependent errors tend to cancel. One may
also generalise to random vectors, in many – or infinitely many – dimensions,
to random matrices, etc. See the bibliography on my CV for details of my
papers in this area.

The kind of mathematical analysis relevant to this area of probability
involves the theory of it regular variation. I am the co-author (with C. M.
Goldie and J. L. Teugels – BGT below) of the standard work in the area
(Regular variation, CUP, 1987/89).

My current work focusses on three main areas.

Topological Regular Variation.
This theory is joint work with Adam (Dr A. J.) Ostaszewski of the Math-

ematics Department, London School of Economics. See Adam’s web page
there for details of preprints etc. (”[BOst]”, in the LSE C-DAM series), his
or my CV for published papers, and our forthcoming book (”Bostaszewski”)
for a monograph synthesis.

While BGT (even 22 years on) still gives fairly full coverage of most of
regular variation, it contains two glaring gaps, one at each end:
1. At the beginning, the theory is developed in tandem for the two classical
cases, the measurable case and the Baire case (that is, for functions having
the Baire property). The authors raise, and leave open, the question of find-
ing the natural common generalisation of these two cases (neither of which
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contains the other). This has now been done. A by-product is the new insight
that, while the measurable case (which came earlier) has traditionally been
regarded as the primary case, it is in fact the Baire case which is primary
(the measurable case can be treated in tandem with it, bitopologically – by
switching from the Euclidean topology to the density topology).
2. At the end, the question is raised of generalisation beyond the real-valued
case – to d dimensions, to infinitely many dimensions, to topological groups
etc. Much recent work in the area of extreme-value theory (EVT) has been
devoted to such generalisations. The theory of topological regular variation
provides a natural framework here.

Stationary processes and prediction theory.
This line of work is in collaboration with Professor Akihiko Inoue of Hi-

roshima University and Dr Yukio Kasahara of Hokkaido University, Sapporo,
Japan.

For simplicity, let us keep here to discrete time, where the theory of
stationary processes is usually called that of (stationary) time series (TS).
Traditionally, this subject can either be treated using time domain methods
(autocorrelation function), or frequency domain methods (spectral density or
measure) – though with wavelets, one can handle both together.

For many technical purposes, the autocorrelation function γ = (γn)∞n=0

is less convenient than the partial autocorrelation function (PACF) α =
(αn)∞n=0. The theory of the PACF has been developed in detail in a number
of papers since 2000 by Inoue and Kasahara (separately or together). The
theory of orthogonal polynomials on the unit circle (OPUC – the subject of
the recent two-volume monograph by Barry Simon) is highly relevant here.
Our current work uses OPUC, function theory on the unit disk and other
areas to take the study of the PACF and its applications further.

Lévy and other models in mathematical finance.
My work in this area is joint with Rüdiger Kiesel of the University of Ulm.
The benchmark model of mathematical finance is the Black-Scholes model,

where the driving noise process is Brownian motion. More general models
are needed, for example to include jumps. Lévy processes (in one or many
dimensions – dimension d is needed for a portfolio of d assets) are useful here;
so too are more general diffusions (again, in one or many dimensions). Our
current work here focusses on multivariate elliptic processes. NHB, 2.4.2009
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