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Summary. The real-valued Maxwell-Bloch equations on R 3 are investigated as a 
Hamiltonian dynamical system obtained by applying an S 1 reduction to an invariant 
subsystem of a dynamical system on C 3. These equations on R 3 are bi-Hamiltonian 
and possess several inequivalent Lie-Poisson structures parametrized by classes of or- 
bits in the group SL(2, R). Each Lie-Poisson structure possesses an associated Casimir 
function. When reduced to level sets of these functions, the motion takes various sym- 
plectic forms, from that of  the pendulum to that of the Duffing oscillator. The values 
of the geometric (Hannay-Berry) phases obtained in reconstructing the solutions are 
found to depend upon the choice of Casimir function, that is, upon the parametrization 
of the reduced symplectic space. 

1. Introduction 

In self-induced transparency, radiation energy leaves the leading edge of an optical 
laser pulse, coherently excites the atoms of a resonant dielectric medium, and then 
returns to the trailing edge of the pulse with no loss, but with a delay caused by tem- 
porary storage of pulse energy in the atoms. The physics of self-induced transparency 
is reviewed in Allen and Eberly [1987]. To the extent that resonant interaction of 
coherent light with a medium calls into play only a single atomic transition and the 
laser may be taken to be monochromatic, the medium has effectively only two levels. 
For sufficiently short pulse duration, the coherent interaction between the pulse and 
the medium leading to self-induced transparency may be taken to be lossless. For 
most lasers and most atoms, this two-level lossless model is an excellent 



242 D. David and D. D. Holm 

approximation and is quite adequate for an understanding of the basic physics behind 
many coherent transient phenomena. Self-induced transparency equations based upon 
this model are derived from the Maxwell-Schr6dinger equations in Holm and Kovacic 
[1991] by averaging over fast phases in the variational principle for the Maxwell- 
Schrtdinger equations. A sketch of that derivation is given now in order to facilitate 
the considerations of the rest of the paper. 

The dimensionless Maxwell-Schr6dinger equations (Holm and Kovacic [1991]) are 

Ezz - E ,  = 2 K P , ,  

1 
?t+ = ~--a+ - E a - ,  (1.1) 

z;K 

1 
h -  = 7 - - a - - E a + ,  

Z K  

where E denotes the electric field, P is the polarizability written in terms of two 
a * atomic-level amplitudes a+ and a_ as P = ( +a_  + a*+a-),  and the ratio of 

frequencies, K = ~0c/C00 << 1, is a small parameter. Here a~0 is the atomic transition 
frequency, and ~Oc = (2~rnd2a~o/li) 1/2 is the cooperative frequency of the medium 
with dipole density n and atomic dipole moment d.  The wave equation for the linearly 
polarized electric field E follows from Maxwell's equations 

b = Bz, B = ez, (1.2) 

where D = E + 2KP is the electric displacement and B is the magnetic field. 
Introducing the magnetic vector potential A that satisfies the relations ,4 = E and 

Az = B allows us to write the primitive Maxwell-Schr&tinger equations as stationarity 
conditions for Hamilton's principle, 8S = 0, with action S given by 

S = A2 _ ~ a  z + 2 K a ( a + a _  + a + a - )  -- (]a+l 2 - l a - I  2) 

+iK(a+~t+ -- a+a+'* + a_a-* " -- a-i~*__) 1 dz  dr.  (1.3) 

The third term in the integrand of S is the interaction term, which couples the elec- 
tromagnetic field to the matter fields. Stationary variations with respect to A, a~_, and 
a*_ give 

8A: 

8a~: 

8a'_.: 

+ 2KP - A z z  = O, 

1 
i~+ -- z - - a +  + E a -  = 0, (1.4) 

Z K  

1 
i • -  + = - - a -  + E a +  = O. 

2K 

Next, we write the atomic amplitudes in "rotating wave" form, 

a +  = u e - i ( t - z ) / 2 K ~  a -  = v e  + i ( t - z ) / 2 K .  (1.5) 
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We also take the self-consistent part of the vector potential to be a modulated right- 
going wave, in the envelope form, 

A = iKwe -i(~-z)/'~ - iKw*e i(t-z)/'¢, (1.6) 

with the complex envelope function w. In these expressions, the complex envelope 
functions u,v, and w are assumed to depend only on time, t. Now the electric field is 
given by 

E = ,;i = w e  - i ( t - z ) / ~  q- w * e  i ( t -z ) /~  + O(K). (1.7) 

So, to first order in K, the quantity w is the complex electric field envelope. Now, 
averaging the action S over the fast phases, performing the z-integration, dividing by 
4K, and dropping terms of higher order in K yields the new action 

= I [i(w*~ - wvk*) + i(u*it - uit*) + i(v*9 - vf*) + wu*v + w*uv*] dr. 

(1.8) 
Varying the averaged action S yields 

tSS = I {fw* [ i~ + uv*] + 6 w [ - i J v *  + U'12] 

+ 6u*[ii~ + vw] + a u [ - i k *  + v'w*] (1.9) 

+ + uw*] + av[-i * + u*w]} dt 

Thus, stationarity of the averaged action S implies the Maxwelt-Schrfdinger envelope 
equations 

~v = iuv*, i~ = ivw,  ~, = iuw*.  (1.10) 

Holm and Kovacic [1991] point out that these envelope equations are Hamiltonian 
on C 3 with Hamiltonian function 

1 , 
H(u,  v, w) = - ~ ( u  vw + uv*w*), (I.11) 

and symplectic form, - 1/2 i  [ dw  /k dw* + du /k du * + dv /k dv*]. In addition to H, 
these equations possess two extra constants of motion, 

C = lul 2 + M  2 and C' = twl 2+}ul  2, (1.12) 

since H is invariant under the two S l transformations 

u -'-> eiOu, v -'-> eiOv, and w --'> e i ~ w ,  u --+ eiqau, (1.13) 

generated by C and C',  respectively. The Hamiltonian vector field is given by 

XH = 2i --~u Ou* tgu* Ou \ Ov Ov* 3v* Ov + 2 i  -~w c~w* Ow* O'w " 

(1.14) 
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The five-dimensional Maxwell-Bloch system (see, e.g., Puccioni et al. [1987]) 
is obtained by reducing the system (1.10) on C 3 through the S t group action in 0 
generated by the constant C. We introduce the following transformation to coordinates 
which are invariant under the S J action generated by C: 

ix = 2w, y = 2uv*, z = lu[ 2 - t v l  2, c = lul 2 + lvt 2. (1.15) 

This is just the Hopf fibration in the (u,v) coordinates for C 2. Physically, the variables 
x, y, and z represent the electric field, the polarization, and the population inversion, 
respectively. Transformation (1.15) gives us a five-dimensional system on the space 
C 2 x R, coordinatized by (x, y, z). The Hamiltonian function, the Hamiltonian vector 
field for H, the equations of motion, and the new constants formed from those in 
(1.12) become 

H = ~(x y -  xy  ), (1.16) 

=2i(O__H 0 OHOx)+2iz (O~y ,  0 OH d ) 
X~ \~x  Ox* Ox* cTy ay Oy* 

+ iy k~y O'Z Oz Oy + ty ~-~Z Oy* Oy* Oz ' 
1 , , 

2 = y ,  ~ = x z ,  i = - ~ ( x  y + x y ) ,  

g = z + ½ 1 x l  2 and L=lYl 2+z 2. 

(1.17) 

(1.18) 

(1.19) 

Physically, K is the sum of the atomic excitation energy and the electrical field energy, 
while L = 1, for unitarity. Fordy and Holm [1991] discuss the phase-space geometry 
of the solutions of the Maxwell-Bloch system (1.18) on C z × • and show that this 
system has three Hamiltonian structures, by using the Lax-pair representation of these 
equations. 

In the remainder of this paper, we shall discuss the phase-space geometry and 
Hamiltonian structure of the invariant subsystem of (1.18) obtained by restricting 
to real-valued x and y. Thus, the dynamics of this invariant subsystem lie on the 
zero-level surface of the Hamiltonian function H in (1.16), with coordinates xl = 
Re(x), x2 = Re(y), and x3 = z. The equations of motion (1.18) then become the 
real Maxwelt-Bloch equations, 

Xl = x2, k2 = xlx3, ~c3 = - x l x 2 .  (1.20) 

R e m a r k  o n  G e o m e t r i c  P h a s e s  

Before discussing the phase-space geometry of the invariant subsystem (1.20) in de- 
tail, we remark that the values of the geometric phases in the reduced problem are 
not intrinsic; instead, they depend upon the choice of phase-space coordinates. This 
happens because the reduced motion takes place on symplectic leaves, which are 
the level sets of the constants of motion, and the choice of these constants of mo- 
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tion allows considerable freedom in phase-space parametrization. When reconstruct- 
ing the solutions from the reduced system, especially for periodic solutions, phases 
are generated as a result of travelling over one period in the reduced space (in our 
case, on a level surface of C). These phases are associated with the group action 
of the reduction. Let M be a Poisson manifold on which G acts as a Hamiltonian 
Lie group of symmetry transformations with corresponding Lie algebra g, and let 
C : M --~ g* be the associated momentum map. Then P : M ---* Ma = C-](p.)/Ga, 
the reduced space, has the structure of a vector bundle. (Here G,  is the isotropy sub- 
group of/~.) For the S 1 reduction considered in the present case, the canonical 1-form 

f~ :=  ~ pidqi = p dq + C d~o (1.21) 
i 

may be taken as a connection on this bundle, where p and q are the symplectic 
coordinates for the level surface of C on which the reduced motion takes place. 
Relative to this connection, horizontal vector fields Xh satisfy Xh • l't = O. The 
geometric phase for a periodic orbit on the S l-reduced phase space is obtained from 
the horizontal lift of the orbit (see Marsden et al. [1990]), Hence, 

1 I A~geom = --~ pdq = --~ dpAdq,  
as s 

(1.22) 

where the second equality uses Green's theorem (aS denotes a periodic orbit on the 
reduced phase space, and S is the surface bounded by this orbit). For each of the 
reductions to symplectic motion on level surfaces of the Casimir functions C described 
in Sections 2 and 3, there is a corresponding geometric phase given by (1.22). In 
addition, the dynamical phase is defined by 

1 --C- A~0dyn = -- ~- Pi dqi = (P~t + C(o) dt. 
as as  

(1.23) 

Naturally, the total phase is given by the sum of expressions (1.22) and (1.23). For 
Hamiltonian functions that are quadratic in each of the momenta, expression (1.23) 
adopts a particularly simple form, 

-CI f ( OH-,- - - O H ) 1 ~  __2T A~Pdyn = p - - ~ + C - ~  dt = 2(H-V)d t  = - -~- [H-(V)]  (1.24) 

as  as  

where T is the period of the orbit on which the integration is performed and (V) 
denotes the average of the potential energy over the orbit. (See Montgomery [ 1991 ].) 

Clearly, the values of Atpg~orn and A~0dyn depend upon the values of the functions H 
and C. However, the total phase, being a property of the orbit, is independent of any 
phase-spac~ reparametxizations. In particular, for a given orbit aS, one could choose 
the value of H such that A~oaya = 0, and the total phase (for that orbit) would then 
be completely geometrical. 
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In this introduction we have derived the complex Maxwell-Bloch system (1.18) 
and explained the embedding of the real-valued Maxwell-Bloch system (1.20) in C a. 
We have also discussed the geometric phases associated with reconstruction of the so- 
lutions on the unreduced space from those of the reduced system, and shown that the 
values of these phases are coordinate-dependent. The next section discusses the Hamil- 
tonian structure of the real-valued system (1.20). For this system, a three-parameter 
family of Lie-Poisson Hamiltonian structures is introduced and labeled by SL(2, R) 
parameters. Each Lie algebra characterizing these Lie-Poisson structures is associated 
with a particular symplectic foliation of R 3 by level sets of a distinguished function, 
or Casimir function, associated with the center of the corresponding Lie algebra. In 
Section 3, equations (1.20) are explicitly reduced to two-dimensional completely in- 
tegrable systems on the level sets of the Casimir functions. The bifurcations of the 
phase portraits on these level surfaces are also discussed. Finally, a summary of this 
work is presented in Section 4. 

2. Classification of the Lie-Poisson Hamiltonian Structures for the Real-Valued 
Maxwell-Bloch System 

As we have seen, the three-dimensional real-valued set of equations, 

J~l = X 2 ,  J~2 ----- XIX3, JC3 = - - X I X 2 ,  (1.20) 

arises as an invariant subsystem of the Maxwell-Bloch equations for optical travelling- 
wave pulses in two-level media, a five (real) dimensional system on the space C 2 X ~. 
The latter system itself originates from the 2:1:1 resonant nonlinear oscillator system 
(1.10) on C 3. Equations (1.20) are obtained as a result of restricting the space C 2 × R 
to R 3 through restriction onto the zero-level surface of the Hamiltonian in C 2 × R. 
Equations (1.20) also appear as the large Rayleigh number limit of the famous Lorenz 
system (see Sparrow [1982]). 

Equations (1.20) are expressible in three-dimensional vector notation as 

= VHI × VH2, (2.1) 

where HI and H2 are the two conserved functions 

1 2 H1 = ~(x2 + x]), 
1 2 (2.2) 

H2 = x3 + ~X 1. 

Equation (2.1) implies a local rectification of the flow into (PI, P2, P3) = (0,0, 1), 
obtained by choosing y~ = H1 and Y2 = H2. In this work, however, we are interested 
in the global geometry of the flow. 

Geometrically, equation (2.1) implies that the motion takes place on intersections 
of level sets of the functions H1 and H2 in the space R 3. Poisson flows on the dual g* 
of a three-dimensional Lie algebra g (isomorphic to ~3) have a Lie-Poisson structure 

XH" F(x)  = {F, H}(x) = (x, [VF, VH]), (2.3) 
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where F,  H : g* --> R, g ~ g**, VF ,  V H  E g, and x ~ g*, with the (canonical) 
pairing (., .) : g* x g ---> R and Lie bracket [-, .] on g. Such flows are expressible in 
the form (2.1) whenever the algebra g has a nontrivial center. These flows comprise a 
subclass of the integrable divergenceless flows on R 3 (see Holm and Kimura [1991]). 
Equation (2.1) also implies that the system is bi-Hamiltonian; since either of H1 and 
H2 can be used as a Hamiltonian function, the second function plays the rote of a 
Casimir (or a distinguished) function. The compatibility of these two Hamiltonian 
structures is obvious; just replace VH1 by V(H~ +/-/2) in (2. I). Equations (2.1) may 
be re-expressed as 

~c = VH x VC, (2.4) 

where H and C are SL(2, R) combinations of HI and/-/2. Namely, 

with  a v - / 3 / z  = 1. 

P r o p o s i t i o n .  Consider the two functions H = oLH1 +/3H2, C = tzH1 + vH2, with 
~xv - /3 / z  = 1. Then equations (2.1) are equivalent to (2.4). For the proof, it suffices 
to compute 

Jc = VH × VC = V(aHl + f i l l2)  x V(/xH1 + vi le)  = (av  -/31.~)VHx x VH2 

= VHI × 7/'/2. (2.6) 

Thus, the real-valued Maxwell-Bloch equations (1.20) are unchanged (so the trajec- 
tories of the motion in R 3 remain the same) when the conserved functions HI and H2 
are replaced by the SL(2, t~) combinations H and C. (Taking SL(2, R) linear combi- 
nations is a slight extension of the idea of homotopy.) Geometrically, the invariance of 
the trajectories in ~3 means that while the level surfaces of H and C may be radically 
different from those of HI and H2, their intersections are exactly the same. 

This proposition implies invariance of the intersections of level surfaces of the 
functions H and C under the SL(2, R) group action (2.5), so that the dynamics 
remains unchanged, in particular that the geometric loci of the solutions are invariant 
under (2.5). 

Let us now examine the Lie-Poisson structure of our system. Because of the invari- 
ance of (2.1) under the above action of SL(2, R), this structure will not be unique. 
Here, we adopt Hamiltonian vector fields as our basic working objects; the correspon- 
dence with Poisson brackets is given through the following identity 

X HF = --,,YEn = {F, H}. (2.7) 

The equations governing the flow of XH are the Hamittonian equations for H. The set 
of Hamiltonian vector fields satisfies the same algebra as that specified by the bracket, 
up to an anti-isomorphism: 

X~,H) = [XH, XF]. (2.8) 
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In view of (2.1) it is then clear that for functions G : R3 ._> ~,  we have 

Xo = (VG x VC) .  V. 

In component form, this is expressed as 

Xo = (v +/~x3) OG O OG 1~ dr- l'tXl 
03XI t~Xl ~ 2  tgX2 

+ tzx2 - ~  ax3 ax30xi ]" 

O~X20"X 3 

(2.9) 

(2.10) 

and any dynamical quantity Q evolves with time according to 

Q. = x y a .  (2.11) 

We note that expression (2.10) exhibits an explicit dependence on the parameters 
/~ and v, through its dependence on the distinguished function C, as prescribed in the 
Proposition. Naturally, the Hamiltonian function H also contains parameters a and/3, 
with the proviso that a v  - fl/.~ = 1. 

In order to determine the structure of  the Lie algebra underlying the Poisson struc- 
ture, we calculate the Lie bracket for the Hamiltonian vector fields associated with 
the coordinate functions x i, 

X l := Xxl -~ /~x20  3 - (/,, +/./,x3)692, 

X2 :=  Xx2 = (v + l~X3)al - vxl03, (2.12) 

X3 :=  Xx3 = vxta2 - tzx2c~l, 

where ai = O/Oxl. The commutators are found to be 

[XbX2] = - /zX3, [XE, X3] = - V X l ,  [X3,XI] = - /zX2.  (2.13) 

It is clear that the Lie algebra spanned by the Xi depends on /~  and v. The type of 
dependence is correlated with the type of orbits in the group SL(2, R). Thus, three 
cases can arise. 

Case 1. /~ = 0, v ~ 0. Let us define Yl = -vX1 ,  Y2 = X2, Y3 = X3. Then the 
structure of the algebra is 

[I11, Y2] = 0, [I"2, Y3] = Y~, [I'3, YI] = 0. (2.14) 

This algebra is of  type II in Bianchi's classification (see, e.g., Dubrovin et al. [1982]). 
It is solvable and is identified with the well-known Heisenberg algebra. 

Case 2. /z ~ 0, v = 0. Let us define Y1 = - X l / p , ,  Y: = X2, Y3 = X3. Then the 
structure of the algebra is 

[Y1, Y21 = Y3, [Y2, Y31 = 0, [I"3, Yl] = Y2. (2.15) 
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This solvable algebra is of  type VII  in Bianchi's classification and is isomorphic to 
the Euclidean algebra of  the plane. 

Case 3, /x ~ 0 = Eg, v ~ 0 = E~, where E~ = Sign(o-). Let us define a new basis 
Yx = = xd(l llvl) Y3 = x3/(l llv[) Then the structure of  
the algebra is 

[Yl, Y2] = eY3, [Y2, Y3] = YI, [Y3, I"1] = eY2. (2.16) 

where E = e ~  = Sign(/~v). Two subcases arise. 

Subease 3.1. ~ = 1. This algebra is of  type IX in Bianchi's classification and 
isomorphic to so(3). 

Subcase 3.2. E = - 1. This algebra is o f  type VIII in Bianchi's classification and 
isomorphic to so(2,1) and so(l ,2).  

Each of  the above cases is associated with particular class o f  Casimir func- 
tions C. 

Case 1. /z = 0, v ~ 0. The level sets of  C are parabolic cylinders along the x2-axis 
(see Figure 2.1), 

X1 

f f  

Fig. 2.1. The level sets of C for Case 1. 
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X 2 

X l  

f 

J 

J 

Fig. 2.2, The level sets of C for Case 2. 

X3 

Case 2. p. ~ 0, v = 0. For this second case, the level sets are circular cylinders 
about the xl-axis (see Figure 2.2), defined whenever C/Ix > O, 

I 2 
C = ~p,(x 2 + x3Z). (2.18) 

Case 3a. /z # 0, v v~ 0, with /zv > 0. The level sets are ellipsoids of revolution 
(see Figure 2.3), with semimajor axis ri  = r ,  r2 = r3 = (v/p.)l/Zr, centered at 

X1 

Fig. 2.3. The level sets of C for Case 3a. 

X3 
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(0, O, -v / f z ) ;  they are defined whenever 4/xC + b '2 ~> 0. 

/X[x2 (x L ~)2]  2 c  v r2 
2 +  3 +  2 .  =:  

(2.19) 

Case 3b. /x ~ 0, v ~ 0, with /zv < 0. The level sets, here, are noncompact 
surfaces. They are two-sheeted hyperboloids of revolution if 4/zC + v 2 < 0, one- 
sheeted hyperboloids if 4~C + v 2 > 0, and a cone whenever 4/zC + v 2 = 0 (see 
Figure 2.4). The two varieties of hyperboloids correspond to the two choices of the 
algebra, either so(2,1) or so(l,2). 

We end this section by mentioning that each of the above classes, in addition to 
giving us a type for the function C, also gives a prescription for the Hamiltonian 
function H. In fact, the admissible pairs (H, C3 are prescribed by (2.5) where the 
matrices of SL(2, It~) are respectively given as follows: 

[1/v  fl ] H = --Hl + /3H2, Case 1 : g l = 0 ' v 

[ t ~ - 1 / / z ]  H aH l H2 (2.20) Case 2 : g2 /~ 0 ' /~ 

[t~ f l ] ,  H =aH1+f lH2 ,  a v _ ~ p .  = 1, i . tv~O. Case3"g3  = /x v 

In any of these cases, the locus of the Hamiltonian function H depends on the 
parameters a or r ;  therefore, it is not unique. Indeed, bifurcations can occur as we 
vary the parameters. For instance, a change in sign may change a level surface of 
energy from an ellipsoid to a hyperboloid. Remarkably, the intersection of the level 
surfaces of C and H do not see these bifurcations; in fact, they do not depend on the 
parameters at all. However, the representation of the dynamics does depend on the 
choice of parameters, as will be made explicit in the next section where we show, for 
example, that/3 = 0 in Case 1 yields Duffing oscillator dynamics, while a = 0 in 
Case 2 yields pendulum dynamics. 

Fig. 2.4. The level sets of C for Case 3b. 
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3. Reductions to the Two-dimensional Level Sets of the Distinguished Functions 

As mentioned previously, each of the cases presented in Section 2 yields a distinct 
reduction of the real-valued Maxwell-Bloch system (1.20) to a symplectic system on 
a two-dimensional manifold specified by a level set of the corresponding Casimir 
function C. The various reductions give different coordinate representations of the 
same solutions in R 3. We discuss each reduction and give the prescription for the 
reduced phase spaces. For more details about the nature and technique used to perform 
reduction, the reader is referred, for example, to Abraham and Marsden [1978], or 
Section 6.3 in Olver [1986]. 

Case 1. /~ = 0, ~, ~ 0. The Casimir function C is given by (2.17), and the Hamil- 
tonian function is, as prescribed by (2.2) and the proposition following (2.5), 

1 2  (x 1 2 ) n = ~-~(x 2 + x 3  ~ ) + f l  3 + ~ x l  • (3.1) 

We show that this system reduces to the Duffing oscillator. To that end, we introduce 
a new basis of coordinate functions; it is natural to choose them as 

X = X t ,  X1 -- X, 

y = x2, x2 = y, (3.2) 

1 2 1X2  
Z ----- X3"t- ~ X l ,  X3 = Z -- • 

In terms of these coordinates, the functions C and H become 

C = ~'z, 

y2 + (Z - x2/2) 2 
H = flz + 2v (3.3) 

Thus, level sets of the Hamiltonian function are biquadratic surfaces. Associated with 
the transformation (3.2), the basis of the tangent space becomes 

01 = Ox + XOz, 02 = Oy, 03 = Oz. (3.4) 

The Harniltonian vector field and the equations of the motion therefore reduce to 

0 0 /o) (3.5) 
Xn = \ Oy Ox Ox Oy ' 

(z ~ )  2 = y ,  ~ = - ~ x  x, z =const .  (3.6) 

This system is a Duffin~oscillator and it possesses the following three critical points: 
(x, y) = (0, 0), (+-~/2z, 0). The first of these is unstable, and the two others are 
stable centers (see Figure 3.1). 
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Hg. 3.1. Duffing type reduced phase space for Case 1. 

Case 2. /~ ~ 0, v = 0. For this case, the Casimir function C is given by (2.18) and 
the Hamiltonian function is 

°t 2 ~ 1 (  x ~Xl 1 2 )  H = ~(x 2 + x  2 ) -  3 +  • (3.7) 

We introduce a new basis of coordinate functions. Since the level sets of C are circular 
cylinders, it is natural to choose the usual cylindrical coordinates, 

xl  = z, x2 = rCo, x3 = rSo, r = (3.8) 

where we have defined Co :=  cos(0) and So :=  sin(0); we will use this notation 
from here on, together with Chu :=  cosh(u) and Shu :=  sinh(u). In terms of these 
coordinates, the Casimir and Hamiltonian functions become 

C = /'gr2 
2 ' 

H =  l ( a c _  1 2 ) (3.9) 
- r s o  . 

For this second case, the level sets of the Hamiltonian are parabolic cylinders along 
the x2-axis. The orbits of the motion are the intersections of these parabolic cylin- 
ders with a circular cylinder about the z-axis (see Figure 3.2). These intersections 
are nontrivial only when izH - aC < r. Therefore, the orbits on the phase cylinder 
are periodic, except in the limit when one of the parabolic cylinders becomes tan- 
gent with the interior of the circular cylinder; when this occurs, a pair of homoclinie 
loops appears which partitions the phase cylinder into three distinct families of periodic 
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Hg. 3.2. Phase portrait for Case 2. 

orbits. The transformation of basis in the tangent space induced by (3.8) is 

O1 = cTz, 

O~ = CoOt - 1SoOo, (3.10) 
r 

03 = So& + ~Sodo. 
r 

The Hamiltonian vector field Xn reduces to 

Xn = tZk Oz OO 
OH d ) ,  
o00-z (3.11) 

so that the reduced equations of motion are 

= - z ,  ~ = rCo, r =cons t .  (3.12) 

Thus, in these coordinates, the motion on the reduced phase cylinder reduces to 
pendulum dynamics (see Figure 3.2). 

Case 3a. /z # 0, v # 0, g~, > 0, 4 g C  + v 2 > 0. For this third case, the Casimir 
function C is given by expression (2.19). Introducing the constant 

r = + ~--~, (3.13) 

and recalling that the level sets of the Casimir function are ellipsoids of revolution 
about the x 1-axis, suggests introducing a new basis of coordinate functions as follows 
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Xl  = r C o ,  

x2 = rSoC~, (3.14) 

x3 = - - -  + rSoS~,. 
Ix 

In terms of these coordinates (upon using a v - /3 /x  = 1), the Casimir and Hamiltonian 

C = 

H = 

functions become 

2 ix2 r  2 _ p2 

4IX ' 

v(2 - ~v )  + otixvr 2 r2C 2 ~ r 
--SoS~. (3.15) 

2IX 2 2IX IX 

Thus, a level set of C is a displaced sphere of radius r. Notice that all the t~- and 
fl-dependence in the Hamiltonian is confined to the constant term. This implies that 
the equations of the motion, in contrast, will exhibit no dependence whatsoever on 
these two parameters. The geometric significance is that the orbits of the motion axe 
invariant under SL(2, N) deformations of the functions C and H. Under the change 
of coordinate functions (3.14), the basis of vector fields is expressed as 

81 = Co& - 1So8o, 
r 

+ r  + C~ glSoS. r 'CoS Oo  o0.] 
The Hamiltonian vector field then becomes 

Ix ( e . o  oH 
XH = ~ o  \Oq~ O0 -ffff if-p~, (3.17) 

and the equations of the motion are 

- C q , ,  

-(r Co So ~ . (3.18) 
(o= So 

These equations admit up to four distinct critical points, (0, ~) = ( ~ / 2 ,  -+~-/2), as 
well as the pair (So, ~) = [(v/ixr2) 1/2, zr/2]; the latter exist whenever r > , , / ~ .  
A simple linear stability analysis provides us with the following information. The 
points (0, q0 = (~r/2, - ~ ' / 2 )  and (So, ~) = [(v/ ixr2) 1/2, 7r/2] are always stable. 
As for (0, ~) = (~'/2, Ir/2),  this point is stable if r < x / v / i x  and is of saddle type 
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/ 
Fig. 3.3. Phase portraits for Case 3a. 

whenever r > x / - ~ .  Therefore, a Hamiltonian pitchfork bifurcation takes place at 
r = x / ~ ,  i.e., when 4p, C - v 2 = 0 (see Figure 3.3). We mention that such a 
bifurcation did not occur for the previous case. Indeed, referring to Figure 3,2, it is 
clear that both of  the two homoclinic loops are forbidden to shrink to a point on the 
cylinder. 

Case 3b. /z # 0, v # 0, p.v < 0. For this last case, the Casimir function C is given 
by a hyperbolic quadric. Thus, we must consider subcases corresponding to the three 
possible geometries of  the level sets of  the Casimir function, 

v = 2/zv = :  R. (3.19) 

Subcase 3b.1. 4 p C  + v 2 < 0. Then R = r 2 > 0. For this first subcase, level 
sets of the Casimir function are two-sheeted hyperboloids. A natural set of new 
coordinate functions is provided by (recall that we defined C h u  = cosh(u) and 
S h u  = sinh(u)). 

x l  = r C h u ,  

x 2  = r S h u C ~ ,  (3.20) 

x3  = - - -  + r S h u S ~ .  

In terms of these coordinates, the Casimir function and the Hamiltonian function 
take the forms 

21~vr  2 - v 2 
C = , 

4 ~  

H v(2 - -  a V )  + o¢/-I, v r  2 2 2 
= S h u S h .  (3.21) 

2//, 2 2/z 



Lie-Poisson Structures and Geometric Phases for the Maxwelt-Bloch Equations 257 

Again, only the constant term of the Hamiltonian function shows any dependence 
on the parameter a ;  the geometry of the solutions in the unreduced phase space 
•3 is therefore blind to this parameter. The transformation in the tangent space is 

Ol = ChuOr - 1ShuOu, 
1" 

r r-ff~O~ , (3.22) 

£4[ 03 = Sh~S¢Or - 1Ch~S'POUr + r--'~u 0~' " 

The Hamiltonian vector field then reduces to 

Ix (OH 0 OH 0 ) ,  
XH -- r S h .  \ ~ u  ~-~o ~q~ ~-u (3.23) 

so that the equations of the motion on the reduced space are 

k = C~,, ~ -  Sh~ ~ . (3.24) 

These equations possess two critical points, ( q~ , S h , ) = ( Ir / 2, - , f - ~  l~ / r ) 
on the bottom sheet of the hyperbotoid, and (~, Shu) ( -~r /2 ,  ~ / - v / l ~ / r  ) 
on the top sheet. Both of these critical points are stable. Thus, each sheet of the 
hyperboloidal reduced space is foliated by a family of periodic orbits (see Figure 
3.4). 

Fig. 3.4. Phase portraits for 
Case 3b. 1. 
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Remark. The Hamiltonian (3.21) is invariant under the Z2 action (u, q~) --* ( -  u, -~o), 
We could use that symmetry to further reduce the system to a single hyperboloidal 
sheet. (The phase present is invariant under the above transformation, except for a 
reversal of the time flow.) 

Subcase 3b.2. 4/~C + v 2 > 0. Then R = - r  2 > 0. For this second subcase, 
level sets of the Casimir function C are one-sheeted hyperboloids. We choose new 
coordinate functions as follows: 

x l  = rShu ,  

x2 = r C h . C ~ ,  

x3 = - - -  + rChuS~ .  
p~ 

(3.25) 

In terms of these, the distinguished function C and the Hamiltonian function H 
become 

--(2/~vr 2 + r 2) 
C ~ 

4/~ 

r Sh  u - v  r v(2 - a v )  - a t~vr  2 2 2 ~/--~l - v-'~ 
H 2t z2 21~ C h~S~. (3.26) 

The tangent space vector fields are then transformed according to 

al = - S h u O r  + l chuO~, 
r 

r rChu  rO~ , 

03 = ChuS~dr - 1ShuS~Our + r--C-~u ra~ " 

(3.27) 

The Hamittonian vector field then reduces to 

Xn - rChu  \ 3 u  d~ d~ d-u / (3.28) 

and the equations of the motion are consequently 

k = - ~ C ~ ,  

- S h u  ( 
(~ = Ch-'--j- rChu  + (3.29) 
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Fig. 3.5. Phase portraits for Case 3b.2. 

These equations admit up to four fixed points, (u, ~) = (0, _zr /2 ) ,  as 
well as the pair (Chu, ~p) = [- - - (~ ' / ]d ,  r 2 )  t /2 ,  -7 r /2 ] ;  the latter exist whenever 
r < ~ / - r i t z .  Linear stability analysis provides us with the following informa- 
tion. The points (u, ~) ~ =)(0 ,  7r/2) and (Chu, ~) = [+--(v/tzr2)l/2,-~__..E ~ are 
always stable. As for (u, = (0, - z r / 2 ) ,  this point is stable if r > v / -  re//~ and 
is of saddle type whenever r < x / -Z~ /z .  Therefore we have the phase portraits 
of Figure 3.5. 

Subease 3b.3. 4/zC + v 2 = 0. Then R = 0. For this last case, the level sets of 
the Casimir functions C are cones. To restrict to the conical level sets, we choose 
new coordinate functions as follows: 

Xl  = Z,  -g x2 = zC~, (3.30) 

X 3  = - - ~  + z S ~ ,  
tz 

which are singular at the vertex of the cone, z = 0. In terms of these, the 
distinguished function C and the Hamiltonian function H become 

-v__~ 2 v(2 - a v )  ~ -  - v  z Z 2 
C = 4/x ' H = 2/z2 ~ / - -~ -~S~  - ~--~. (3.31) 

Once more, we note that the a-dependence of the Hamiltonian function is only 
within the constant term, so that it does not affect the dynamics, as far as the nature 
of the solution is concerned. The tangent space vector fields are then transformed 
according to 
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C~ 1 = a z  , 

z j 

83 = ~ ~ o z  + l c ~ o ~ ] .  

The Hamiltonian vector field then reduces to 

(0, o 0) 
X~ = 2 / ~  z ~ 0~ ~z (3.33) 

and the equations of the motion are 

-g i = 2 zC~, 

~ = - 2  z +  ~ . (3.34) 

These equations possess three fixed points. One of them is (z, q~) = (0, O) = 
(0, ~r); this is really a single point, located at the vertex of the cone. The two other 

critical points are (z, ~) = ( -  , f - 2 ~ ,  ~r/2), ( ~ - - v /  I~, -~r /2) .  Linear stability 
analysis shows that the latter are always stable, while the point at the vertex of the 
cone is an unstable point. The nature of the phase portrait is as follows (see Figure 
3.6). 2~vo homoclinic orbits are connected to z = 0, one on each half of the cone; 
these separate the halves into two regions foliated by a family of periodic orbits. 

Note: This case also has a 2~2 symmetry, (z, ~) --~ ( - z ,  - ~ )  which would allow us 
to reduce the phase space further to a single branch of the cone. 

Fig. 3.4. Types of portraits for 
Case 3b.3. 
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4. Conclusion 

In this paper, we have investigated the three-dimensional real-valued Maxwell-Bloch 
equations. Invariance of these equations under the action of the Lie group SL(2, R) 
on the space of Hamiltonians has provided a classification of the various Lie-Poisson 
structures admitted by the system. Each structure is associated with a distinct Hamil- 
tonian reduction, due to an S 1 invariance, on a quadratic surface defined as a level set 
of the second Hamiltonian function (which is also a Casimir function for the corre- 
sponding Lie-Poisson structure) embedded in R 3 as a phase space for a one-degree-of- 
freedom system. On the reduced symplectic space, the motion is coordinate-dependent; 
for example, the reduced dynamics may be expressed as either that of a pendulum, or 
that of a Duffing oscillator, depending upon the choice of Casimir functions. This co- 
ordinate dependence has been used to seek the simplest representation of the solutions, 
as well as to illuminate the geometry of the bifurcations that occur. The various reduc- 
tions give different values of the geometric phases for the Maxwell-Btoch solutions, 
depending upon on the choice of the Casimir function used to define a horizontal lift 
from the reduced symplectic space to the full phase space. 

Clearly, the same SL(2, R) invariance holds for any system expressible in the 
form (2.1). When H1 and/ /2  are quadratic, the Hamiltonian structure is Lie-Poisson. 
However, the SL(2, R) invariance of the dynamics in R 3 holds for nonquadratic 
Hamiltonians, as well. This invariance may be useful in other situations for seeking 
the simplest geometric representations of the phase trajectories as intersections of level 
surfaces of H and C in R 3. For example, Holm and Marsden [1991] use this SL(2, 
R) invariance to reduce the dynamics of a rigid body with controlled feedback torque 
to the classical simple pendulum equations. 
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