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1 M3-4-5 A34 Assessed Problems # 1 Feb 2012

Please budget your time: Many of these problems are very easy, but some of the more interesting ones
may become time consuming. So work steadily through them, don’t wait until the last minute.

Exercise 1.1. Pauli matrices

Problem statement
The Pauli matrices are given by

σ0 =

[
1 0
0 1

]
, σ1 =

[
0 1
1 0

]
, σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0
0 −1

]
. (1)

(a) Verify the formula

σaσb = δab σ0 + iεabcσc for a, b, c = 1, 2, 3, (2)

where εabc is the totally antisymmetric tensor density with ε123 = 1.

(b) Verify by antisymmetry of εabc the commutator relation for the Pauli matrices

[σa , σb ] := σaσb − σbσa = 2iεabcσc for a, b, c = 1, 2, 3, (3)

and their anticommutator relation

{σa , σb }+ := σaσb + σbσa = 2δabσ0 for a, b = 1, 2, 3. (4)

(c) Verify the decomposition of a vector q ∈ R3 in Pauli matrices as

qσ0 = (q · σ)σ − iq× σ , (5)

where one denotes

q · σ :=

3∑
a=1

qaσa and (q× σ)c :=

3∑
a,b=1

qaσbεabc .

(d) Verify that
− |q× σ|2 = 2|q|2σ0 = 2(q · σ)2.

(e) Verify the commutation relation

[ p · σ, q · σ ] = 2ip× q · σ

for three-vectors p,q ∈ R3.

Answer These are all direct verifications. N
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Exercise 1.2. Quaternions
According to Hamilton (1843), a quaternion q = [q0, q] ∈ H may be written as

q = q0J0 + q1J1 + q2J2 + q3J3

where J2k = −J0 = J1J2J3 for k = 1, 2, 3, and the multiplication rule for two quaternions,

q = [q0, q ] and r = [r0, r ] ∈ H ,

may be defined in vector notation with q, r ∈ R3 as

qr = [q0, q ][r0, r ] = [ q0r0 − q · r , q0r + r0q + q× r ] . (6)

(a) Verify that the Pauli matrix relation (2) and the isomorphism

q = [q0, q] = q0σ0 − iq · σ , with q · σ :=
3∑

a=1

qaσa , (7)

recover the multiplication rule for quaternions.

That is, verify that identifying a quaternion basis as

J0 = σ0 , and Ja = −iσa , where a = 1, 2, 3,

recovers the basic quaternionic multiplication rules.

(b) Show that the product of a quaternion r = [r0, r] with a unit quaternion q̂ = [q0,q], whose inverse
is q̂∗ = [q0,−q] (prove that q̂q̂∗ = [1, 0]), satisfies

rq̂∗ =
[
r · q̂,− r0q + q0r + q× r

]
,

q̂ r q̂∗ =
[
r0|q̂|2, r + 2q0q× r + 2q× (q× r)

]
,

where r · q̂ := r0q0 + r · q and |q̂|2 := q̂ · q̂ = q0
2 + q · q = 1 for products with unit quaternions.

(c) For q∗ = [q0, −q], such that q∗q = J0|q|2, verify the quaternion identity

2q∗ = −J0qJ∗0 + J1qJ∗1 + J2qJ∗2 + J3qJ∗3 .

(d) What does this identity mean geometrically? Does the complex conjugate z∗ for z ∈ C satisfy such
an identity? Prove it.

(e) Write De Moivre’s theorem for z ∈ C. Write the corresponding theorem for the quaternion q ∈ H.

(f) Prove that any pure quaternion is in the conjugacy class of J3 = [ 0, k̂ ] with k̂ = (0, 0, 1)T under
the Ad-action of a unit quaternion.

(g) Verify the Euler–Rodrigues formula (3.26) in the text by a direct computation using quaternionic
multiplication.

(h) Compute the Cayley transform for a quaternion. Namely, for a quaternion q = [1, q], compute

p = [1, q]([1, q]∗)−1

(i) Compute the square root of a quaternion q = [1, q].
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Answer

(a) Verified by a direct calculation.

(b) Verified by a direct calculation.

(c) Verified by a direct calculation.

(d) The conjugate quaternion is the sum of the results of rotations by π/2 of the original
quaternion around each of the three orthogonal axes plus a reflection of it.

The complex conjugate z∗ for z ∈ C is not an analytic function of z, let alone an
algebraic function of it.

(e) De Moivre’s theorem for z ∈ C and M an integer is

(cos θ + i sin θ)M = (cosMθ + i sinMθ)

The corresponding theorem for a unit quaternion in CK parameters is(
cos

θ

2
, sin

θ

2
n̂
)2M

= (cosMθ, sinMθ n̂)

(f) This may be shown immediately by using the isomorphism of quaternions with SU(2)
and computing the SU(2) multiplication for |a1|2 + |a2|2 = 1, to find[

a1 − a∗2
a2 a∗1

][
− i 0
0 i

][
a∗1 a∗2
− a2 a1

]
=

[
− in3 − in1 + n2

− in1 − n2 in3

]
,

where (n1, n2, n3) are the components of the Hopf fibration.

In other words,
−igσ3g† = −in · σ,

in which g† = g−1 ∈ SU(2) and |n|2 = 1. That is, any pure unit quaternion is in this
conjugacy class. Hence, conjugating the pure unit quaternion along the z-axis [0, k̂]
by the other unit quaternions yields the entire unit two-sphere S2.

(g) Verified by a direct calculation.

(h) Cayley transform

p = [1, q]([1, q]∗)−1 =
[1, q]2

1 + |q|2
=

[ 1− |q|2, 2q ]

1 + |q|2
=

[1, q]2

| [1, q] |2

= [cos
θ

2
, sin

θ

2
n̂]2 = [cos2(θ/2)− sin2(θ/2), 2 cos(θ/2) sin(θ/2)n̂] = [cos θ, sin θ n̂]

for [1,q] = (1+ |q|2)1/2(cos θ2 , sin
θ
2 n̂). So the Cayley transform of a quaternion is the

square of its associated unit quaternion. The same is true about complex numbers.
That is, the square root of a unit quaternion is given by

[cos θ, sin θn̂]1/2 = ±[cos(θ/2), sin(θ/2)n̂]

(i) Write the CK form of the quaternion

[1, q] = (1 + |q|2)1/2
(

cos
θ

2
, sin

θ

2
n̂
)

Its square root is

[1, q]1/2 = ±(1 + |q|2)1/4
(

cos
θ

4
, sin

θ

4
n̂
)

N
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Exercise 1.3. Rigid body motion (and EP equation) in quaternions

(a) Compute the adjoint and coadjoint actions AD, Ad, ad, Ad∗ and ad∗ for SU(2) using quaternions.

(b) Formulate rigid body dynamics as an EP problem in quaternions. (Use the Rodrigues formula).
For this, state and prove Hamilton’s principle for the rigid body in quaternionic form.

Answer

(a) One associates the matrix Q ∈ SU(2) with the unit quaternion q̂ = [q0, q] (|q̂|2 =
q20 + q · q = 1) by using the Pauli matrix basis, for which

q̂ = q0σ0 − iq · σ

=

[
q0 − iq3 −iq1 − q2
−iq1 + q2 q0 + iq3

]
= Q ∈ SU(2). (8)

Q ∈ SU(2) is a unitary 2× 2 matrix (QQ† = Id) with unit determinant (det Q = 1).

Likewise, one associates the skew Hermitian matrix q̃ ∈ su(2) with the pure quater-
nion q = [0, q] via the tilde map

q ∈ R3 7→ [0,q] = −iq · σ = − i
3∑
j=1

qjσj (9)

=

[
−iq3 −iq1 − q2

−iq1 + q2 iq3

]
=: q̃ ∈ su(2) .

The tilde map (9) is a Lie algebra isomorphism between R3 with the cross product of
vectors and the Lie algebra su(2) of 2× 2 skew-Hermitian traceless matrices.

• AD (conjugacy of quaternions),

ADq̂r̂ := q̂ r̂ q̂∗ = QRQ† = ADQR ,

• Ad (conjugacy of angular velocities),

Adq̂Ω = q̂Ω q̂∗ = QΩ̃Q† = AdQΩ̃ ,

• ad (commutator of angular velocities),

adΩΞ = Im(Ω Ξ) := 1
2(Ω Ξ−Ξ Ω) = 1

2(Ω̃ Ξ̃− Ξ̃ Ω̃) = 1
2ad

Ω̃
Ξ̃ .

The pairing 〈 · , · 〉 : H×H 7→ R

〈 p̂ , q̂ 〉 = Re(p̂q̂∗) = 1
2(p̂q̂∗ + q̂p̂∗) = 1

4tr(PQ† +QP †) = 1
2tr(PQ†) . (10)

also allows one to define the corresponding dual operations. These are

• coAD:

〈AD∗q̂ ŝ , r̂ 〉 = 〈 ŝ , ADq̂r̂ 〉

= 1
2tr(S†QRQ†) = 1

2tr((Q†SQ)†R) = 1
2tr((AD∗QS)†R)

Thus, AD∗QS = Q†SQ for Q,S ∈ SU(2)

• coAd:

〈Ad∗q̂ Ξ ,Ω 〉 = 〈Ξ , Adq̂ Ω 〉 = 〈 Ξ̆ , AdQΩ̃ 〉

= 1
2tr(Ξ̆

†
QΩ̃Q†) = 1

2tr((Q†Ξ̆Q)†Ω̃) = 1
2tr((Ad∗QΞ̆)†Ω̃)

Thus, Ad∗QΞ̆ = Q†Ξ̆Q for Q ∈ SU(2) and Ξ̆ ∈ su(2)∗.
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• coad:

〈 ad∗ΩΥ , Ξ 〉 = 〈Υ , adΩ Ξ 〉 = 1
2tr(Ῠ

†
ad

Ω̃
Ξ̃)

= 1
2tr(Ῠ

†
(Ω̃ Ξ̃− Ξ̃ Ω̃)) = 1

2tr([Ω̃
†
, Ῠ]†Ξ̃) = 1

2tr((ad∗
Ω̃

Ῠ)†Ξ̃)

Thus, for Ῠ ∈ su(2)∗ and Ω̃ ∈ su(2), we have ad∗
Ω̃

Ῠ = [Ω̃
†
, Ῠ] = − [Ω̃, Ῠ], the last

change of sign because Ω̃
†

= − Ω̃.

(b) The body angular velocity is defined as Ω = 2q̂∗ ˙̂q for a pure quaternion q = [0,q].

According to the Cayley–Klein variational formula in the text (page 115), the variation
of the pure quaternion Ω = 2q̂∗ ˙̂q corresponding to body angular velocity in Cayley–
Klein parameters satisfies the identity

Ω ′ − Ξ̇ = 1
2(Ω Ξ−Ξ Ω) = Im(Ω Ξ) , (11)

where Ξ := 2q̂∗q̂′ and ( · )′ denotes variation.

Using the quaternionic pairing (10), we define the Lagrangian as `(Ω) = 1
2〈Ω,AΩ〉

for a symmetric operator A.

Hamilton’s principle is then δS = 0 with S =
∫ b
a `(Ω) dt, and with homogeneous

endpoint conditions.

One denotes the quantity M := AΩ + ΩA and computes

δS =
1

2

∫ b

a
〈δΩ,AΩ〉+ 〈Ω,AδΩ〉 dt

=
1

2

∫ b

a
〈δΩ,M〉 dt =

1

2

∫ b

a
〈Ξ̇ + 1

2(Ω Ξ−Ξ Ω),M〉 dt

=
1

2

∫ b

a
〈Ξ, −Ṁ + 1

2(MΩ−ΩM)〉 dt+ 〈Ξ, M〉
∣∣∣b
a
.

Upon invoking the homogeneous endpoint conditions one obtains the rigid body equa-
tions for quaternions,

Ṁ = 1
2(MΩ−ΩM) = Im(MΩ) .

N


