
Problems for the Msc in Mathematical Finance

1. Write down the definition of a probability space, (Ω,F , P ). Prove that
countable additivity of the probability measure, P , is equivalent to the
following; if (En) is a sequence of sets in F with

E1 ⊇ E2 ⊇ E3 . . .

and ∩nEn = ∅, then limnP (En) = 0.

2. Define what it means for two events, E and F in F , to be independent
with respect to P . Prove that if X and Y are simple random variables
and X and Y are independent then

E(XY ) = E(X)E(Y ).

Is it true that Ω \ E and Ω \ F are independent?

3. Define the Conditional Expectation, M , of L2(Ω,F , P ) onto L2(Ω,G, P ),
where G is a sub-σ field of the σ-field F . Prove, from your definition,
that for X in L2(Ω,F , P ) and Y in L2(Ω,G, P ) we have

E(M(X)) = E(X)

M(Y ) = Y

If X ≥ 0 then M(X) ≥ 0.

(1)

4. Let (Ft), t ∈ [0, T ] be a filtration1 of σ-fields on the probability space,
(Ω,FT , P ). We have a family of conditional expectations, (Mt), associ-
ated with this filtration and here Mt is the conditional expectation of
FT onto Ft. Prove that for X ∈ L2(Ω,F , P )

Ms(Mt(X)) = Ms(X)

when s ≤ t.

For X ∈ L2(Ω,F , P ), prove that the process (Xt) given by

Xt = Mt(X)

is a martingale adapted to (Ft).

1So this is an increasing right continuous family of σ-fields
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5. Recall that an event E is independent of a σ-field, G, if E is independent
of G for every G ∈ G. So, a random variable, X, is independent of G
if X−1(H) is independent of G, for every G in G and every Borel set
H ⊆ R. Now let M denote the conditional expectation of F onto a
sub-σ-field, G. Suppose also that X is independent of G. Prove that

M(X) = E(X)IΩ = (
∫
Ω

XdP )IΩ.

You will need properties of the conditional expectation described in
Theorem M1 and you must use the independence of X and G.

6. Recall the definition of Brownian Motion, we will denote the Brownian
Motion by W . If we choose the filtration of σ-fields, (Ft), to be that
generated by the Brownian Motion;

Ft = σ{W−1
s (H) : 0 ≤ s ≤ t,H a Borel set in R}

then, because “the increments of Brownian Motion are independent”
it is easy to see that for u ≥ t, Wu −Wt is independent of the events

{W−1
s (H) : 0 ≤ s ≤ t,H a Borel set in R}.

Why is this ‘easy’ to see? Further, can you prove that Wu − Wt is
independent of Ft? You might like to consider the set of all events in
Ft which are independent of Wu −Wt. Perhaps this is a σ-field.

7. By writing Brownian motion, W , as Wt = Wt − Ws + Ws and us-
ing Questions 5 and 6, prove that W is a martingale adapted to the
filtration , (Ft) , generated by W .

8. Prove the Isometry Property for the Stochastic Integral of a simple
process with respect to Brownian Motion. Let W be Brownian Motion
and f a simple process. Prove that the process, X, defined by

Xt =
∫ t

0
f(s)dWs

is a martingale adapted to the filtration, Ft), generated by Brownian
Motion.
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9. Let (Xt) be an L2-martingale on [0, T ] adapted to (Ft). Suppose also
that we can write

X2
t = Ut + At

for t ∈ [0, T ], where (Ut) is a martingale and (At) is an increasing
process, that is the paths of A are increasing functions of t ∈ [0, T ]. Let
f be a simple process. Prove a generalisation of the Isometry Property
of Question 8 for the stochastic integral of f with respect to X. Do
this by following carefully the steps you took in Question 8 with the
integral of f with respect to X.

10. Let (En) be a sequence of events in the probability space, (Ω,F , P ).
We define the two limiting sets

lim supnEn = ∩∞n=1 ∪∞k=n Ek

and
lim infnEn = ∪∞n=1 ∩∞k=n Ek.

Prove that each of these sets lies in F . Prove that

lim supnEn = {ω : ω ∈ En, for infinitely many n ∈ N}

and

lim infnEn = {ω : ω ∈ En, for all but finitely many n ∈ N}.

Now suppose that the series,
∑

n P (En) converges. Prove that

P (lim supnEn) = 0.

Suppose now that the sequence of events, (En) are independent of one
another and that the series

∑
n P (En) is divergent. Prove that

P (lim supnEn) = 1.

Hint: It is enough to show that P (lim infn (Ω \ En)) = 0 and hence
enough to show that P (∩∞k=n (Ω \ Ek)) = 0 for each n.
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