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Thinking lately about . . . Poincaré and Lichnerowicz

For Poincaré, the definition of a mathematical entity is the
construction of the entity itself and not an expression of an
underlying essence or existence.
This is to say that no mathematical object exists without human
construction of it, both in mind and language.

https: // en. wikipedia. org/ wiki/ Pre-intuitionism

You cannot apply mathematics you do not know.

– André Lichnerowicz (via Michael Ghil, 18 Sept 2019)
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Reminder: What is advection, mathematically?

As in [Arnold1966], we consider Lagrangian trajectories as curves on M
generated by the action xt = φt(x) of diffeomorphisms φt parameterised
by time t such that x = φ0(x) at time t = 0; that is, φ0 = Id .

The velocity along the curve is defined as d
dtφt(x) =: u(t, φt(x)).

Smooth k-form K (t, x) is advected, if pull-back φ∗tK (t, x) := K (t, φt(x))
satisfies the following formula.

Definition (Deterministic Advection by Lie Transport (DALT))

d

dt
(φ∗tK )(t, x) :=

d

dt
K
(
t, φt(x)

)
= φ∗t

(
∂tK (t, x) + LuK (t, x)

)
= 0 .

Definition (Lie derivative)

d

dt

∣∣∣
t=0

(φ∗tK )(x) :=
d

dt

∣∣∣
t=0

K (φt(x)) =: LuK (x) with
dφt(x)

dt

∣∣∣
t=0

= u(x)

Thus, “advection” means “viewing conservation on particles from
a fixed frame”; and doing so is governed by the Lie derivative.
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Examples of Deterministic Advection by Lie Transport

Definition (Lie derivative)

d
dt

∣∣∣
t=0

(φ∗tK )(x) :=
d

dt

∣∣∣
t=0

K (φt(x)) =: LuK (x)

with
dφt(x)

dt

∣∣∣
t=0

= u(x).

Example (Familiar examples from fluid dynamics:)

(Functions) (∂t + Lu)b(x) = ∂tb + u · ∇b ,

(1-forms) (∂t + Lu)(v(x) · dx) =
(
∂tv + u · ∇ v + vj∇u j

)
· dx

=
(
∂tv − u× curl v +∇(u · v)

)
· dx ,

(2-forms) (∂t +Lu)(ω(x) · dS) =
(
∂tω− curl (u×ω) +udivω

)
· dS ,

(3-forms) (∂t + Lu)(ρ(x) d 3x) = (∂tρ+ div ρu) d 3x .
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Advection in Kelvin’s Circulation Theorem

The deterministic Kelvin circulation theorem follows from Newton’s law
for the evolution of momentum/mass v concentrated on an advecting
material loop, ct = φtc0 at velocity u,

d

dt

∮
ct

v · dx =

∮
ct

f · dx︸ ︷︷ ︸
Newton′s Law
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Reminder: Proof of the deterministic Kelvin’s theorem

Proof.

Consider a closed loop moving with the material flow ct = φtc0 with
Eulerian velocity d

dtφt(x) = φ∗tu(t, x) = u(t, φt(x)).
Compute the time derivative of the loop momentum/mass

d

dt

∮
ct

v(t, x) · dx =

∮
c0

d

dt

(
φ∗t
(
v(t, x) · dx

))
=

∮
c0

φ∗t

(
(∂t + Lu(t,x))(v · dx)

)
︸ ︷︷ ︸

Defines Lie derivative via product rule

=

∮
φtc0=ct

(∂t + Lu(t,x))(v · dx)

=

∮
ct

f · dx︸ ︷︷ ︸
Newton′s Law

=

∮
c0

φ∗t

(
f · dx

)
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What would a stochastic Kelvin’s theorem look like?

 
 
 
 
 
 

 

Q1: Would noise cause circulation in a fluid loop?

Q2: What do you mean by circulation?

A2: As usual, circulation means, “integral of the momentum per unit mass
(a 1-form) around a closed loop moving with the fluid velocity”.

A1: Ah! Circulation would still defined by the same formula, but now the
loop would be moving with the fluid along a stochastic Lagrangian path?

Q3: Why would the loop stay together?

A3: Because the flow map in both cases preserves neighbours!
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Intuition solves problems by envisioning the solution.
What would a stochastic Lagrangian trajectory look like?
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Path to the SALT algorithm for stochastic parameterisation

1 Hamilton’s principle, constrained by a proposed stochastic
decomposition of transport velocity implied an Euler fluid SPDE, in

the Kelvin theorem form of Newton’s law
√

(Holm PRSA 2015)

2 After a slow-fast decomposition of the full flow map, multi-time
homogenization was used to derive the stochastic decomposition

ũ(xt , t) := dxt = u(xt , t)dt +
∑
I

ξi (xt) ◦ dW i
t ,

(Holm 2015) proposed cf. (Cotter Gottwald Holm PRSA 2017)
√

3 The SALT algorithm for determining the
∑

I ξi (xt) in this stochastic
decomposition was developed for data assimilation in collaboration

with Wei Pan, Igor Shevchenko, Colin Cotter and Dan Crisan.
√

See arXiv:1802.05711, arXiv:1801.09729.
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What theoretical steps took us to the SALT algorithm?

Variational principle for stochastic fluid equations Holm
PSRA 2015

√

Multi-time homogenization of slow-fast decomposition
Cotter Gottwald Holm PRSA 2017

→
Stochastic decomposition of transport velocity

(For data assimilation,
∑

I ξi(xt) was the key issue)
+

Stochastic Kelvin circulation theorem

Fluid motion equations from Hamilton’s principle.
→

SALT Eulerian SPDEs with stochastic transport
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Multi-time fast-slow homogenization (CGH2017)
Stochastic decomposition and the derivation of SALT flow

Write the fluid flow map for Lagrangian parcels xt := gtx0 ∈ D with
g0x0 = x0 as the composition of two time-dependent diffeomorphisms.
Namely, with slow-fast (t, t/ε) composition of two maps denoted by ( . )

gt,t/ε = g̃t/ε.ḡt = (Id + γt/ε).ḡt .

Upon writing x̄t(x0) = ḡtx0 we have at O(1) from ut = ġtg
−1
t that

d

dt
(gt,t/εx0) = ut(ḡtx0 + γt/εḡtx0)

= ˙̄xt(x0) + ( ˙̄xt · ∇x̄t ) γt/ε(x̄t(x0)) + ε−1 ∂t/εγt/ε(x̄t(x0) .

Multi-time homogenisation in the limit ε→ 0 shows that

lim
ε→0

gt,t/ε = φt := (Id + γ ◦Wt ).ḡt ,

where ◦Wt denotes Stratonovich stochastic time dependence.
This is SALT flow.
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Deriving the SALT vector field

The stochastic vector-field associated with stochastic flow {φs,t}0≤s≤t
from dφt = d(ḡt) + d(γ ◦Wt ).ḡt)

dφs,t(x) = ut(φs,t(x))dt +
∑
k

ξ(k)(φs,t(x)) ◦ dWt , φs,s(x) = x ∈ M.

The spatial stochastic vector field dxt on a given smooth manifold M
which generates the SALT flow map is given by

dxt(x) = ut(x)dt +
∞∑
k=1

ξ(k)(x) ◦ dW
(k)
t , x ∈ M .

That is to say, dxt = dφ0,t ◦ φ−1
0,t is the stochastic analogue of the usual

Eulerian vector field.
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What was our next step?

Variational principle for stochastic fluid equations Holm
PSRA 2015

√

Multi-time homogenization of slow-fast decomposition
Cotter Gottwald Holm PRSA 2017

√

→
Stochastic decomposition of transport velocity

(For data assimilation,
∑

I ξi(xt) was the key step)
√

+
Interpret the stochastic decomposition of transport

velocity in Kelvin theorem
→

SALT Eulerian SPDEs with stochastic transport
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SALT introduces a Stochastic Kelvin Circulation Theorem

We derived the divergence-free advection velocity as the sum

ũ := u(x , t) dt︸ ︷︷ ︸
DRIFT

+
∑
k

ξk(x) ◦ dWk(t)︸ ︷︷ ︸
NOISE

, div ũ = 0

Let v = momentum/mass. (In Hamilton’s principle, v = D−1δ`/δu.)

The stochastic Kelvin circulation theorem represents Newton’s law
for the evolution of momentum concentrated on an advecting loop

d

∮
c(ũ)

v · dx =

∮
c(ũ)

(d + Lũ)(v · dx)︸ ︷︷ ︸
By KIW formula

=

∮
c(ũ)

f · dx︸ ︷︷ ︸
Newton′s Law
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Kunita’s Itô-Wenzell (KIW) formula in stochastic analysis

The key was the Itô-Wentzell formula for transport of k-forms, Kunita (1984)

Let φ∗tK (t, x) = K (t, φt(x)) denote change of variables by the pull-back
x → φt(x) , x ∈ R3 of semimartingale flow φt

φt(x)− φ0(x) =

∫ t

0
u(φs(x), s)ds +

∑∫ t

0
ξi (φs(x)) ◦ dW i

s

acting on semimartingale k-form, dK (t, x) = G (t, x)dt + H(t, x) ◦ dWt .

This is the Kunita-Itô-Wenzell (KIW) formula for tensor fields:

φ∗tK (t, x)− K (0, x) =

∫ t

0
φ∗s
(
dK (s, x) + Ldφs(x)K (s, x)

)
,

where Ldφs(x) is the Lie derivative by the vector field dφs(x) whose time

integral
∫ t

0 dφs(x) = φt(x)− φ0(x) generates the semimartingale flow φt .
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‘Transfer principle’ for Lagrangian fluid SPDE

Introducing differential notation for Kunita’s Itô-Wenzell formula

We write the stochastic ‘fundamental theorem of calculus’ as

φ∗tK (t, x)− φ∗0K (0, x) := K (t, φt(x))− K (0, x) =

∫ t

0
d (φ∗sKs)

In this notation, the Kunita-Itô-Wenzell (KIW) formula is written∫ t

0
d (φ∗sKs) =

∫ t

0
φ∗s
(
dK (s, x) + Ldφs(x)K (s, x)

)
.

So the KIW formula ‘transfers’ to the equivalent differential form

d
(
φ∗tK (t, x)

)
= φ∗t

(
dK (t, x) + Ldφt(x)K (t, x)

)
, a.s.

where φt is the stochastic process obtained by homogenisation CGH2017

dφt(x) := u(φt(x), t)dt +
∑
i

ξi (φt(x)) ◦ dW i
t .
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Kunita 1984 provided the key to stochastic advection

The Kunita Itô-Wentzell change of variables formula in differential form
leads to the stochastic advection law (BdLHLT2019)

d
(
φ∗tK (t, x)

)
= φ∗t

(
dK (t, x) + Ldφt(x)K (t, x)

)
= 0 , a.s.

where Ldφt(x) is the Lie derivative by the vector field dφt(x) whose time

integral
∫ t

0 dφs(x) = φt(x)− φ0(x) generates the semimartingale flow φt
acting on semimartingale k-form, dK (t, x) = G (t, x)dt + H(t, x) ◦ dWt .

Choose φt as the stochastic process obtained by homogenisation CGH2017

dφt(x) := u(φt(x), t)dt +
∑
i

ξi (φt(x)) ◦ dW i
t .

The Lie derivative LdφtK has both a dynamic and a geometric definition

LdφtK = lim
∆s→0

1

∆s
(φ∗∆sK − K ) = dφt dK + d(dφt K ) (Cartan)
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Now we assemble the stochastic fluid equations

d

∮
c(dφt)

v · dx =

∮
c(dφt)

(d + Ldφt )(v · dx)︸ ︷︷ ︸
KIW formula

=

∮
c(dφt)

f · dx︸ ︷︷ ︸
Newton′s Law

This corresponds to the motion equation derived from Hamilton’s principle(
d + Ldφt

)( 1

D

δ`

δu
· dx

)
= f · dx ,

with the advection of mass expressed in KIW form(
d + Ldφt

)(
Dd3x

)
= 0 ,

where the flow velocity is given by the stochastic vector field

dφt(x) := u(φt(x), t)dt +
∑
i

ξi (φt(x)) ◦ dW i
t .

Now we understand the stochastic Kelvin’s circulation theorem.
It’s the rate of change of momentum of a stochastically moving loop.
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‘Transfer principle’ for Eulerian fluid SPDE (SALT)

Consider the stochastic Eulerian divergence-free velocity vector field as,

(φ−1
t )∗dφt(x) =: dxt(x , t) = u(x , t)dt +

∑
i

ξi (x) ◦ dW i
t , div(dxt) = 0 ,

assumed in Holm [2015] then derived from homogenization in Cotter et al.
[2017]. The KIW formula expresses the Euler-Poincaré SPDE as

du + dxt · ∇u + uj∇dxt j = −∇p dt (u is 3D Euler velocity)

=⇒ dω + dxt · ∇ω − ω · ∇dxt = 0 (ω = curlu is vorticity)

as the 3D Euler fluid motion and vorticity equations with SALT.

2D versions of these 3D Euler vorticity equations have appeared previously,
e.g., in Brzézniak, Caṕınski and Flandoli (1991) and Mémin (2014).

There is other history here, which would require its own lecture.
Maybe Franco will discuss it!
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More about the Stochastic 3D Euler equations

For ũ := u(x , t) dt︸ ︷︷ ︸
DRIFT

+
∑

k ξk(x) ◦ dWk(t)︸ ︷︷ ︸
NOISE

with div ũ = 0.

The stochastic Euler equation of motion with v = momentum/mass is

dv − ũ× curl v = −∇(pdt + ũ · v) .

We take the curl to find the equation for vorticity ω := curlv,

dω = curl( ũ× ω) = − ũ · ∇ω + ω · ∇ ũ or dω = −
[
ũ , ω

]
.

Thus, the stochastic Euler equation keeps its deterministic form!
Only the transport velocity changes, to become a stochastic process!

Crisan, Flandoli, Holm (J Nonlin Sci 2018) have proven these equations
have local-in-time existence, uniqueness and Beale-Kato-Majda regularity.
(Same properties as the deterministic Euler equations!)
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Interim summary: What were our (theoretical) steps?

Variational principle for stochastic fluid equations Holm
PSRA 2015

√

Multi-time homogenization of slow-fast decomposition
Cotter Gottwald Holm PRSA 2017

√

→
Stochastic decomposition of transport velocity

(Using data to find ξi(xt) was the key issue)
√

+
Stochastic Kelvin theorem.

√

Fluid equations derived from Hamilton’s principle.
→

SALT Eulerian SPDEs with stochastic transport
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For Hamilton’s principle, we need the diamond operation

Definition

The operation � : V × V ∗ → X∗ between tensor space elements a ∈ V ∗

and b ∈ V produces an element of X(D)∗, a one-form density, defined by〈
b � a, u

〉
X

= −
∫
D
b · Lu a =:

〈
b , −Lu a

〉
V
,

where 〈 · , · 〉X denotes the symmetric, non-degenerate L2 pairing between
vector fields and one-form densities, which are dual with respect to this
pairing. Likewise, 〈 · , · 〉V represents the corresponding L2 pairing between
dual elements of V and V ∗.

Also, Lua stands for the Lie derivative of an element a ∈ V ∗ with respect
to a vector field u ∈ X(D), and b · Lu a denotes the contraction between
elements b ∈ V and elements a ∈ V ∗.
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Reminder of Lie derivatives examples in fluid dynamics

Example (Lie derivatives examples in fluid dynamics)

(Functions) (∂t + Lu)θ(x) = ∂tθ + u · ∇θ ,

(1-forms) (∂t + Lu)(v(x) · dx) =
(
∂tv + u · ∇ v + vj∇u j

)
· dx

=
(
∂tv − u× curl v +∇(u · v)

)
· dx ,

(2-forms) (∂t +Lu)(ω(x) · dS) =
(
∂tω− curl (u×ω) +udivω

)
· dS ,

(3-forms) (∂t + Lu)(ρ(x) d 3x) = (∂tρ+ div ρu) d 3x .
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Reminder of examples of the diamond operation

Example (Calculating diamond (�) with vector calculus)

In R3, for a = θ ∈ Λ0,D = Dd3x ∈ Λ3,A = A · dx ∈ Λ1,B = B · dS ∈ Λ2.(
δ`

δa
� a
)

=

[
− δ`

δθ
∇θ · dx + D∇

(
δ`

δD

)
· dx

+

(
δ`

δA
× curl A− A div

δ`

δA

)
· dx

+

(
curl

δ`

δB
× B− δ`

δB
divB

)
· dx .
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Variational principle for stochastic advection

Theorem (Variational principle for stochastic continuum dynamics)

Consider a cylindrically stochastic Stratonovich path xt = φtX with
φt ∈ Diff(D). The following two statements are equivalent:

(i) The Clebsch-constrained Hamilton’s variational principle holds on
X(D)× V ∗,

δS := δ

∫ t2

t1

l(φ∗tu, φ
∗
t a) +

〈
φ∗tb , d (φ∗t a)

〉
V

dt = 0 .

(ii) The Euler–Poincaré equations for continua hold, in the form

d

(
φ∗t
δl

δu

)
= φ∗t

(
d
δl

δu
+ Ldxt

δl

δu

)
= φ∗t

(
δl

δa
� a
)

dt ,

d
(
φ∗t at

)
= φ∗t

(
dat + Ldxtat

)
= 0 .
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Proof of the variational principle for stochastic fluids

Proof.

Evaluating the variational derivatives at fixed time t and coordinate X
yields the following relations:

δ(φ∗tb) : 0 = d (φ∗t a) = φ∗t

(
dat + Ldxtat

)
,

δ(φ∗t a) : 0 = −d (φ∗tb) + φ∗t

(
δl

δa

)
dt ,

δ(φ∗tu) : 0 =
δl

δ(φ∗tu)
− (φ∗tb) � (φ∗t a) .

One then computes the motion equation via

d
δl

δ(φ∗tu)
= d (φ∗tb) � (φ∗t a) + (φ∗tb) � d (φ∗t a) ,

leading to φ∗t

(
d
δl

δu
+ Ldxt

δl

δu

)
= φ∗t

(
δl

δa
� a
)

dt ,

after using the KIW pull-back formula.
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Example: stochastic magnetohydrodynamics

Example (Adiabatic compressible stochastic MHD, BdLHLT2019)

In the case of adiabatic compressible stochastic magnetohydrodynamics
(MHD), the action in Hamilton’s principle is given by

S =

∫
l(u,D, s,B) dt =

∫ (
D

2
|u|2 − De(D, s)− 1

2
|B|2

)
d3x dt .

Thermodynamic First Law, for mass density D and entropy/ mass s,

de = −p d(1/D) + Tds ,

with pressure p(D, s) and temperature T (D, s). In 3D vector form, the
motion equation is

du + (dxt · ∇)u + (∇u)T · dxt = −
( 1

D
∇p
)
dt −

( 1

D
B× curl B

)
dt .

where dxt := u(t, xt) dt + ξ(xt) ◦ dWt is the stochastic Lagrangian
trajectory.
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Adiabatic compressible stochastic MHD (cont)

Example (SMHD advected variables and conservation laws)

By definition, the advected variables {s,B,D} satisfy the following
Lie-derivative relations which close the ideal MHD system, by applying the
KIW formula for the advective dynamics,

(d + Ldxt ) s = 0, or ds = − dxt · ∇ s ,

(d + Ldxt ) (B · dS) = 0, or dB = curl (dxt × B),

(d + Ldxt ) (D d3x) = 0 , or dD = − ∇ · (D dxt) ,

and the pressure is a function p(D, s) = D2∂e/∂D specified by giving the
equation of state of the fluid, e = e(D, s).
These stochastic MHD equations preserve magnetic helicity and entropy

Λmag =

∫
B · curl−1B d3x , S =

∫
DΦ(s) d3x ,

provided dxt and B are tangent to the boundary.
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What is the next step?

Hamilton’s principle
√

+
Multi-time fast-slow homogenization

√

→
Stochastic decomposition

√

+
Kunita’s Itô-Wenzell (KIW) formula

√

→
Eulerian fluid SPDEs with stochastic transport

√

What is the next step?
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Hamiltonian SALT

The SALT equations read

d
δ`

δu
+ Ldxt

δ`

δu
X∗
=
δ`

δa
� a dt and da + Ldxta

V ∗
= 0,

where dxt := u(t, xt) dt + ξ(xt) ◦ dWt is the stochastic transport vector
field along the Lagrangian trajectory.
The Legendre transform from the Lagrangian side to the Hamiltonian side
for SALT is given by µ = δ`/δu and

dh(µ, a) =
〈
µ , dxt

〉
− `(u, a)dt

=
〈
µ , u

〉
dt − `(u, a)dt +

〈
µ , ξ(xt)

〉
◦ dWt

= h(µ, a)dt +
〈
µ , ξ(xt)

〉
◦ dWt ,

so that,
δ(dh) = δh(µ, a) dt︸ ︷︷ ︸

DALT!

+
〈
δµ , ξ(xt)

〉
◦ dWt︸ ︷︷ ︸

New!
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Lie–Poisson bracket for SALT

With δ(dh)/δµ = dxt := u(t, xt) dt + ξ(xt) ◦ dWt and
δ(dh)/δa = − (δ`/δa) dt, the SALT Euler–Poincaré equations

d
δ`

δu
+ Ldxt

δ`

δu
X∗
=
δ`

δa
� a dt and da + Ldxta

V ∗
= 0,

translate into the Lie–Poisson Hamiltonian form, as

d

[
µ
a

]
= −

[
ad∗( · )µ ( · ) � a
L( · )a 0

] [
δ(dh)/δµ
δ(dh)/δa

]
= −

[
ad∗( · )µ ( · ) � a
L( · )a 0

] [
dxt

δh/δa dt

]
.

The definition of the diamond operator (�) will ensure that the Lie–Poisson
matrix operator is skew-symmetric in L2 pairing under integration by parts.

df (µ, a) = −

〈[
δf /δµ
δf /δa

]T
,

[
ad∗( · )µ ( · ) � a
L( · )a 0

] [
δ(dh)/δµ
δ(dh)/δa

]〉
=:
{
f , h
}
,

where {f , h} is the same Lie–Poisson bracket as for DALT.
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Casimirs for SALT

Theorem

SALT dynamics preserves the same Casimirs as for DALT dynamics.

Proof.

A functional C [µ, a] whose variational derivatives [δC/δµ, δC/δa]T

comprise a null eigenvector of the Lie–Poisson matrix operator is called a
Casimir functional for that Lie–Poisson system.
SALT and DALT have the same Lie–Poisson matrix operator.

Therefore, Casimir functionals for DALT are preserved for SALT, since
they satisfy the corresponding equation,

dC (µ, a) =

〈[
δ(dh)/δµ
δ(dh)/δa

]T
,

[
ad∗( · )µ ( · ) � a
L( · )a 0

] [
δC/δµ
δC/δa

]〉
=:
{
C ,dh

}
= 0,

so that C [µt , at ] = C [µ0, a0] is conserved for any Hamiltonian dh[µ, a].
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SALT RSW motion

SALT RSW motion is governed by the following nondimensional equations for horizontal
fluid velocity v = εu + R(x) with curlR(x) = 2Ω(x)ẑ and depth D,

dv − dxt × curlv +∇ψ = 0 , dD +∇ · (Ddxt) = 0 ,

with notation

ψ =

(
D − B

εF +
ε

2
|u|2

)
dt + v · ξ(xt) ◦ dWt ,

and variable Coriolis parameter 2Ω(x), bottom topography B = B(x), Rossby number ε
and rotational Froude number F ,

ε =
U0

f0L
� 1 and F =

f 2
0 L

2

gB0
= O(1) .

The dimensional scales (B0, L,U0, f0, g) denote equilibrium fluid depth, horizontal length
scale, horizontal fluid velocity, reference Coriolis parameter, and gravitational
acceleration, respectively.
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Homework #2.1 SALT RSW

(a) Show that the SALT RSW equations arise as Euler–Poincaré equations
from Hamilton’s principle with action integral,

SRSW =

∫
`(u,D) dt=

∫ [
Du · R(x)− (D − B)2

2εF
+
ε

2
D|u|2

]
dx1∧dx2 dt ,

where (dD +∇·(Ddxt))dx1∧dx2 = 0.
Hint: first identify the momentum and advected quantity, so (�) may
be computed.

(b) Write the Kelvin circulation theorem for SALT RSW.

(c) Legendre transform to compute the Hamiltonian.

(d) Compute the Lie–Poisson form of the SALT RSW equations.

(e) Compute the Casimirs for the Lie–Poisson bracket.

(f) Explain how the Casimirs are related to PV and depth.
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Homework #2.2 Euler, SALT & LA SALT Rigid Body

(1) The deterministic Euler Rigid Body equations for body angular
momentum Π ∈ so(3)∗ ≡ R3 and body angular velocity I−1Π = Ω ∈ R3

may be expressed as
dΠ

dt
= Π× ∂h

∂Π
with h(Π) =

1
2Π · I−1Π .

Discuss the solutions.This is classical.

(2) The SALT Rigid Body equations may be expressed as

dΠ = Π× ∂(dh)

∂Π
with dh(Π) = h(Π) dt + Π · ξ ◦ dWt ,

for a constant ξ ∈ so(3) ≡ R3. Discuss the solutions. See arXiv:1601.02249
or https://doi.org/10.1007/s00332-017-9404-3.

(3) The LA SALT Rigid Body equations may be expressed as

dΠ = Π× E
[
∂h

∂Π

]
dt + Π× ξ ◦ dWt ,

for a constant ξ ∈ so(3) ≡ R3. Discuss the solutions. See arXiv:1908.11481
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What’s next? Do these ideas apply to climate modelling?

“Climate is what you expect. Weather is what you get.” 1

There are many questions regarding climate whose answers
remain elusive.

For example, there is the question of determinism; was it
somehow inevitable at some earlier time that the climate now
would be as it actually is?

An almost intransitive system is one that can undergo two or more distinct
types of behaviour, and will exhibit one type for a long time, but not
forever . . . . Such a system is still deterministic. We are stochastic!

1Lorenz, E. N., 1995: Climate is what you expect. Unpublished, available at
http://eaps4.mit.edu/research/Lorenz/Climate_expect.pdf

Lorenz, E. N., 1976: Nondeterministic theories of climatic change.
Quaternary Research, 6(4), 495-506.

Daron, J.D. and Stainforth, D.A., 2013. On predicting climate
under climate change. Environmental Research Letters, 8(3), p.034021.
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One candidate is Lagrangian Averaged (LA) SALT

The LA SALT equations substitute ut → E [ut ] in the Lagrangian path∮
C
(
dxt=utdt+ξ(x)◦dWt

)ut · dx =⇒
∮
C
(
dXt=E[ut ]dt+ξ(x)◦dWt

)ut · dx .

For example, in the Euler fluid case the modified Kelvin theorem reads,

d

∮
C
(
dXt

) ut · dx =

∮
C
(
dXt

) [dut · dx + LdXt (ut · dx)
]

= 0 ,

where LdXt (ut · dx) denotes the Lie derivative of the 1-form (ut · dx) with
respect to the vector field dXt given by

dXt = E [ut ] dt +
∑
k

ξ(k)(x) ◦ dWt .

The corresponding Euler–Poincaré form of the equations is

d
δ`

δu
+ LdXt

δ`

δu
= E

[ δ`
δa

]
� a dt and da + LdXta = 0 .

D. D. Holm (Imperial College London) SALT CliMathParis IHP 2019 38 / 40



What does LA SALT tell us about extreme events?

When the expected Euler–Poincaré equations are written out in Itô form ,
with µ := δ`

δu , we find generalised NS and advected-diffusive equations

∂

∂t
E [µ] + LE[dXt ]E [µ]− 1

2

∑
k

Lξ(k)(Lξ(k)E [µ]) = E
[ δ`
δa

]
� E [a] + E [Fµ] ,

∂

∂t
E [a] + LE[dXt ]E [a]− 1

2

∑
k

Lξ(k)(Lξ(k)E [a]) = E [Fa] Climate .

These Climate equations predict the expectations E [µ] and E [a]

throughout the domain of flow. The Itô Weather equations for the
fluctuations are linear drift/stochastic transport relations:

dµ+ LE[dXt ]µ+
∑
k

Lξ(k)µ dWt −
1

2

∑
k

Lξ(k)(Lξ(k)µ) dt = E
[ δ`
δa

]
�a dt + Fµ

da + LE[dXt ]a +
∑
k

Lξ(k)a dWt −
1

2

∑
k

Lξ(k)(Lξ(k)a) dt = Fa Weather .

The risk of extreme events EVOLVES : d
dtE

[
〈|µ− E [µ] |2〉

]
= RHS
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What’s next? Over to you! Any questions?

[CGH17],[CFH17],[AGH17],[HT16a],[HT16b],[ACH16],[Hol15]

Alexis Arnaudon, Alex L Castro, and Darryl D Holm.

Noise and dissipation on coadjoint orbits.
arXiv preprint arXiv:1601.02249, 2016.

Alexis Arnaudon, Nader Ganaba, and Darryl D Holm.

The stochastic Energy-Casimir method.
arXiv preprint arXiv:1702.03899, 2017.

Dan Crisan, Franco Flandoli, and Darryl D Holm.

Solution properties of a 3D stochastic Euler fluid equation.
arXiv preprint arXiv:1704.06989, 2017.

Colin J Cotter, Georg A Gottwald, and Darryl D Holm.

Stochastic partial differential fluid equations as a diffusive limit of deterministic Lagrangian multi-time dynamics.
arXiv preprint arXiv:1706.00287, 2017.

Darryl D Holm.

Variational principles for stochastic fluid dynamics.
In Proc. R. Soc. A, volume 471, page 20140963. The Royal Society, 2015.

Darryl D Holm and Tomasz M Tyranowski.

Stochastic discrete Hamiltonian variational integrators.
arXiv preprint arXiv:1609.00463, 2016.

Darryl D Holm and Tomasz M Tyranowski.

Variational principles for stochastic soliton dynamics.
In Proc. R. Soc. A, volume 472, page 20150827. The Royal Society, 2016.

D. D. Holm (Imperial College London) SALT CliMathParis IHP 2019 40 / 40


	Reminder: What is advection, mathematically? 
	Advection in Kelvin's Circulation Theorem
	The path to the SALT algorithm for stochastic parameterisation
	Historically, Kunita 1984 provided the key to stochastic advection
	Variational principle for stochastic advection by Lie transport
	Example: stochastic magnetohydrodynamics
	What next?

