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3 M3-4-5A16 Assessed Problems # 3
Do at least five of these eight problems. Study the rest of them!

Exercise 3.1 In Euclidean R3 vector components, the Jacobi–Lie bracket of two divergence-free vec-
tor fields v and w is expressed as[

v, w
]
i

= wi,jvj − vi,jwj with i, j = 1, 2, 3 . (1)

Here, a subscript comma denotes partial derivative, e.g., vi,j = ∂vi/∂xj , and one sums repeated indices
over their range.

(a) Show that [v, w]i,i = 0 for the expression in (1), so the commutator of two divergenceless vector
fields yields another one.

(b) Verify the Jacobi identity using streamlined notation

[v, w] = v(w)− w(v) ,

and invoking bilinearity of the Jacobi–Lie bracket.

(c) Show that the vector field
XG = ∇C ×∇G (2)

is divergence-free for all smooth functions C,G ∈ C∞(R3).

(d) We say that a volume form Λ on a Poisson manifold P is Hamiltonian, if

0 = £XG
Λ = d(XG Λ) +XG dΛ = d(XG Λ) ,

for all smooth functions G ∈ C∞(P ).

Show that for the volume form Λ = R3 this Hamiltonian condition implies,

div(FXG)Λ = {F,G}Λ ,

with Poisson bracket
{F,H} := −∇C · ∇F ×∇H . (3)

Hint: For Λ = d3x we have XG d3x = ∇C ×∇G · dS = dC ∧ dG.

(e) Show that the R3 bracket (3) may be identified with the divergenceless vector fields in (2) by
computing

[XG, XH ] = −X{G,H} , (4)

where [XG, XH ] is the Jacobi–Lie bracket of vector fields XG and XH .

Exercise 3.2 The dynamical system for the divergence-free motion x = (x1, x2, x3)
T ∈ R3 along the

intersection of two orthogonal circular cylinders is given by

ẋ1 = x2x3 , ẋ2 = −x1x3 , ẋ3 = x1x2 .

(a) Write this system in three-dimensional vector R3-bracket notation as

ẋ = ∇H1 ×∇H2 ,

where H1 and H2 are two conserved functions, whose level sets are circular cylinders oriented,
respectively, along the x3-direction (H1) and x1-direction (H2).
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(b) Show that the velocity ẋ ∈ TR3 is divergence-free.

(c) Restrict the equations and their R3 Poisson bracket to a level set of H1 by defining cylindrical
coordinates so that

x1 = r cos θ , x2 = r sin θ , x3 = p .

Show that the Poisson bracket on the cylinderH1 = const is canonical with a symplectic form given
by its area 2-form ω = rdθ∧dp. To check, show thatXH2 = { · , H2} satisfiesXH2 rdθ∧dp = dH2.

(d) Derive the equations of motion on a level set of H1 and express them in the form of Newton’s Law
for the planar motion of a simple pendulum. This means planar pendulum motion is isomorphic
to the divergence-free motion in R3 along the intersection of two orthogonal circular cylinders.

Exercise 3.3 Consider the divergence-free motion in R3 along the intersections of a vertically ori-
ented circular cylinder and a sphere off-set by an amount s along the x2-axis, given respectively by

C =
1

2
(x21 + x22) , S =

1

2
(x21 + (x2 − s)2 + x23)

(a) Write the corresponding equations of motion in three-dimensional vector R3-bracket notation as

ẋ = ∇C ×∇S .

(b) Show that this system preserves the level sets of C and S.

(c) Restrict the equations and their R3 Poisson bracket to a level set of C. Show that the Poisson
bracket on the circular cylinder C = const is symplectic.

(d) Derive the equations of motion on a level set of C by defining cylindrical coordinates so that

x1 = r cos θ , x2 = r sin θ , x3 = p , with r =
√

2C .

and express them as Newton’s Law for a Duffing oscillator.

Exercise 3.4 Vector notation for differential basis elements:
One denotes differential basis elements dxi and dSi = 1

2εijkdx
j ∧ dxk, for i, j, k = 1, 2, 3, in vector

notation as

dx := (dx1, dx2, dx3) ,

dS = (dS1, dS2, dS3)

:= (dx2 ∧ dx3, dx3 ∧ dx1, dx1 ∧ dx2) ,

dSi :=
1

2
εijkdx

j ∧ dxk ,

d 3x = dVol := dx1 ∧ dx2 ∧ dx3 .

(a) Vector algebra operations
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(i) Show that contraction with the vector field X = Xj∂j =: X·∇ recovers the following familiar
operations among vectors

X dx = X ,

X dS = X× dx ,
(or, X dSi = εijkX

jdxk)

Y X dS = X×Y ,

X d 3x = X · dS = XkdSk ,

Y X d 3x = X×Y · dx = εijkX
iY jdxk ,

Z Y X d 3x = X×Y · Z .

(ii) Show that these are consistent with

X (α ∧ β) = (X α) ∧ β + (−1)kα ∧ (X β) ,

for a k-form α.

(iii) Use (ii) to compute Y X (α ∧ β) and Z Y X (α ∧ β).

(b) Exterior derivative examples in vector notation
Show that the exterior derivative and wedge product satisfy the following relations in components
and in three-dimensional vector notation

df = f,j dx
j =: ∇f · dx

0 = d2f = f,jk dx
k ∧ dxj

df ∧ dg = f,j dx
j ∧ g,k dxk =: (∇f ×∇g) · dS

df ∧ dg ∧ dh = f,j dx
j ∧ g,k dxk ∧ h,l dxl =: (∇f · ∇g ×∇h) d 3x

Likewise, show that

d(v · dx) = (curl v) · dS
d(A · dS) = (div A) d 3x .

Verify the compatibility condition d2 = 0 for these forms as

0 = d2f = d(∇f · dx) = (curl grad f) · dS ,
0 = d2(v · dx) = d

(
(curl v) · dS

)
= (div curl v) d 3x .

Verify the exterior derivatives of these contraction formulas for X = X · ∇

(i) d(X v · dx) = d(X · v) = ∇(X · v) · dx
(ii) d(X ω · dS) = d(ω ×X · dx) = curl (ω ×X) · dS
(iii) d(X f d 3x) = d(fX · dS) = div (fX) d 3x

(c) Use Cartan’s formula,
£Xα = X dα+ d(X α)

for a k−form α, k = 0, 1, 2, 3 in R3 to verify the Lie derivative formulas:

(i) £Xf = X df = X · ∇f
(ii) £X (v · dx) =

(
− X× curl v +∇(X · v)

)
· dx

(iii) £X(ω · dS) =
(
curl (ω ×X) + X divω

)
· dS

=
(
− ω · ∇X + X · ∇ω + ω div X

)
· dS

(iv) £X(f d 3x) = (div fX) d 3x
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(v) Derive these formulas from the dynamical definition of Lie derivative.

(d) Verify the following Lie derivative identities both by using Cartan’s formula and by using the
dynamical definition of Lie derivative:

(i) £fXα = f£Xα+ df ∧ (X α)

(ii) £Xdα = d
(
£Xα

)
(iii) £X(X α) = X £Xα

(iv) £X(Y α) = (£XY ) α+ Y (£Xα)

(v) £X(α ∧ β) = (£Xα) ∧ β + α ∧£Xβ

Exercise 3.5 Operations among vector fields

The Lie derivative of one vector field by another is called the Jacobi-Lie bracket, defined as

£XY := [X , Y ] := ∇Y ·X −∇X · Y = −£YX

In components, the Jacobi-Lie bracket is

[X , Y ] =
[
Xk ∂

∂xk
, Y l ∂

∂xl

]
=

(
Xk ∂Y

l

∂xk
− Y k ∂X

l

∂xk

)
∂

∂xl

The Jacobi-Lie bracket among vector fields satisfies the Jacobi identity,

[X , [Y , Z] ] + [Y , [Z , X] ] + [Z , [X , Y ] ] = 0

Verify the following formulas

(a) X (Y α) = −Y (X α)

(b) [X , Y ] α = £X(Y α)− Y (£Xα), for zero-forms (functions) and one-forms.

(c) £[X ,Y ]α = £X£Y α−£Y £Xα, as a result of part (b). Use part (c) to verify the Jacobi identity.

(d) Verify the formula in part (b) for arbitrary k−forms using the dynamical definition of the Lie
derivative.

(e) Starting from the formula in part (b) for arbitrary k−forms prove the following

£X(Y α)−£Y (X α) = 2[X,Y ] α+ Y £Xα−X £Y α

= [X,Y ] α−X (Y α) + d(X (Y α))

Exercise 3.6 Hamiltonian vector fields

Let Xf = { · , f } ∈ Ham(T ∗M) be a Hamiltonian vector field on phase-space T ∗M generated by
taking the canonical Poisson bracket { · , · } with the smooth phase-space function f :∈ C∞(T ∗M,R).
Prove that:

(i) The relation Xf ω = df is equivalent to Xf = { · , f }.

(ii) The following two relations hold: Xf+const = Xf and £Xf
ω = 0.

(iii) The collection of all Hamiltonian vector fields is closed with respect to linear combinations (over
R) as well as under their commutator; namely,

Xf + λXg = Xf+λXg and [Xf , Xg] = −X{f,g} .
This means that they constitute an (infinite-dimensional) Lie algebra Ham(T ∗M) ⊂ X(T ∗M).

(iv) The following relations hold

[Xf , Xg] ω = £Xf
(Xg ω)−£Xg(Xf ω) = d(Xf (Xg ω)) = d{f, g}
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Exercise 3.7 Clebsch-Hamilton principle for a cotangent lift momentum map

Prove the following
Proposition[Clebsch-Hamilton principle] The Euler–Poincaré equation

d

dt

δl

δξ
= ad∗ξ

δl

δξ
(5)

on the dual Lie algebra g∗ is equivalent to the following implicit variational principle,

δS(ξ, q, q̇, p) = δ

∫ b

a
l(ξ, q, q̇, p) dt = 0, (6)

for an action constrained by the reconstruction formula

S(ξ, q, q̇, p) =

∫ b

a
l(ξ, q, q̇, p) dt

=

∫ b

a

[
l(ξ) +

〈〈
p , q̇ + £ξq

〉〉]
dt , (7)

in which the pairing 〈〈 · , · 〉〉 : T ∗M ×TM 7→ R maps an element of the cotangent space (a momentum
covector) and an element from the tangent space (a velocity vector) to a real number.1

For the proof, here are two convenient definitions.

Definition[The diamond operation �] The diamond operation (�) is defined as minus the dual of the
Lie derivative, namely, 〈

p � q , ξ
〉

=
〈〈
p , −£ξq

〉〉
. (8)

Definition[Transpose of the Lie derivative] The transpose of the Lie derivative £T
ξ p is defined via

the pairing 〈〈 · , · 〉〉 between (q, p) ∈ T ∗M and (q, q̇) ∈ TM as〈〈
£T
ξ p , q

〉〉
=
〈〈
p , £ξq

〉〉
. (9)

The notation in these two definitions distinguishes between two types of pairings,

〈 · , · 〉 : g∗ × g 7→ R and 〈〈 · , · 〉〉 : T ∗M × TM 7→ R . (10)

(a) Begin the proof by showing that stationarity variations of the constrained action in (7) imply the
following set of equations:

δl

δξ
= p � q , q̇ = −£ξq , ṗ = £T

ξ p . (11)

Hint: use the definitions of � and £T
ξ .

(b) Finish by expanding the time derivative

d

dt

〈 δl
δξ
, η
〉

=
d

dt

〈
p � q , η

〉
for a fixed Lie algebra element η ∈ g.

Hint: use the definitions of � and £T
ξ again.

1〈〈 · , · 〉〉 : T ∗M × TM 7→ R also occurs in the Legendre transformation.
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Exercise 3.8 The point of this exercise is to show that the Legendre transformation of the Clebsch-
Hamilton variational principle in variables q and p leads to the Lie–Poisson Hamiltonian form
of these equations.

(a) Show that the Legendre transform takes the Lagrangian

l(p, q, q̇, ξ) = l(ξ) +
〈〈
p , q̇ + £ξq

〉〉
in the action (7) to the Hamiltonian,

H(p, q) =
〈〈
p , q̇

〉〉
− l(p, q, q̇, ξ) =

〈〈
p , −£ξq

〉〉
− l(ξ) ,

whose variations are given by

δH(p, q) =
〈〈
δp , −£ξq

〉〉
+
〈〈
p , −£ξδq

〉〉
+
〈〈
p , −£δξq

〉〉
−
〈 δl
δξ
, δξ

〉
=
〈〈
δp , −£ξq

〉〉
+
〈〈
−£T

ξ p , δq
〉〉

+
〈
p � q − δl

δξ
, δξ

〉
.

(b) Show that these variational derivatives recover Equations (11) in canonical Hamiltonian form,

q̇ = δH/δp = −£ξq and ṗ = −δH/δq = £T
ξ p ,

and that, moreover, independence of H from ξ yields the momentum relation,

δl

δξ
= p � q . (12)

(c) The previous exercise showed that

dµ

dt
= {µ, h} = ad∗δh/δµ µ , (13)

where

µ = p � q =
δl

δξ
, h(µ) = 〈µ, ξ〉 − l(ξ) , ξ =

δh

δµ
. (14)

The evolution of a smooth real function f : g∗ → R is governed by

df

dt
=

〈
δf

δµ
,
dµ

dt

〉
(15)

Show that this equation for df/dt implies the Lie-Poisson bracket

{
f, h
}

:= −
〈
µ ,

[
δf

δµ
,
δh

δµ

]〉
.

(d) Explain why this result for
{
f, h
}

satisfies the definition of a Poisson bracket.


