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What are you going to learn in these lectures?

1 Tutorial on the Infinite-Dimensional Geometry of Fluid Dynamics

2 Flows, Pull-backs, Differential k-forms, Lie derivatives and all that

3 What is advection, mathematically? Familiar fluid examples!

4 Deterministic Advection in Kelvin’s Circulation Theorem

5 Hamilton’s principle for Deterministic Advection by Lie Transport
(DALT)

6 How does variational calculus produce fluid flow equations?

7 The Hamiltonian side

8 If time remains: SALT (Stochastic Advection by Lie Transport)
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Pull-back dynamics – Overview

• DALT employs the action on functions f ∈ Λ0 and k-forms α ∈ Λk of
time-dependent smooth maps φt via pull-back, denoted φ∗t .

• Pull-back is defined as the composition of functional dependence from
the right. For example, the expression

φ∗t f := f ◦ φt , or φ∗t f (x) = f (φt(x)) ,

is called the pull-back of the function f by the smooth map φt .

• This notation will also be applied to k-forms and vector fields.

• Push-forward is the pull-back by the inverse map. For a function f

φt∗f := f ◦ φ−1
t , so φt∗f (φt(x)) = f (x) ,

which means the inverse of the pull-back is the push-forward.
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What is a differential k-form on a manifold, Λk(M)?

Definition

Manifolds are spaces on which the rules of calculus apply.

Differential forms are objects which you can integrate.

A k-form α ∈ Λk on a smooth manifold M is defined by the antisymmetric
wedge product ∧ of k differential basis elements dx ij , j = 1, . . . , k , as

α = αi1...ik (x)dx i1 ∧ · · · ∧ dx ik ∈ Λk(M) .

we sum on repeated indices, dx i ∧ dx j = −dx j ∧ dx i and we take
i1 < i2 < · · · < ik , so αi1...ik (x) is antisymmetric in neighbouring indices.

If α ∈ Λk(M) and β ∈ Λl(M), then α ∧ β ∈ Λk+l(M), for k + l ≤ dim(M).

Theorem

The wedge product is natural under pull-back. That is,
φ∗t (α ∧ β) = φ∗tα ∧ φ∗tβ.
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What is a vector field?

Definition (Vector field)

A vector field X ∈ X(M) is a map : M → TM from a manifold M to its
tangent space which assigns a vector X (x) ∈ TxM at any point x ∈ M.

Definition (Local basis of a vector field)

A basis of the vector space TxM may be obtained by using the gradient
operator, with components X j(x) given by (summing on repeated indices)

X = X j(x)
∂

∂x j
=: X j(x)∂j , with j = 1, . . . , dim(M) .

Definition (Vector fields & differentials have dual basis elements)

The differential of a function f ∈ Λ0 is given by df = ∂f
∂xk

dxk ∈ Λ1.
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Three more natural operations on differential k-forms (Λk)

Three more basic operations are commonly applied to differential forms.

They are: exterior derivative (d), contraction ( ) and Lie derivative (LX )
in the direction of a vector field X .

(1) Exterior derivative (dα) raises the degree:

dΛk 7→ Λk+1 and d2 → 0 .

(2) Contraction (X α) with a vector field X lowers degree:

X Λk 7→ Λk−1 and
∂

∂x j
dxk = δkj (duality) .

(3) Lie derivative (LXα) by vector field X preserves degree:

LXΛk 7→ Λk .

Geometrically, LXα := X dα + d(X α) (Cartan’s formula)
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How pull-back dynamics leads to Lie derivatives

Under the action of a smooth invertible map φt on k-forms α, β ∈ Λk(M),
at a point x ∈ M, the pull-back φ∗t is natural for d, ∧ and . That is,

d(φ∗tα) = φ∗tdα ,

φ∗t (α ∧ β) = φ∗tα ∧ φ∗tβ ,
φ∗t (X α) = φ∗tX φ∗tα .

In addition, the Lie derivative LXα of a k-form α ∈ Λk(M) by the vector
field X tangent to the flow φt on M with φt |t=0 = Id may be defined
either dynamically or geometrically (by Cartan’s formula) as

LXα =
d

dt

∣∣∣∣
t=0

(φ∗tα) = X dα + d(X α) .

Equality of dynamical and geometrical definitions of LX !
(This is how differential geometry becomes dynamical!)

D. D. Holm ( Imperial College London) DALT CliMathParis IHP 2019 7 / 27



Equality of dynamical and geometrical definitions of LX

For example, in the case α(x) = ui (x)dx i ∈ Λ1(R3), i = 1, 2, 3, this
equivalence implies a well-known vector calculus identity, namely

LX (ui (x)dx i ) :=
d

dt

∣∣∣∣
t=0

φ∗t (ui (x)dx i )

=

[
∂ui (φt(x))

∂φjt(x)

dφjt
dt

]
t=0

dx i + ui (x)d

[
d

dt
φjt(x)

]
t=0

=

[
∂ui (x)

∂x j
X j + uj(x)

∂X j(x)

∂x i

]
dx i

=
[
(X · ∇)u + uj∇X j

]
· dx ,

=
[
− X× curlu +∇(X · u)

]
· dx

= X d(u · dx) + d
(
X (u · dx)

)
.

This calculation yields the fundamental vector calculus identity of fluid
dynamics and it is the basis of the Kelvin circulation theorem.
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What is advection, mathematically?

Definition (An advected quantity is invariant along a flow trajectory.)

When the pull-back relation is applied to this definition for xt = φt(x0)

α0(x0) = αt(xt) = (φ∗tαt)(x0) ,

one finds that advected quantities satisfy the transport formula,

0 =
d

dt
α0(x0) =

d

dt
(φ∗tαt)(x0) = φ∗t (∂t + LX )αt(x0) = (∂t + LX )αt(xt) ,

where the vector field X = φ̇tφ
−1
t generates the flow map φt .

Equivalently, via the push-forward relation,

αt(xt) = (α0 ◦ φ−1
t )(xt) = ((φt)∗α0)(xt) ,

implies the same transport formula,

d

dt
αt(xt) =

d

dt
(φt)∗α0 = −(LXαt)(xt) .

D. D. Holm ( Imperial College London) DALT CliMathParis IHP 2019 9 / 27



Examples of Deterministic Advection by Lie Transport

Definition (Lie derivative)

d
dt

∣∣∣
t=0

(φ∗tK )(x) :=
d

dt

∣∣∣
t=0

K (φt(x)) =: LuK (x)

with
dφt(x)

dt

∣∣∣
t=0

= u(x).

Example (Familiar examples from fluid dynamics)

(Functions) (∂t + Lu)θ(x) = ∂tθ + u · ∇θ ,

(1-forms) (∂t + Lu)(v(x) · dx) =
(
∂tv + u · ∇ v + vj∇u j

)
· dx

=
(
∂tv − u× curl v +∇(u · v)

)
· dx ,

(2-forms) (∂t +Lu)(ω(x) · dS) =
(
∂tω− curl (u×ω) + udivω

)
· dS ,

(3-forms) (∂t + Lu)(ρ(x) d 3x) = (∂tρ+ div ρu) d 3x .
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Deterministic Advection in Kelvin’s Circulation Theorem

The deterministic Kelvin circulation theorem follows from Newton’s law
for the evolution of momentum/mass v concentrated on an advecting
material loop, ct = φtc0

d

dt

∮
ct

v · dx =

∮
ct

(∂t + Lu(t,x))(v · dx) =

∮
ct

f · dx︸ ︷︷ ︸
Newton′s Law
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Proof of the deterministic Kelvin’s theorem

Proof.

Consider a closed loop moving with the material flow ct = φtc0 with
Eulerian velocity d

dtφt(x) = φ∗tu(t, x) = u(t, φt(x)).
Compute the time derivative of the loop momentum/mass

d

dt

∮
ct

v(t, x) · dx =

∮
c0

d

dt

(
φ∗t
(
v(t, x) · dx

))
=

∮
c0

φ∗t

(
(∂t + Lu(t,x))(v · dx)

)
︸ ︷︷ ︸

Defines Lie derivative via product rule

=

∮
φtc0=ct

(∂t + Lu(t,x))(v · dx)

=

∮
ct

f · dx︸ ︷︷ ︸
Newton′s Law

=

∮
c0

φ∗t

(
f · dx

)
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Lagrangian v Eulerian Kelvin’s theorem

Lagrangian Kelvin’s theorem: In moving coordinates, xt = φt(x),∮
c0

d

dt

(
φ∗t
(
v(t, x) · dx

))
=

∮
c0

φ∗t

(
f · dx

)
Thus, in the moving frame,

d

dt

(
v(t, φt(x)

)
· dφt(x)

)
= φ∗t

(
f · dx +∇p · dx

)
Eulerian Kelvin’s theorem: In spatially fixed coordinates, x , after using the
pull-back formula for Lie derivative, Lu,∮

ct

(∂t + Lu(t,x))(v · dx) =

∮
ct

f · dx︸ ︷︷ ︸
Newton′s Law

Thus, in the fixed frame,(
∂tv + (u · ∇) v + vj∇u j

)
· dx =

(
f +∇p

)
· dx .
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Newton’s Law for fluids implies Kelvin’s theorem

Kelvin’s theorem reveals the geometry of Newton’s Law for fluids.

Namely, as we have seen in the last step of the proof of Kelvin’s theorem,

d

dt

∮
ct

v · dx =

∮
ct

(∂t + Lu(t,x))(v · dx) =

∮
ct

f · dx︸ ︷︷ ︸
Newton′s Law

and the second relation implies that (modulo an exact differential dp)

(∂t + Lu(t,x))(v · dx) = f · dx + dp

or, in coordinates and noting that Ludx j = d(Lux j) = duj = ∇uj · dx,

∂tv + (u ·∇)v + vj∇uj = f +∇p .

As we will see, v = δ`/δu arises from the physics of Hamilton’s principle as
the momentum density associated with the Eulerian transport velocity
u(t, x) which carries the material loop.
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For Hamilton’s principle, we need the diamond operation

Definition

The operation � : V × V ∗ → X∗ between tensor space elements a ∈ V ∗

and b ∈ V produces an element of X(D)∗, a one-form density, defined by〈
b � a, u

〉
X

= −
∫
D
b · Lu a =:

〈
b , −Lu a

〉
V
,

where 〈 · , · 〉X denotes the symmetric, non-degenerate L2 pairing between
vector fields and one-form densities, which are dual with respect to this
pairing. Likewise, 〈 · , · 〉V represents the corresponding L2 pairing between
dual elements of V and V ∗.

Also, Lua stands for the Lie derivative of an element a ∈ V ∗ with respect
to a vector field u ∈ X(D), and b · Lu a denotes the contraction between
elements b ∈ V and elements a ∈ V ∗.
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What does diamond (�) mean operationally?

Example (Calculating diamond (�) with vector calculus)

In R3, for a = θ ∈ Λ0,A = A · dx ∈ Λ1,B = B · dS ∈ Λ2,D = Dd3x ∈ Λ3

and S = Sabdx
a ⊗ dxb ∈ T 0

2 (sym)(
δ`

δa
� a
)

=

[
− δ`

δθ
∇θ · dx + D∇

(
δ`

δD

)
· dx

+

(
δ`

δA
× curl A− A div

δ`

δA

)
· dx

+

(
curl

δ`

δB
× B− δ`

δB
divB

)
· dx

+

(
δ`

δSab
Sab,k −

(
δ`

δSab
Skb

)
,a

−
(

δ`

δSab
Ska

)
,b

)
dxk
]
⊗ d3x .
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The variational derivative, what is it?

A functional F (ρ) is defined as a map F : ρ ∈ C∞(M)→ R.

The functional derivative of F (ρ), denoted δF/δρ, is defined by∫
δF

δρ
(x)φ(x) dx = lim

ε→0

F [ρ+ εφ]− F [ρ]

ε
=

[
d

dε
F [ρ+ εφ]

]
ε=0

,

where φ is an arbitrary function.

The quantity εφ is called the variation of ρ.

Since the variation is a linear operator, we can write the variation
operationally as

δF (ρ) =

〈
δF

δρ
, δρ

〉
.
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Hamilton’s principle for deterministic advection

Theorem (Variational principle for deterministic continuum dynamics)

Consider a deterministic path xt = φtX with φt ∈ Diff(D). The following
two statements are equivalent:

(i) The Clebsch-constrained Hamilton’s variational principle holds on
X(D)× V ∗,

δS := δ

∫ t2

t1

`(φ∗tu, φ
∗
t a) +

〈
φ∗tb ,

d

dt
(φ∗t a)

〉
V

dt = 0 ,

(ii) The Euler–Poincaré equations for continua hold, in the form

d

dt

(
φ∗t
δ`

δu

)
= φ∗t

(
∂t
δ`

δu
+ Lu

δ`

δu

)
= φ∗t

(
δ`

δa
� a
)
,

d

dt

(
φ∗t at

)
= φ∗t

(
∂tat + Luat

)
= 0 .
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Proof of Hamilton’s principle for deterministic fluids

Proof.

Evaluating the variational derivatives at fixed time t and coordinate X
yields the following relations when e.g. δ(φ∗tb) := ∂ε|ε=0(φ∗t,εb):

δ(φ∗tb) : 0 =
d

dt
(φ∗t a) = φ∗t

(
∂tat + Luat

)
,

δ(φ∗t a) : 0 = − d

dt
(φ∗tb) + φ∗t

(
δ`

δa

)
0 = −∂tbt + LTu bt + φ∗t (δ`/δa)

δ(φ∗tu) : 0 =
δ`

δ(φ∗tu)
− (φ∗tb) � (φ∗t a) .

One then computes the motion equation via
d

dt

δ`

δ(φ∗tu)
=

d

dt
(φ∗tb) � (φ∗t a) + (φ∗tb) � d

dt
(φ∗t a) ,

leading to φ∗t

(
∂t
δ`

δu
+ Lu

δ`

δu

)
= φ∗t

(
δ`

δa
� a
)

dt ,

after using the pull-back formula.
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Details of proof

Proof.

With notation φ∗t a =: at , one computes the motion equation in detail as〈
∂

∂t

δ`

δut
, ξ

〉
X

= 〈∂tbt � at + bt � ∂tat , ξ〉X〈
∂

∂t

δ`

δut
− δ`

δat
� at , ξ

〉
=
〈
LTu bt � at , ξ

〉
+ 〈bt � (−Luat) , ξ〉

=
〈
LTu bt , −Lξat

〉
+ 〈bt , LξLuat〉

= 〈bt , −LuLξat〉+ 〈bt , LξLuat〉
=
〈
bt , L[ξ,u]at

〉
= 〈bt � at , [u, ξ]〉

= 〈bt � at , −aduξ〉 = 〈−ad∗u(bt � at) , ξ〉

bt � at = δ`/δut , ad
∗
u(δ`/δut) = Lu(δ`/δut) & pull-back formula yields〈

∂

∂t

δ`

δu
+ Lu

δ`

δu
, ξ

〉
X

=

〈
δ`

δa
� a , ξ

〉
X

.
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Hamiltonian formulation

We reach the Hamiltonian side via the Legendre transform.

µ = δ`/δu and h(µ, a) =
〈
µ , u

〉
− `(u, a) .

Note that δh/δu = 0, by definition.

Taking variations of h(µ, a) yields

δh(µ, a) =
〈
δµ ,

δh

δµ

〉
+
〈δh
δa
, δa

〉
=
〈
δµ , u

〉
−
〈 δ`
δa
, δa

〉
+
〈
µ− δ`

δu
, δu

〉
.

Then, upon identifying corresponding terms, one verifies µ = δ`/δu and
finds the following variational derivatives of the Hamiltonian,

δh

δµ
= u and

δh

δa
= − δ`

δa
.
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Lie–Poisson bracket for DALT

With δh/δµ = u and δh/δa = − δ`/δa, the EP equation

∂

∂t

δ`

δu
+ Lu

δ`

δu
=
δ`

δa
� a ,

translates into the Lie–Poisson Hamiltonian form, as

∂

∂t

[
µ
a

]
= −

[
ad∗( · )µ ( · ) � a
L( · )a 0

] [
δh/δµ
δh/δa

]
.

The definition of the diamond operator (�) will ensure that the Lie–Poisson
matrix operator is skew-symmetric in L2 pairing under integration by parts.

d

dt
f (µ, a) = −

〈[
δf /δµ
δf /δa

]T
,

[
ad∗( · )µ ( · ) � a
L( · )a 0

] [
δh/δµ
δh/δa

]〉
=:
{
f , h
}
,

where {f , h} is the “Lie–Poisson” bracket.
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Casimirs

A functional C [µ, a] whose variational derivatives [δC/δµ, δC/δa]T

comprise a null eigenvector of the Lie–Poisson matrix operator is called a
Casimir functional for that Lie–Poisson system.

Casimir functionals satisfy

d

dt
C (µ, a) =

〈[
δh/δµ
δh/δa

]T
,

[
ad∗( · )µ ( · ) � a
L( · )a 0

] [
δC/δµ
δC/δa

]〉
=:
{
f , h
}

= 0,

so that C [µt , at ] = C [µ0, a0] is conserved for any Hamiltonian h[µ, a].
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RSW motion

RSW motion is governed by the following nondimensional equations for horizontal fluid
velocity v = εu + R(x) with curlR(x) = 2Ω(x)ẑ and depth D,

∂v

∂t
− u× curlv +∇ψ = 0 ,

∂D

∂t
+∇ · Du = 0 ,

with notation

ψ =
D − B

εF +
ε

2
D|u|2 ,

and variable Coriolis parameter 2Ω(x), bottom topography B = B(x), Rossby number ε
and rotational Froude number F ,

ε =
U0

f0L
� 1 and F =

f 2
0 L

2

gB0
= O(1) .

The dimensional scales (B0, L,U0, f0, g) denote equilibrium fluid depth, horizontal length
scale, horizontal fluid velocity, reference Coriolis parameter, and gravitational
acceleration, respectively.
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Homework #1

(a) Show that the RSW equations arise as Euler–Poincaré equations from
Hamilton’s principle with action integral,

SRSW =

∫ [
Du · R(x)− (D − B)2

2εF
+
ε

2
D|u|2

]
dx1∧dx2 dt ,

where (∂tD +∇·(Du))dx1∧dx2 = 0.
Hint: first identify the momentum and advected quantity, so (�) may
be computed.

(b) Write the Kelvin circulation theorem for RSW.

(c) Legendre transform to compute the Hamiltonian.

(d) Compute the Lie–Poisson form of the RSW equations.

(e) Compute the Casimirs for the Lie–Poisson bracket.

(f) Explain how the Casimirs are related to PV and depth.
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SALT (Stochastic Advection by Lie Transport) comes next

However, first we needed to understand the calculus of differential forms.

As I said today, Flows, Pull-backs, k-forms, Lie derivatives and all that.

The diamond operator appearing in the δu equation defined the cotangent
lift (Clebsch) momentum map, T ∗V → X∗ which is the route to the
Hamiltonian formulation of the symmetry reduced dynamics.

For example,
bt � at = δ`/δut ∈ X∗ .
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What’s next? Over to you! Any questions?
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