Problems for the Msc in Mathematical Finance

1. Write down the definition of a probability space, (Ω, \mathcal{F}, P) . Prove that countable additivity of the probability measure, P, is equivalent to the following; if (E_n) is a sequence of sets in \mathcal{F} with

$$E_1 \supseteq E_2 \supseteq E_3 \dots$$

and $\cap_n E_n = \emptyset$, then $\lim_n P(E_n) = 0$.

2. Define what it means for two events, E and F in \mathcal{F} , to be *independent* with respect to P. Prove that if X and Y are *simple* random variables and X and Y are independent then

$$E(XY) = E(X)E(Y).$$

Is it true that $\Omega \setminus E$ and $\Omega \setminus F$ are independent?

3. Define the Conditional Expectation, M, of $L^2(\Omega, \mathcal{F}, P)$ onto $L^2(\Omega, \mathcal{G}, P)$, where \mathcal{G} is a sub- σ field of the σ -field \mathcal{F} . Prove, from your definition, that for X in $L^2(\Omega, \mathcal{F}, P)$ and Y in $L^2(\Omega, \mathcal{G}, P)$ we have

$$E(M(X)) = E(X)$$

$$M(Y) = Y$$

$$If X \ge 0 \text{ then } M(X) \ge 0.$$
(1)

4. Let (\mathcal{F}_t) , $t \in [0, T]$ be a filtration¹ of σ -fields on the probability space, $(\Omega, \mathcal{F}_T, P)$. We have a family of conditional expectations, (M_t) , associated with this filtration and here M_t is the conditional expectation of \mathcal{F}_T onto \mathcal{F}_t . Prove that for $X \in L^2(\Omega, \mathcal{F}, P)$

$$M_s(M_t(X)) = M_s(X)$$

when $s \leq t$.

For $X \in L^2(\Omega, \mathcal{F}, P)$, prove that the process (X_t) given by

$$X_t = M_t(X)$$

is a martingale adapted to (\mathcal{F}_t) .

¹So this is an increasing right continuous family of σ -fields

5. Recall that an event E is independent of a σ -field, \mathcal{G} , if E is independent of G for every $G \in \mathcal{G}$. So, a random variable, X, is independent of \mathcal{G} if $X^{-1}(H)$ is independent of G, for every G in \mathcal{G} and every Borel set $H \subseteq \mathcal{R}$. Now let M denote the conditional expectation of \mathcal{F} onto a sub- σ -field, \mathcal{G} . Suppose also that X is independent of \mathcal{G} . Prove that

$$M(X) = E(X)I_{\Omega} = (\int_{\Omega} XdP)I_{\Omega}.$$

You will need properties of the conditional expectation described in Theorem M1 and you must use the independence of X and \mathcal{G} .

6. Recall the definition of Brownian Motion, we will denote the Brownian Motion by W. If we choose the filtration of σ -fields, (\mathcal{F}_t) , to be that generated by the Brownian Motion;

$$\mathcal{F}_t = \sigma\{W_s^{-1}(H) : 0 \le s \le t, H \text{ a Borel set in } \mathcal{R}\}$$

then, because "the increments of Brownian Motion are independent" it is easy to see that for $u \ge t$, $W_u - W_t$ is independent of the events

$$\{W_s^{-1}(H): 0 \le s \le t, H \text{ a Borel set in } \mathcal{R}\}.$$

Why is this 'easy' to see? Further, can you prove that $W_u - W_t$ is independent of \mathcal{F}_t ? You might like to consider the set of all events in \mathcal{F}_t which are independent of $W_u - W_t$. Perhaps this is a σ -field.

- 7. By writing Brownian motion, W, as $W_t = W_t W_s + W_s$ and using Questions 5 and 6, prove that W is a martingale adapted to the filtration, (\mathcal{F}_t) , generated by W.
- 8. Prove the *Isometry Property* for the Stochastic Integral of a simple process with respect to Brownian Motion. Let W be Brownian Motion and f a simple process. Prove that the process, X, defined by

$$X_t = \int_0^t f(s)dW_s$$

is a martingale adapted to the filtration, \mathcal{F}_t), generated by Brownian Motion.

9. Let (X_t) be an L^2 -martingale on [0,T] adapted to (\mathcal{F}_t) . Suppose also that we can write

$$X_t^2 = U_t + A_t$$

for $t \in [0, T]$, where (U_t) is a martingale and (A_t) is an *increasing* process, that is the paths of A are increasing functions of $t \in [0, T]$. Let f be a simple process. Prove a generalisation of the Isometry Property of Question 8 for the stochastic integral of f with respect to X. Do this by following carefully the steps you took in Question 8 with the integral of f with respect to X.

10. Let (E_n) be a sequence of events in the probability space, (Ω, \mathcal{F}, P) . We define the two limiting sets

$$\lim \sup_{n} E_n = \bigcap_{n=1}^{\infty} \cup_{k=n}^{\infty} E_k$$

and

$$\lim \inf_{n} E_n = \bigcup_{n=1}^{\infty} \cap_{k=n}^{\infty} E_k.$$

Prove that each of these sets lies in \mathcal{F} . Prove that

$$\limsup_{n} E_n = \{ \omega : \omega \in E_n, for infinitely many n \in \mathcal{N} \}$$

and

 $\liminf_{n} E_n = \{\omega : \omega \in E_n, \text{ for all but finitely many } n \in \mathcal{N}\}.$

Now suppose that the series, $\sum_n P(E_n)$ converges. Prove that

$$P(\lim \sup_{n} E_n) = 0.$$

Suppose now that the sequence of events, (E_n) are independent of one another and that the series $\sum_n P(E_n)$ is divergent. Prove that

$$P(\lim \sup_{n} E_n) = 1.$$

Hint: It is enough to show that $P(\lim \inf_n (\Omega \setminus E_n)) = 0$ and hence enough to show that $P(\bigcap_{k=n}^{\infty} (\Omega \setminus E_k)) = 0$ for each n.