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Chapter VII. INSURANCE MATHEMATICS

I. Insurance Background
The idea of insurance is simple: it is the spreading, or pooling, of risk.

The relevant theory is that of collective risk.
History.

Insurance can be traced back to antiquity (Greek and Roman times). Like
much else, it disappeared, to be re-developed in Renaissance Italy (Genoa,
14th C.). It received a great impetus in the UK from the Great Fire of Lon-
don in 1666; fire insurance had started there by 1681. Property insurance
had begun in London by 1710, and in Philadelphia (Benjamin Franklin) in
1752.

Shipping insurance grew in London around Edward Lloyd’s coffee house
in the 1680s. He died in 1710; Lloyd’s of London had developed by 1774.

John Graunt (1620-74) published his Bills of Mortality in 1662 (breaking
down London deaths by cause, age etc.). This was followed by the first life
table (Edmund Halley, 1693). Mutual life insurance had begun by 1762. One
of the earliest such companies is Scottish Widows (1815) (founded to look
after the widows of Presbyterian ministers who died in office, and had to
leave the manse – the minister’s house).

At a national level, national insurance began in Germany with Bismarck
in the 1880s. It developed here with e.g. Lloyd George (pre-WWI), Bev-
eridge and the Beveridge Report (1942), and the founding of the Welfare
State post-WWII.
Limited liability.

Lloyd’s of London pre-dates limited liability (which developed in the mid-
19th C.). The Lloyd’s participants, or names, had unlimited liability, and
were liable for the full extent of losses, irrespective of their investment or
their assets. This changed, following the Lloyd’s scandal of the 1990s.

Insurance is now done (and most was before the Lloyd’s scandal) by lim-
ited liability companies. So for these, the possibility of ruin is crucial. Not
only would this wipe out the company, its assets and expertise, the jobs of
its employees etc., but it would leave policy-holders without cover.
Reinsurance.

Because a run of large claims could bankrupt an insurance company,
companies seek to lay off large risks – to reinsure – insure themselves – with
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larger, specialist reinsurance companies.
The question arises as to where reinsurane companies re-reinsure them-

selves ... This raises the modern form of Juvenal’s question (Satires, c. 80
AD): Quis custodiet ipsos custodes – Who guards the guards? Who polices
the police? Reinsurers reinsure insurers, but – who reinsures the reinsurers?
– etc.
Regulation.

It is in the interest of some industries to agree to cover each other’s lia-
bilities in the event of a bankruptcy. For instance, this happens with travel
firms. If a travel firm goes bust, leaving large numbers of people stranded
abroad, or unable to travel on a foreign holiday booked and paid for, this
would destroy public confidence in the whole industry – unless other firms,
by prior agreement, step in to cover. This is what happens, and works well.

As motor insurance is compulsory by law, motor insurance companies are
regulated by the state, and again, this provides a degree of protection in case
of bankruptcy.
The actuarial profession.

People involved in the insurance industry have been known as actuaries
from the early days of insurance. Companies offering insurance employ actu-
aries, and these need to be qualified. Actuaries become qualified by passing
exams set by the Institute of Actuaries. London is an important centre for
the actuarial/insurance industry, and so is Edinburgh. The mathematics
involved is interesting, and useful. Those taking this course would be well
advised to consider an actuarial career as one of their career possibilities.
Life v. non-life.

The usual way the modern insurance industry splits is between life and
non-life. Life insurance is payable on death, and/or as an annuity ceasing
on death. Life insurance is often combined with a mortgage (so that the
mortgage is paid if one dies before it expires). Naturally, assessing premiums
here depends on a detailed knowledge of mortality rates over ages, etc. The
relevant mathematics is largely Survival Analysis – hazard rates, etc. Much
use is made here nowadays of martingale methods (Ch. IV). Non-life splits
again into categories: motor; house; (house) contents (these are the only
three kinds of insurance ordinary people take out); (personal) accident (the
next commonest); travel; commercial property; industrial; ... There are even
catastrophe insurance, weather insurance etc. nowadays.
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2. The Poisson Process; Compound Poisson Processes

The Poisson distribution.
This is defined on N0 := {0, 1, 2, · · ·} for a parameter λ > 0 by

pk := e−λλk/k! (k = 0, 1, 2, · · ·).

From the exponential series,
∑

kpk = 1, so this does indeed give a probability
distribution (or law, for short) on N0. It is called the Poisson distribution
P (λ), with parameter λ, after S.-D. Poisson (1781-1840) in 1837.

The Poisson law has mean λ. For if N is a random variable with the
Poisson law P (λ), N ∼ P (λ), N has mean

E[N ] =
∑

kP (N = k) =
∑

kpk =
∑

k.e−λλk/k! = λ
∑

e−λλk−1/(k−1)! = λ,

as the sum is 1 (exponential series – P (λ) is a probability law). Similarly,

E[N(N − 1)] =
∑

k(k − 1)e−λλk/k! = λ2
∑

e−λλk−2/(k − 2)! = λ2 :

var(N) = E[N2]−(E[N ])2) = E[N(N−1)]+E[N ]−(E[N ])2) = λ2+λ−(λ)2 = λ :

the Poisson law P (λ) with parameter λ has mean λ and variance λ.
Note. 1. The Poisson law is the commonest one for count data on N0.
2. This property – that the mean and variance are equal (to the parameter,
λ) is very important and useful. It can be used as the basis for a test for
Poissonianity, the Poisson dispersion test. Data with variance greater than
the Poisson are called over-dispersed; data with variance less than Poisson
are under-dispersed.
3. The variance calculation above used the (second) factorial moment,
E[N(N − 1)]. These are better for count data than ordinary moments.

The Exponential Distribution
A random variable T on R+ := (0,∞) is said to have an exponential

distribution with rate (or parameter) λ, T ∼ E(λ), if

P (T ≤ t) = 1− e−λt for all t ≥ 0.

So this law has density

f(t) := λe−λt (t > 0), 0 (t ≤ 0)
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(as
∫ t
−∞ f(u)du = P (T ≤ t), as required). So the mean is

E[T ] =

∫
tf(t)dt =

∫ ∞
0

λte−λtdt = 1/λ.

∫ ∞
0

ue−udu = 1/λ

(putting u := λt). Similarly,

E[T 2] =

∫
t2f(t)dt =

∫ ∞
0

λt2e−λtdt = 1/λ2
∫ ∞
0

u2e−udu = 2/λ2,

var(T ) = E[T 2]− (E[T ])2 = 2/λ2 − (1/λ)2 = 1/λ2.

The Lack-of-Memory Property.
Imagine components – lightbulbs, say – which last a certain lifetime, and

are then discarded and replaced. Do we expect to see aging? With human
lifetimes, of course we do! On average, there is much less lifetime remaining
in an old person than in a young one. With some machine components,
we also see aging. This is why parts in cars, aeroplanes etc. are replaced
after their expected (or ‘design’) lifetime, at routine servicing. But, some
components do not show aging. These things change with technology, but in
the early-to-mid 20th C. lightbulbs typically didn’t show aging. Nor in the
early days of television did television tubes (not used in modern televisions!).
In Physics, the atoms of radioactive elements show lack of memory. This is
the basis for the concept of half-life: it takes the same time for half a quantity
of radioactive material to decay as it does for half the remaining half, etc.

We can find which laws show no aging, as follows. The law F has the
lack-of-memory property iff the components show no aging – that is, if a
component still in use behaves as if new. The condition for this is

P (X > s+ t|X > s) = P (X > t) (s, t > 0) :

P (X > s+ t) = P (X > s)P (X > t).

Writing F (x) := 1− F (x) (x ≥ 0) for the tail of F , this says that

F (s+ t) = F (s)F (t) (s, t ≥ 0).

Obvious solutions are

F (t) = e−λt, F (t) = 1− e−λt
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for some λ > 0 – the exponential law E(λ). Now

f(s+ t) = f(s)f(t) (s, t ≥ 0)

is a ‘functional equation’ – the Cauchy functional equation – and we quote
that these are the only solutions, subject to minimal regularity (such as one-
sided boundedness, as here – even on an interval of arbitrarily small length!).

So the exponential laws E(λ) are characterized by the lack-of-memory
property. Also, the lack-of-memory property corresponds in the renewal con-
text to the Markov property. The renewal process generated by E(λ) is
called the Poisson (point) process with rate λ, Ppp(λ). So: among renewal
processes, the only Markov processes are the Poisson processes. We meet
Lévy processes below: among renewal processes, the only Lévy processes are
the Poisson processes.

It is the lack of memory property of the exponential distribution that
(since the inter-arrival times of the Poisson process are exponentially dis-
tributed) makes the Poisson process the basic model for events occurring
‘out of the blue’. Typical examples are accidents, insurance claims, hospital
admissions, earthquakes, volcanic eruptions etc. So it is not surprising that
Poisson processes and their extensions (compound Poisson processes) domi-
nate in the actuarial and insurance professions, as well as geophysics, etc.

Gamma distributions.
Recall the Gamma function,

Γ(x) :=

∫ ∞
0

tx−1e−tdt, (x > 0)

(x > 0 is needed for convergence at the origin). One can check (integration
by parts, and induction) that

Γ(x+ 1) = xΓ(x) (x > 0), Γ(n+ 1) = n! (n = 0, 1, 2, · · ·);

thus Gamma provides a continuous extension to the factorial. One can show

Γ(
1

2
) =
√
π

(the proof is essentially that
∫
R e
− 1

2
x2dx =

√
2π, i.e. that the standard normal

density integrates to 1). The Gamma function is needed for Statistics, as it
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commonly occurs in the normalisation constants of the standard densities.
The Gamma distribution Γ(ν, λ) with parameters ν, λ > 0 is defined to

have density

f(x) =
λν

Γ(ν)
.xν−1e−λx (x > 0).

This has MGF

M(t) :=

∫
etxf(x)dx =

λν

Γ(ν)
.

∫ ∞
0

etx.xν−1e−λxdx

=
λν

Γ(ν)
.

∫ ∞
0

xν−1e−(λ−t)xdx

=
λν

Γ(ν)
.

1

(λ− t)ν

∫ ∞
0

uν−1e−udu

=
( λ

λ− t

)ν
(t < λ).

Sums of exponential random variables.
LetW1,W2, . . .Wn be independent exponentially distributed random vari-

ables with parameter λ (‘W for waiting time’ – see below): Wi ∼ E(λ). Then

Sn := W1 + · · ·+Wn ∼ Γ(n, λ).

For, each Wi has moment-generating function (MGF)

M(t) := E[etWi ] =

∫ ∞
0

etxf(x)dx =

∫ ∞
0

etx.λe−λxdx

= λ.

∫ ∞
0

e−(λ−t)dx = λ/(λ− t) (t < λ).

The MGF of the sum of independent random variables is the product of the
MGFs (same for characteristic functions, CFs, and for probability generating
functions, PGFs – check). So W1+ · · ·+Wn has MGF (λ/(λ−t))n, the MGT
of Γ9, n, λ) as above:

Sn := W1 + · · ·Wn ∼ Γ(n, λ).

The Poisson Process

Definition. Let W1,W2, . . .Wn be independent exponential E(λ) random
variables, Tn := W1,+ . . .+Wn for n ≥ 1, T0 = 0, N(s) := max{n : Tn ≤ s}.
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Then N = (N(t) : t ≥ 0) (or (Nt : t ≥ 0)) is called the Poisson process (or
Poisson point process) with rate λ, Pp(λ) (or Ppp(λ)).

Interpretation: Think of the Wi as the waiting times between arrivals of
events, then Tn is the arrival time of the nth event and N(s) the number of
arrivals by time s. Then N(s) has a Poisson distribution with mean λs:

Theorem. If {N(s), s ≥ 0} is a Poisson process, then
(i) N(0) = 0;
(ii) N(t+ s)−N(s) is Poisson P (λt). In particular, N(t) ∼ P (λt);
(iii) N(t) has independent increments.
Conversely, if (i),(ii) and (iii) hold, then {N(s), s ≥ 0} is a Poisson process.

Proof. Part (i) is clear: the first lifetime is positive (they all are).
The link between the Poisson process, defined as above in terms of the

exponential distribution, and the Poisson distribution, is as follows. First,

P (Nt = 0) = P (t < X1) = e−λt.

This starts an induction, which continues (using integration by parts):

P (Nt = k) = P (Sk ≤ t < Sk+1) = P (Sk ≤ t)− P (Sk+1 ≤ t)

=

∫ t

0

λk

Γ(k)
xk−1e−λxdx−

∫ t

0

λk+1

Γ(k + 1)
xke−λxdx

=

∫ t

0

[ λk

Γ(k + 1)
.xk − λk−1

Γ(k)
.xk−1

]
d(e−λx)

=
[ λk

Γ(k + 1)
.tk − λk−1

Γ(k − 1)
.tk−1

]
e−λt −

∫ t

0

e−λx
[ λk

Γ(k)
.xk−1 − λk−1

Γ(k − 1)
.xk−2

]
dx

=
[ λk

Γ(k + 1)
.tk − λk−1

Γ(k − 1)
.tk−1

]
e−λt +

∫ t

0

e−λx
[ λk−1

Γ(k − 1)
.xk−2 − λk

Γ(k)
.xk−1

]
dx.

But the integral here is P (Nt = k − 1). So (passing from Gammas to facto-
rials)

P (Nt = k)− e−λt (λt)
k

k!
= P (Nt = k − 1)− e−λt (λt)k−1

(k − 1)!
,

completing the induction. This shows that

N(t) ∼ P (λt).
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This gives (ii) also: re-start the process at time t, which becomes the new
time-origin. The re-started process is a new Poisson process, by the lack-of-
memory property applied to the current item (lightbulb above); this gives
(ii) and (iii). Conversely, independent increments of N corresponds to the
lack-of-memory property of the lifetime law, and we know that this charac-
terises the exponential law, and so the Poisson process. //

Time-dependent rates.
The parameter λ is called the rate or intensity of the Poisson process.

Think of it as the rate at which accidents happen (or telephone calls arrive
at an exchange), or the intensity of a bombardment, etc. The above extends
to include time-dependent intensities. We say that {N(s), s ≥ 0} is a Pois-
son process with rate λ(r) if
(i) N(0) = 0,
(ii) N(t+ s)−N(s) is Poisson with mean

∫ t
s
λ(r)dr, and

(iii) N(t) has independent increments.

Limit Theory.
For independent, identically distributed (iid for short) random variables

X1, X2, · · ·, the sample mean (a statistic: a function of the data – random,
as the data is, but known, after sampling, when you have the data) is

X :=
1

n

n∑
1

Xk.

The mean, or population mean, E[X] is defined as in Measure Theory, though
we can restrict here to the discrete and density cases – a weighted average∑
xkf(xk) in the discrete case where X takes values xk with probability

f(xk), and in the density case by the continuous analogue
∫
xf(x)dx when

X has density f . Always, the sum or integral is absolutely convergent:

E[|X|] <∞;
∑
|xk|f(xk) <∞;

∫
|x|f(x)dx <∞.

One would expect that X would tend to E[X] as the sample size n increases.
This is exactly right. By Kolmogorov’s Strong Law of Large Numbers of
1933 (SLLN, or just LLN for short), convergence takes place with probability
one (almost surely, or a.s. for short):

X → E[X] (n→∞) a.s.
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For renewal theory (in particular, for the Poisson process), this gives another
LLN.

Theorem (LLN for Renewal Theory). For Xi (positive) iid with mean
µ, the renewal process N = (N(t)) satisfies

N(t)

t
→ 1

µ
(t→∞) a.s.

Proof. By definition of N(t) and Sn :=
∑n

1 Xk,

SN(t) ≤ t < SN(t)+1.

So as soon as N(t) > 0,

SN(t)

N(t)
≤ t

N(t)
<

SN(t)+1

N(t) + 1
.
N(t) + 1

N(t)
.

As t → ∞, N(t) → ∞ a.s. So the LLN the left tends to µ a.s.; so does the
first term on the right, while the second term on the right tends to 1. This
gives

t/N(t)→ µ (t→∞) a.s.

The result follows by inverting this. //

The Conditional Mean Formula

Theorem (Conditional Mean Formula. For B any σ-field,

E[E[X|B]] = E[X].

Proof. Take C the trivial σ-field {∅,Ω}. This contains no information, so an
expectation conditioning on it is the same as an unconditional expectation.
The first form of the tower property now gives

E[E[X|B] |{∅,Ω}] = E[X|{∅,Ω}] = E[X]. //

The Conditional Variance Formula

Theorem (Conditional Variance Formula).

var(Y ) = E[var(Y |X)] + var(E[Y |X]).
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Proof. Recall varX := E[(X − EX)2]. Expanding the square,

varX = E[X2−2X.(EX)+(EX)2] = E(X2)−2(EX)(EX)+(EX)2 = E(X2)−(EX)2.

Conditional variances can be defined in the same way. Recall that E(Y |X) is
constant when X is known (= x, say), so can be taken outside an expectation
over X, EX say. Then

var(Y |X) := E(Y 2|X)− [E(Y |X)]2.

Take expectations of both sides over X:

EXvar(Y |X) = EX [E(Y 2|X)]− EX [E(Y |X)]2.

Now EX [E(Y 2|X)] = E(Y 2), by the Conditional Mean Formula, so the right
is, adding and subtracting (EY )2,

{E(Y 2)− (EY )2} − {EX [E(Y |X)]2 − (EY )2}.

The first term is varY , by above. Since E(Y |X) has EX-mean EY , the
second term is varXE(Y |X), the variance (over X) of the random variable
E[Y |X] (random because X is). Combining, the result follows. //

Interpretation.
varY = total variability in Y ,
EXvar(Y |X) = variability in Y not accounted for by knowledge of X,
varXE(Y |X) = variability in Y accounted for by knowledge of X.

In words:
variance = mean of conditional variance + variance of conditional mean,
with these interpretations. This is extremely useful in Statistics, in breaking
down uncertainty, or variability, into its contributing components. There is
a whole area of Statistics devoted to such Components of Variance.

Compound Poisson Processes
We now associate i.i.d. random variablesXi with each arrival and consider

S(t) = X1 + . . .+XN(t), S(t) = 0 if N(t) = 0.

Thus S(t) is a random sum – a sum of a random number of random variables.
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A typical application in the insurance context is a Poisson model of claim
arrivals with random claim sizes The claims arrive at the epochs of a Poisson
process with rate λ. The claims are independent (different motor accidents
are independent; so are different house-insurance claims for fire damage, bur-
glary etc.). Then the claim-total mean is the claim-number mean times the
claim-amount mean. This is a special case of Wald’s identity (below).

Theorem. (i) For N Poisson distributed with parameter λ and X1, X2, . . .
independent of each other and of N , each with distribution F with mean µ,
variance σ2 and characteristic function φ(t), the compound Poisson distribu-
tion of

Y := X1 + . . .+XN

has characteristic function ψ(u) = exp{−λ(1−φ(u))}, mean λµ and variance
λE[X2].
(ii) For N = (Nt) a compound Poisson process with rate λ and jump-
distribution F with mean µ and variance σ2, Nt has CF ψ(u) = exp{−λt(1−
φ(u))}, mean λtµ and variance λtE[X2].

Proof. (i) The characteristic function (CF) follows from

ψ(t) = E[eitY ] = E[exp{it(X1 + . . .+XN)}]
=

∑
n

E[exp{it(X1 + . . .+XN)}|N = n].P (N = n)

=
∑
n

e−λλn/n!.E[exp{it(X1 + . . .+Xn)}]

=
∑
n

e−λλn/n!.(E[exp{itX1}])n

=
∑
n

e−λλn/n!.φ(t)n

= exp{−λ(1− φ(t))}.

We give two proofs for the mean and variance, (a) by differentiating the
CF, (b) from the Conditional Mean and Conditional Variance Formulae. Re-
call that if X has CF φ,

φ(t) = E[eiXt].
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Differentiating formally (this is justified here – we quote this),

φ′(t) = E[iXeiXt] : φ′(0) = iE[X]; E[X] = −iφ′(0);

φ′′(t) = E[−X2eiXt] : φ′′(0) = −E[X2]; E[X2] = −φ′′(0).

(a) Differentiate the CF:

ψ′(t) = ψ(t).λφ′(t),

ψ′′(t) = ψ′(t).λφ′(t) + ψ(t).λφ′′(t).

By above, (φ(0) = 1 and) φ′(0) = iµ, φ′′(0) = −E[X2],

ψ′(0) = λφ′(0) = λ.iµ,

and as also ψ′(0) = iEY , this gives

E[Y ] = λµ.

Thus the mean of the random sum Y := X1 + · · ·+XN is the product of the
means of X (short for a typical Xi) and N :

E[Y ] := E[X1 + · · ·+XN ] = E[X].E[N ].

This is (a special case of) Wald’s identity (Abraham Wald (1902-1950) in
1944). Similarly,

ψ′′(0) = iλµ.iλµ+ λφ′′(0) = −λ2µ2 − λE[X2],

and also (ψ(0) = 1, ψ′(0) = iλµ and) ψ′′(0) = −E[Y 2]. So

var Y = E[Y 2]− [EY ]2 = λ2µ2 + λE[X2]− λ2µ2 = λE[X2].

(b) Given N , Y = X1 + . . . + XN has mean NEX = Nµ and variance
N var X = Nσ2. As N is Poisson with parameter λ, N has mean λ and
variance λ. So by the Conditional Mean Formula,

EY = E[E(Y |N)] = E[Nµ] = λµ.

By the Conditional Variance Formula,

var Y = E[var(Y |N)] + var E[Y |N ]

= E[Nvar X] + var([N E[X])

= E[N ].var X + var N.(EX)2

= λ[E[X2]− (E[X])2] + λ.(E[X])2

= λE[X2] = λ(σ2 + µ2).

(ii) Apply (i): Nt has mean λt and variance λt. //
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