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Schedule: Readings, Lectures, Problem Sessions, Assessed Homeworks MATH97178 Spring Term 2021

Problem sessions: Wed 11am-noon, weeks 2, 3, 4, 5, 6, 7, 8, 9, 10, 11

Week 1 pp. 1-10: Mon Lect#1 Marking scheme, background and overview for MATH97178

7-18: Wed Lect#2 Definitions of terms: Dynamics, Symmetry and Integrability

Week 2 pp. 19-31: Mon Lect#3 Framework of geometric mechanics on matrix Lie algebras

Week 3 pp. 32-52: Mon Lect#4 How Lie’s work in 1870’s led to Poincaré’s paper (1901)

Assessed Homework #1 Due by 5 Feb 2021

Week 4 pp. 53-64: Mon Lect#5 Euler-Poincaré variational principle for the rigid body on SO(3)

Week 5 pp. 65-82: Mon Lect#6 Integrability of the rigid body on SO(n) (Manakov, 1976)

Week 6 pp. 83-100: Mon Lect#7 The Clebsch momentum map for Euler-Poincaré (EP) equations

Assessed Homework #2 Due by 26 Feb 2021

Week 7 pp. 96-113: Mon Lect#8 Asymptotic expansions for nonlinear shallow water wave equations

Week 8 pp. 113-133: Mon Lect#9 Isospectral EP KdV and EP CH equations (Lax 1968, Magri 1978)

Week 9 pp. 129-149: Mon Lect#10 Peaked solitons (peakons) of the EPDiff CH equation on H1(R)

Assessed Homework #3 Due by 19 March 2021

Week 10 pp. 150-172: Mon Lect#11 The Euler-Poincar’e framework for ideal fluid dynamics
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Marks!

• Class participation: 5%

Definition of class participation:

For each lecture, answer the following two questions in complete sentences (no lists!)

(i) What was this lecture about? Short original paragraph discussing topics and their relationships with

each other.

(ii) What question did this lecture suggest to you which might be answerable using the material in this

lecture?

• Assessed Homework 10%

Three assessed homeworks at 3-week intervals.

The Final Exam taken mainly from these.

• Final Exam 85%
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Lecture 1: Introduction to the Course

What to expect:

Classical mechanics, one of the oldest branches of science, has undergone a long evolution, developing hand

in hand with many areas of mathematics, including calculus, differential geometry, and the theory of Lie

groups and Lie algebras.

The modern formulations of Lagrangian and Hamiltonian mechanics, in the coordinate-free language of

differential geometry, are elegant and general. They provide a unifying framework for many seemingly disparate

physical systems, such as n-particle systems, rigid bodies, fluids and other continua, as well as electromagnetic

and quantum systems.

This course on Dynamics, Symmetry and Integrability is intended to be a friendly and fast-paced introduc-

tion to the geometric approach to classical mechanics, suitable for PhD students or advanced undergraduates.

It fills a gap between traditional classical mechanics texts and advanced modern mathematical treatments of

the subject.

After a summary of the setting of mechanics using calculus on smooth manifolds and basic Lie group theory

illustrated in matrix multiplication, the rest of the course considers how symmetry reduction of Hamilton’s

principle allows one to derive and analyze the Euler-Poincaré equations for dynamics on Lie groups.
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A variety of integrable Hamiltonian ODEs will be discussed especially focusing on rigid body motion as an

example of integrable systems whose dynamics is defined on a Lie group manifold, the SO(3) rotation group,

and whose equations are written on the dual space of a Lie algebra, so(3) ' R3.

To illustrate the course material in simple settings, many worked examples are given in full detail in the

course notes. These examples will be assigned as outside reading and students will have opportunities to

discuss them in the Q&A problem sessions, if they wish. These examples are also examinable.

Un-assessed homework will be assigned as the lectures proceed and the opportunity occurs.

The main examples of integrable Hamiltonian PDEs are shallow water waves, ideal incompressible fluid

dynamics and geophysical fluid dynamics (GFD).



Lecture Notes: Dynamics, Symmetry and Integrability DD Holm Spring Term 2021 6

1 Geometric Mechanics is the legacy of many great mathematicians!

Figure 1: Geometric Mechanics has involved many great mathematicians!
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10.2 Euler–Poincaré framework for GFD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

10.3 Euler’s Equations for a Rotating Stratified Ideal Incompressible Fluid . . . . . . . . . . . . 171



Lecture Notes: Dynamics, Symmetry and Integrability DD Holm Spring Term 2021 10

2 Introduction to Dynamics, Symmetry and Integrability

Dynamics!

Dynamics is the science of deriving, analysing, solving and interpreting change parametrised by time, t.

That is, dynamic means “changes with time”.

Change? What is change? What changes? What causes changes? How does one represent change?

For us, dynamics will usually refer to smooth solutions of various differential equations.

These solutions will describe ‘change’ in terms of smooth, invertible, time dependent transformations, or

smooth maps, G, of a configuration manifold Q into itself, as G × Q → Q. Points on the configuration

manifold q ∈ Q will be regarded as ‘states’ of a ‘system’.
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Definition

2.1 (Manifold). A manifold is a space on which the laws of calculus apply.
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Definition

2.2 (Lie group). A Lie group is a group of transformation which depend smoothly on a set of pa-

rameters. A Lie group is also a manifold.

e

Figure 2: The tangent space at the identity e of the group G is its Lie algebra g, a vector space represented here as a
plane. The moment of inertia I maps the vector Ω ∈ g into the dual vector Π = IΩ ∈ g∗. The dual Lie algebra g∗ is
another vector space, also represented as a plane in the figure. A group orbit in G has tangent vector ġ(t) at point g(t)
which may be pulled back to the identity by acting with g−1(t) ∈ G from left Ω = g−1(t)ġ(t) or right ω = ġ(t)g−1(t).
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e

Remark

2.3 (Adjoint action). Composition of the Adjoint action of G × g → g of a Lie group on its Lie

algebra represents the group composition law as

AdgAdhη = g(hηh−1)g−1 = (gh)η(gh)−1 = Adghη ,

for any η ∈ g.
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For example, consider continuous changes along a curve qt ∈ Q parametrised by time t under the action

of a smooth time-dependent Lie group transformation transformation, or flow gt ∈ G which transforms the

points on a configuration manifold G×Q→ Q, as

qt = gtq0 , with initial condition q0 = g0q0 .

Examples of Lie group actions on configuration manifolds would be the evolutions of

• configurations of the planets in the solar system, or stars in a galaxy, or

• orientations of a rigid body, or

• shapes of a deformable figure, or

• linear invertible matrix transformations of vectors in Rn by n× n, or

• nonlinear transformations of a fluid mass from a reference configuration of fluid particles into their current

configuration under a smooth invertible map (diffeomorphism) whiuh transforms the manifold of points

comprising the domain of flow into itself.
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Hamilton’s principle, Euler-Lagrange equations and

Legendre transformations to Hamiltonian equations

The main ideas of our course will often be illuminated by considering dynamics in the example that the

configuration manifold Q is a Lie group itself G and the Lagrangian TG → R transforms simply (e.g., is

invariant) under the action of G.

When the Lagrangian TG→ R is invariant under G, the dynamics may be reformulated for a symmetry-

reduced Lagrangian defined on TG/G ' g, where g is the Lie algebra of the Lie group G. With an emphasis

on applications in mechanics, we will discuss a variety of interesting properties and results that are inherited

from this formulation of dynamics on Lie groups.

a

b

q
1

q
2
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Symmetry!

Lie group symmetries of the Lagrangian will be particularly important, both in reducing the number of

independent degrees of freedom in Hamilton’s principle and in finding conservation laws by Noether’s theorem.

Integrability

Definition: A completely integrable Hamiltonian system comprises a 2N -dimensional symplectic manifold

M 2N with N Hamiltonian functions H1, . . . , HN such that {Hi, Hj} = 0 and dH1 ∧ · · · ∧ dHN 6= 0. That

is, the Hamiltonian functions H1, . . . , HN mutually commute under canonical Poisson brackets and they are

linearly independent.

What makes a dynamical system integrable, then? Conservation laws! That is, quantities which are

invariant under the equations of motion.

What do conservation laws do for integrability? Reduce dimension! This is because the motion takes place

on the intersection of the Hamiltonian with its conservation laws. Each successive conservation law reduces

the dimension of the system by 2.

A Hamiltonian system with N degrees of freedom is integrable, if it possesses N conservation laws in

involution, including the Hamiltonian.
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How does one find conservation laws? Mainly by using symmetries under Lie group transformations.

Examples of using symmetries to obtain conservation laws

The study of integrable systems often begins with a discussion of Lax pairs and isospectral properties.

For example the spectrum of a Hermitian matrix operator Lt is left invariant if it and its eigenfunctions

Lψ = λψ evolve by unitary transformations. i.e.,

Lt = UtL0U
†
t and ψt = Utψ0

That is, for L0ψ0 = λψ0 we find dλ/dt = 0, since

U †tLt(Utψ0) = L0ψ0 = λψ0 =⇒ Lt(Utψ0) = λ(Utψ0) for the same λ!

Q: Are isospectral problems integrable?

A: For L an N ×N Hermitian matrix and ψ ∈ CN we have N independent conservation laws

In = tr(L− λI)n =⇒ N eigenvalues are conserved

Q: How to find L-A Lax pairs?

A1: Any L evolving this way satisfies

dL

dt
= [A,L] with A = U̇U−1
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For example, as we shall see, this situation holds for a 2 × 2 Hermitian matrix L ∈ su(2)∗ under Euler–

Poincaré dynamics
dL

dt
= − ad∗AL = [A,L] for A =

∂H(L)

∂L
∈ su(2) .

The operation ad∗ : su(2) × su(2)∗ → su(2)∗ is called the coadjoint action of the Lie algebra su(2)

on its dual su(2)∗.

Exercise. Show that this is a Hamiltonian system by writing it in Lie-Poisson bracket form. F

Answer.

dF (L)

dt
= Tr

(
dF (L)

dL

†dL

dt

)
=

〈
dL

dt
,
dF (L)

dL

〉
=

〈
− ad∗∂H(L)/∂LL ,

dF (L)

dL

〉
=

〈[
∂H(L)

∂L
, L

]
,
dF (L)

dL

〉
=

〈
L ,

[
∂F (L)

∂L
,
dH(L)

dL

]〉
=:
{
F , H

}
N

The operation of coadjoint action of a Lie algebra on momentum maps in its dual space will be an important

part of our studies of geometric mechanics in this course. It applies in both finite and infinite dimensions.
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2.1 Geometric Mechanics deals with variational derivatives of functionals

Definition

2.4 (Functionals and variational derivatives).

A functional F [ρ] is defined as a map F : ρ ∈ C∞(M)→ R.

The variational derivative of a functional F (ρ), denoted δF/δρ, is defined by

δF [ρ] := lim
ε→0

F [ρ + εφ]− F [ρ]

ε
=:

d

dε
F [ρ + εφ]

∣∣∣∣
ε=0

=

∫
Ω

δF

δρ
(x)φ(x) dx =:

〈
δF

δρ
, φ

〉
(2.1)

Here ε ∈ R is a real parameter, φ is an arbitrary smooth function and the angle brackets 〈 · , · 〉 indicate

L2 real symmetric pairing of integrable smooth functions on the flow domain Ω.

The function φ(x) above is called the variation of ρ and may be denoted as δρ := φ(x).

Since the variation is a linear operator on functionals, we can denote the functional derivative ( δ )

operationally as

δF [ρ] =

〈
δF

δρ
, δρ

〉
.
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2.2 Geometric Mechanics deals with group invariant variational principles (Noether)

Hamilton’s principle (HP): δS = 0 with S =
∫ b
a L(q, v) + 〈p, q̇ − v〉TM dt and S =

∫ b
a 〈p, q̇〉TM −H(q, p)dt

Reduction by Lie symmetry TM : qt = gtq0, q̇t = ġtq0. Let L(g, v) = L(kg, kv), k ∈ G, set L(e, g−1v) =: l(ξ)

Noether’s theorem: Lie symmetry of HP implies conservation of 〈∂L∂q̇ , δq〉TM = 〈p , δq〉TM = 〈p , ξ.q〉TM = 〈J(q, p), ξ〉g

Legendre transformation (LT ): p := ∂L
∂q̇ , H(q, p) := 〈p, v〉TM − L(q, v), and J := ∂l

∂ξ , h(J) := 〈J, ξ〉g − l(ξ)

Reduced Hamilton’s principle: Sred =
∫ b
a l(ξ) + 〈J, g−1ġ − ξ〉g dt and Sred =

∫ b
a 〈J, g

−1ġ〉g − h(J)dt

Adjoint and co-adjoint actions: Ad : G× g→ g, ad : g× g→ g, Ad∗ : G× g∗ → g∗, ad∗ : g× g∗ → g∗

d
dt
∂L
∂q̇ −

∂L
∂q = 0,〈

∂L
∂q̇ , δq

〉
TM

∣∣t=b
t=a

= 0

}
L(q, v) : TM → R H(q, p) : T ∗M → R


∂H
∂p = q̇, ∂H

∂q = −ṗ,(
XH (dq ∧ dp) = dH

)

d
dt

∂l
∂ξα = ∂l

∂ξγ c
γ
αβξ

β(
d
dt
∂l
∂ξ = ad∗ξ

∂l
∂ξ

) l(ξ) : g→ R h(J) : g∗ → R
dJα
dt = {Jα, Jβ} ∂h∂Jβ = Jγc

γ
αβ

∂h
∂Jβ(

dJ
dt = ad∗∂h/∂JJ

)
Reduction by Lie symmetry

LTδS=0

〈p, δq〉TM=〈J(q,p), ξ〉g (momentum map)

δS=0

δSred=0 δSred=0Reduced LT

Figure 3: Diagram for Geometric Mechanics: Much of the remaining lectures will involve parsing this diagram.



Lecture Notes: Dynamics, Symmetry and Integrability DD Holm Spring Term 2021 21

2.3 Geometric Mechanics is a framework for understanding dynamics

L : TM → R H : T ∗M → R

EL eqns Ham eqns

Noether’s Theorem ` : g→ R h : g∗ → R Noether’s Theorem

EP eqns LP eqns

LagHvp

LT

TM/G HamHvp J

EPvp

LT

LPvp

TM/G J
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2.4 Space, Time, Motion, . . . , Symmetry, Dynamics!

Background reading: Chapter 2, [Ho2011GM1].

Time

Time is taken to be a manifold T with points t ∈ T . Usually T = R (for real 1D time), but we will also

consider T = R2 and maybe let T and Q both be complex manifolds

Space

Space is taken to be a manifold Q with points q ∈ Q (Positions, States, Configurations). The manifold Q

will sometime be taken to be a Lie group G. We will do this when we consider rotation and translation, for

example, in which the group is G = SE(3) ' SO(3)sR3 the special Euclidean group in three dimensions.

As a special case, consider the motion of a particle at position q(t) ∈ R3 that is constrained to move on

a sphere. This motion may be expressed as time-dependent rotations O(t) ∈ SO(3) such that

q(t) = O(t)q(0) , q̇(t) = Ȯ(t)q(0) = ȮO−1(t)q(t) = ω̂(t)q(t) =: ω(t)× q(t)

with 3× 3 antisymmetric matrix

ω̂(t) = ȮO−1(t) = − ω̂(t)T since O−1 = OT so that 0 =
d

dt
(OOT ) = ȮOT + (ȮOT )T = ω̂ + ω̂T
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Motion

Motion is a map φt : T → Q, where subscript t denotes dependence on time t. For example, when T = R,

the motion is a curve qt = φt ◦ q0 obtained by composition of functions.

The motion is called a flow if φt+s = φt ◦ φs, for s, t ∈ R, and φ0 = Id, so that φ−1
t = φ−t. Note that

the composition of functions is associative, (φt ◦ φs) ◦ φr = φt ◦ (φs ◦ φr) = φt ◦ φs ◦ φr = φt+s+r, but it is

not commutative, in general. Thus, we should anticipate flows that arise as Lie group actions on manifolds.

We have already seen the example of qt = O(t)q0 for the action of O(t) ∈ SO(3) on the manifold

Q = R3.

Velocity

Velocity is an element of the tangent bundle TQ of the manifold Q. For example, q̇t ∈ TqtQ along a flow qt
that describes a smooth curve in Q.

Motion equation

The motion equation that determines qt ∈ Q takes the form

q̇t = f (qt)

where f (q) is a prescribed vector field over Q. For example, if the curve qt = φt ◦ q0 is a flow (that is,

φt ◦ φs = φt+s), then

q̇t = φ̇tφ
−1
t ◦ qt = f (qt) = f ◦ qt
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so that

φ̇t = f ◦ φt =: φ∗tf

which defines the pullback of f by φt.

Optimal motion equation – Hamilton’s principle

An optimal motion equation arises from Hamilton’s principle,

δS[qt] = 0 for S[qt] =

∫ t1

t0

L(qt, q̇t) dt ,

in which variational derivatives are given by

δS[qt] =
∂

∂ε

∣∣∣∣
ε=0

S[qt,ε] .

The introduction of a variational principle summons T ∗Q, the cotangent bundle of Q. The cotangent bundle

T ∗Q is the dual space of the tangent bundle TQ, with respect to a pairing. That is, T ∗Q is the space of

real linear functionals on TQ with respect to the (real nondegenerate) pairing 〈 · , · 〉TQ, induced by taking

the variational derivative, as we explain next.

Symmetries and conservation laws

For example, consider Hamilton’s principle with the constrained action integral

if S =

∫ t1

t0

L(q, v) +
〈
p , q̇ − v

〉
TQ
dt ,
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where the pairing 〈 · , · 〉TQ : T ∗Q× TQ→ R arises by taking variational derivatives, as

δS =

∫ t1

t0

〈
δp , q̇ − v

〉
TQ

+

〈
∂L

∂v
− p , δv

〉
TQ

+

〈
∂L

∂qt
− ṗ , δqt

〉
TQ

dt +
〈
p , δqt

〉
TQ

∣∣∣t1
t0

= 0

leads to the Euler-Lagrange equations

v = q̇ , p =
∂L

∂v
,

d

dt

∂L

∂v

∣∣∣∣
v=q̇t

=
∂L

∂qt
, when

〈
p , δq

〉
TQ

∣∣∣t1
t0

= 0 .

The endpoint term yields Noether’s theorem, when δq = £ξq is an infinitesimal Lie symmetry of the La-

grangian, so that £ξL(q, v) = 0 for v = q̇, so that δS = 0 by symmetry. In that case, the Noether quantity

J ξ(q, p) defined below is conserved.〈
p , δqt

〉
TQ

=
〈
p , £ξq

〉
TQ

=: −
〈
p � q , ξ

〉
g

=:
〈
J(q, p) , ξ

〉
g

=: J ξ(q, p)

where the pairing 〈 · , · 〉g : g∗ × g → R. That is, when δq = £ξq is an infinitesimal Lie symmetry of the

Lagrangian, then the Noether quantity J ξ(q, p) is a conservation law for the Euler-Lagrange equations.

The map p := ∂L/∂q̇t is called the fibre derivative of the Lagrangian L : TQ → R. The Lagrangian is

called hyperregular if the velocity can be solved from the fibre derivative, as q̇t = v(q, p). Hyperregularity of

the Lagrangian is sufficient for invertibility of the Legendre transformation

H(q, p) := 〈 p , q̇ 〉 − L(q, q̇)

In this case, the phase-space action principle

0 = δ

∫ t1

t0

〈 p , q̇ 〉 −H(q, p) dt ,
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gives Hamilton’s canonical equations

q̇ = Hp and ṗ = −Hq , with 〈 p , δq 〉|t1t0 = 0 ,

whose solutions are equivalent to those of the Euler-Lagrange equations.

Exercise. Derive Hamilton’s canonical equations from the phase-space action principle. F
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Our previous calculations with Hamilton’s principle on TM and T ∗M have taken us around the top of the

geometric mechanics framework and have introduced Noether’s theorem. How was the rest of the framework

developed?

L : TM → R H : T ∗M → R

EL eqns Ham eqns

Noether’s Theorem ` : g→ R h : g∗ → R Noether’s Theorem

EP eqns LP eqns

LagHvp

LT

TM/G HamHvp J

EPvp

LT

LPvp

TM/G J

3 How did the framework of Geometric Mechanics develop?

• Geometric mechanics was introduced in Poincaré [1901], in a 2-page paper, translated into English in

[Ho2011GM2].

– GM is a powerful framework for understanding dynamical systems whose Lagrangian and Hamiltonian

are invariant under the transformations of the configuration manifold M by a Lie group G. That

is, G×M →M
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– Examples of its applications range from the simple finite dimensional dynamics of the freely

rotating rigid body to the infinite dimensional dynamics of the ideal fluid equations.

– For a historical review and basic references, see, e.g., Holm, Marsden, Ratiu [1998] Adv in Maths, as

well as the various textbook introductions to geometric mechanics and background references.

• One of the main approaches of geometric mechanics is the method of reduction of the motion

equations of a mechanical system by a Lie group symmetry, G, in either its Lagrangian formulation on

the tangent space TM of a configuration manifold M , or its Hamiltonian formulation on the cotangent

space T ∗M .

• The method of reduction by symmetry

– yields reduced Lagrangian and Hamiltonian formulations of the Euler-Poincaré equations governing

the dynamics of the momentum map J : T ∗M → g∗, where g∗ is the dual Lie algebra of the Lie

symmetry group G.

• In general terms, Lie group reduction by symmetry simplifies the motion equations of a mechanical system

with symmetry by transforming them into new dynamical variables in g∗ which are invariant under the

same Lie group symmetries as the Lagrangian and Hamiltonian of the dynamics.

• More specifically, on the Lagrangian side, the new invariant variables under the Lie symmetries are

obtained from Noether’s theorem, via the tangent lift of the infinitesimal action of the Lie symmetry

group on the configuration manifold.

• The unreduced Euler–Lagrange equations are replaced by equivalent Euler-Poincaré equations ex-

pressed in the new invariant variables in g∗, plus an auxiliary reconstruction equation, which restores
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the information in the tangent space of the configuration space lost in transforming to group invariant

dynamical variables.

• On the Hamiltonian side, after a Legendre transformation, equivalent new invariant variables in

g∗ are defined by the momentum map J : T ∗M → g∗ from the phase space T ∗M of the original system

on the configuration manifold M to the dual g∗ of the Lie symmetry algebra g ' TeG, via the cotangent

lift of the infinitesimal action of the Lie symmetry group on the configuration manifold.

• The cotangent lift momentum map is an equivariant Poisson map which reformulates the canonical

Hamiltonian flow equations in phase space as noncanonical Lie-Poisson equations governing flow of the

momentum map on an orbit of the coadjoint action of the Lie symmetry group on the dual of its Lie

algebra g∗, plus an auxiliary reconstruction equation for lifting the Lie group reduced coadjoint motion

back to phase space T ∗M .

• Thus, Lie symmetry reduction yields coadjoint motion of the corresponding momentum map.

• The dimension of the dynamical system reduces, because its solutions are restricted to remain on

certain subspaces of the original phase space, called coadjoint orbits.

• These subspaces are coadjoint orbits of the action of the group G on g∗, the dual space of its Lie

algebra g, with respect to a certain pairing.

ad∗ : G× g∗ → g∗ ,
〈

ad∗ξµ , η
〉

=
〈
µ , adξη

〉
• Coadjoint orbits lie on level sets of the distinguished smooth functions C ∈ F : g∗ → R of the

symmetry-reduced dual Lie algebra variables µ ∈ g∗ called Casimir functions.
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• The Casimir functions are conserved quantities. Indeed, Lie-Poisson brackets vanish {C,F}(µ) = 0

between Casimir functions and any other functions F ∈ F(g∗), including the reduced Hamiltonian h(µ).

• Furthermore, level sets of the Casimirs, on which the coadjoint orbits lie, are symplectic manifolds
which provide the framework on which geometric mechanics is constructed.

• These symplectic manifolds have many applications in physics, as well as in symplectic geometry, whenever

Lie symmetries are present.

• In particular, the coadjoint motion of the momentum map J(t) = Ad∗g(t)J(0) for a solution curve g(t) ∈
C(G) takes place on the intersections of level sets of the Casimirs with level sets of the Hamiltonian.
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• How does Complete Integrability arise in the Geometric Mechanics framework?

In the Geometric Mechanics framework, Integrability solves Hamiltonian dynamical systems, by using Reduc-

tion by Symmetry, Noether’s Theorem and Momentum Maps. These methods apply well for evolutionary

ordinary and partial differential equations (i.e., for both ODEs and PDEs). In our lectures on Integrability,

we will focus on instructive, illustrative examples.

In particular, we will study integrability of ODEs for rigid body motion and of PDEs for nonlinear shallow

water waves, such as the KdV equation and the Camassa-Holm equation. Both of these famous classes of

integrable systems represent geodesic motions on Lie groups.

Following Poincaré [1901], we will use transformation theory to represent motions on a given configuration

manifold as time-dependent curves on a Lie group that acts transitively on that configuration manifold.

For example, the rotation of the rigid body is lifted to SO(3) and the propagation of nonlinear waves in

one dimension is lifted to the Lie group, Diff(R), of smooth invertible transformation of the real line.

Recall the L-A Lax pairs.
dL

dt
= [A,L] with A = U̇U−1

As we saw earlier, this situation holds for a 2×2 Hermitian matrix L ∈ su(2)∗ under Euler–Poincaré dynamics

dL

dt
= − ad∗AL = [A,L] for A =

∂H(L)

∂L
∈ su(2) .

The operation ad∗ : su(2) × su(2)∗ → su(2)∗ is called the coadjoint action of the Lie algebra su(2)

on its dual su(2)∗. This operation of coadjoint action will be an important part of our studies of geometric

mechanics in this course.
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4 Geometric Mechanics stems from the work of H. Poincaré [Po1901]

4.1 Poincaré’s work in 1901 was based on earlier work of Lie in 1870’s

group

Lie group, G

identity element, e

Lie algebra, g

tangent vectors

conjugation map

Lie algebra bracket,

[ · , · ] : g× g→ g

Jacobi identity

basis vectors, ek ∈ g

structure constants

reduced Lagrangian

dual Lie algebra, g∗

dual basis, ek ∈ g∗

pairing, g∗ × g→ R

• A group is a set of elements with an associative binary product that has a unique inverse and identity

element.

• A Lie group G is a group that depends smoothly on a set of parameters in Rdim(G).

A Lie group is also a manifold, so it is an interesting arena for geometric mechanics.

• Choose the manifold M for mechanics as discussed above to be the Lie group G and denote the identity

element as the point e. The identity element e satisfies eg = g = ge for all g ∈ G, where the group

product denoted by concatenation.

• The Lie algebra g of the Lie group G is defined as the space of tangent vectors g ∼= TeG at the identity

e of the group.

The Lie algebra has a bracket operation [ · , · ] : g × g → g, which it inherits from linearisation at the

identity e of the conjugation map h · g = hgh−1 for g, h ∈ G. For this, one begins with the conjugation

map h(t) · g(s) = h(t)g(s)h(t)−1 for curves g(s), h(t) ∈ G, with g(0) = e = h(0). One linearises at the



Lecture Notes: Dynamics, Symmetry and Integrability DD Holm Spring Term 2021 33

identity, first in s to get the operation Ad : G×g→ g and then in t to get the operation ad : g×g→ g,

which yields the Lie bracket. The bracket operation is antisymmetric [a, b] = −[b, a] and satisfies the

Jacobi identity for a, b, c ∈ g,

[a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0 .

The bracket operation among the basis vectors ek ∈ g with k = 1, 2, . . . , dim(g) defines the Lie algebra

by its structure constants cij
k in (summing over repeated indices)

[ei , ej] = cij
kek .

The requirement of skew-symmetry and the Jacobi condition put constraints on the structure constants.

These constraints are

– skew-symmetry

ckji = − ckij , (4.1)

– Jacobi identity

ckijc
m
lk + cklic

m
jk + ckjlc

m
ik = 0 . (4.2)

Conversely, any set of constants ckij that satisfy relations (4.1)–(4.2) defines a Lie algebra g.

Exercise. Prove that the Jacobi identity requires the relation (4.2).

Hint: the Jacobi identity involves summing three terms of the form

[ el , [ ei , ej ] ] = ckij[ el , ek] = ckijc
m
lkem .
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F
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4.2 AD, Ad, and ad operations for Lie algebras and groups

The notation AD, Ad, and ad follows the standard notation for the corresponding actions of a Lie group on

itself, on its Lie algebra (its tangent space at the identity), the action of the Lie algebra on itself, and their

dual actions.

4.2.1 ADjoint, Adjoint and adjoint for matrix Lie groups

• AD (conjugacy classes of a matrix Lie group): The map Ig : G→ G given by Ig(h)→ ghg−1 for matrix

Lie group elements g, h ∈ G is the inner automorphism associated with g. Orbits of this action are

called conjugacy classes.

AD : G×G→ G : ADgh := ghg−1 .

• Differentiate Ig(h) with respect to h at h = e to produce the Adjoint operation,

Ad : G× g→ g : Adg η = TeIg η =: gηg−1 ,

with η = h′(0).

• Differentiate Adg η with respect to g at g = e in the direction ξ to produce the adjoint operation,

ad : g× g→ g : Te(Adg η) ξ = [ξ, η] = adξ η .
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Explicitly, one computes the ad operation by differentiating the Ad operation directly as

d

dt

∣∣∣
t=0

Adg(t) η =
d

dt

∣∣∣
t=0

(
g(t)ηg−1(t)

)
= ġ(0)ηg−1(0)− g(0)ηg−1(0)ġ(0)g−1(0)

= ξ η − η ξ = [ξ, η] = adξ η , (4.3)

where g(0) = Id, ξ = ġ(0) and the Lie bracket

[ξ, η] : g× g→ g ,

is the matrix commutator for a matrix Lie algebra.
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e

Remark

4.1 (Adjoint action). Composition of the Adjoint action of G × g → g of a Lie group on its Lie
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algebra represents the group composition law as

AdgAdhη = g(hηh−1)g−1 = (gh)η(gh)−1 = Adghη ,

for any η ∈ g.

Exercise. Verify that (note the minus sign)

d

dt

∣∣∣
t=0

Adg−1(t) η = − adξ η ,

for any fixed η ∈ g. F

Proposition

4.2 (Adjoint motion equation). Let g(t) be a path in a Lie group G and η(t) be a path in

its Lie algebra g. Then
d

dt
Adg(t)η(t) = Adg(t)

[
dη

dt
+ adξ(t)η(t)

]
,

where ξ(t) = g(t)−1ġ(t).
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Proof. By Equation (4.3), for a curve η(t) ∈ g,

d

dt

∣∣∣
t=t0

Adg(t) η(t) =
d

dt

∣∣∣
t=t0

(
g(t)η(t)g−1(t)

)
= g(t0)

(
η̇(t0) + g−1(t0)ġ(t0)η(t0)

− η(t0)g−1(t0)ġ(t0)
)
g−1(t0)

=

[
Adg(t)

(
dη

dt
+ adξη

)]
t=t0

. (4.4)

Exercise. (Inverse Adjoint motion relation) Verify that

d

dt
Adg(t)−1η = −adξAdg(t)−1η , (4.5)

for any fixed η ∈ g. Note the placement of Adg(t)−1 and compare with Exercise on page 38. F

4.2.2 Compute the coAdjoint and coadjoint operations by taking duals

The pairing 〈
· , ·
〉

: g∗ × g 7→ R (4.6)
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(which is assumed to be nondegenerate) between a Lie algebra g and its dual vector space g∗ allows one to

define the following dual operations:

• The coAdjoint operation of a Lie group on the dual of its Lie algebra is defined by the pairing with

the Ad operation,

Ad∗ : G× g∗ → g∗ : 〈Ad∗g µ , η 〉 := 〈µ , Adg η 〉 , (4.7)

for g ∈ G, µ ∈ g∗ and ξ ∈ g.

• Likewise, the coadjoint operation is defined by the pairing with the ad operation,

ad∗ : g× g∗ → g∗ : 〈 ad∗ξ µ , η 〉 := 〈µ , adξ η 〉 , (4.8)

for µ ∈ g∗ and ξ, η ∈ g.

Definition

4.3 (CoAdjoint action). The map

Φ∗ : G× g∗ → g∗ given by (g, µ) 7→ Ad∗g−1µ (4.9)

defines the coAdjoint action of the Lie group G on its dual Lie algebra g∗.

Remark

4.4 (Coadjoint group action with g−1). Composition of

coAdjoint operations with Φ∗ reverses the order in the group composition law as

Ad∗gAd∗h = Ad∗hg .
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However, taking the inverse g−1 in Definition 4.3 of the coAdjoint action Φ∗ restores the order and

thereby allows it to represent the group composition law when acting on the dual Lie algebra, for

then

Ad∗g−1Ad∗h−1 = Ad∗h−1g−1 = Ad∗(gh)−1 . (4.10)

(See [MaRa1994] for further discussion of this point.)

The following proposition will be used later in the context of Euler–Poincaré reduction.

Proposition

4.5 (Coadjoint motion relation). Let g(t) be a path in a matrix Lie group G and let µ(t) be

a path in g∗, the dual (under the Frobenius pairing) of the matrix Lie algebra of G. The

corresponding Ad∗ operation satisfies

d

dt
Ad∗g(t)−1µ(t) = Ad∗g(t)−1

[
dµ

dt
− ad∗ξ(t)µ(t)

]
, (4.11)

where ξ(t) = g(t)−1ġ(t).

Proof. The Exercise on page 39 introduces the inverse Adjoint motion relation (4.5) for any fixed η ∈ g,

repeated as
d

dt
Adg(t)−1η = −adξ(t)

(
Adg(t)−1η

)
.
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Relation (4.5) may be proven by the following computation,

d

dt

∣∣∣∣
t=t0

Adg(t)−1η =
d

dt

∣∣∣∣
t=t0

Adg(t)−1g(t0)

(
Adg(t0)−1η

)
= −adξ(t0)

(
Adg(t0)−1η

)
,

in which for the last step one recalls

d

dt

∣∣∣∣
t=t0

g(t)−1g(t0) =
(
−g(t0)−1ġ(t0)g(t0)−1

)
g(t0) = −ξ(t0) .

Relation (4.5) plays a key role in demonstrating relation (4.11) in the theorem, as follows. Using the pairing
〈 · , · 〉 : g∗ × g 7→ R between the Lie algebra and its dual, one computes〈

d

dt
Ad∗

g(t)−1µ(t), η

〉
=
d

dt

〈
Ad∗

g(t)−1µ(t), η
〉

by (4.7) =
d

dt

〈
µ(t),Adg(t)−1η

〉
=

〈
dµ

dt
,Adg(t)−1η

〉
+

〈
µ(t),

d

dt
Adg(t)−1η

〉
by (4.5) =

〈
dµ

dt
,Adg(t)−1η

〉
+
〈
µ(t),−adξ(t)

(
Adg(t)−1η

)〉
by (4.8) =

〈
dµ

dt
,Adg(t)−1η

〉
−
〈

ad∗
ξ(t)µ(t),Adg(t)−1η

〉
by (4.7) =

〈
Ad∗

g(t)−1

dµ

dt
, η

〉
−
〈

Ad∗
g(t)−1ad∗

ξ(t)µ(t), η
〉

=

〈
Ad∗

g(t)−1

[
dµ

dt
− ad∗

ξ(t)µ(t)

]
, η

〉
.

This concludes the proof.
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Corollary

4.6. The coadjoint orbit relation

µ(t) = Ad∗g(t)µ(0) (4.12)

is the solution of the coadjoint motion equation for µ(t),

dµ

dt
− ad∗ξ(t)µ(t) = 0 . (4.13)

Proof. Substituting Equation (4.13) into Equation (4.11) yields

Ad∗g(t)−1µ(t) = µ(0) . (4.14)

Operating on this equation with Ad∗g(t) and recalling the composition rule for Ad∗ from Remark 4.4 yields

the result (4.12).

Remark

4.7. As it turns out, the equations in Poincaré (1901) for which we have been preparing describe

coadjoint motion!

Moreover, by equation (4.14) in the proof, coadjoint motion implies that Ad∗g(t)−1µ(t) is a conserved

quantity.
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Exercise. Lie showed that the characteristic equations of Lie algebra vector fields determine the

finite transformations of their Lie groups, For good discussions of this point, see Peter Olver’s book

on Group Theory and Differential Equations.

dqi

dε
=

r∑
α=1

ηαXα(qi) =

r∑
α=1

ηαX i
α(q) =⇒ dε =

dqi

X i
α(q)

(for each α, no sum on i)

Compute the finite transformations and commutator table for (n, r = 1, 3), X1 = ∂q, X2 =

−q∂q, X3 = −q2∂q. Find 2 × 2 matrix representations of the subalgebras of this 3-dimensional

algebra. Find vector fields producing the classical matrix Lie groups: upper triangular, SL(2,R),

SE(3), the Galilean group, and the group of real projective transformations. F

Vector fields on the real line.

We integrate the characteristic equations of the following vector fields, as

1. v1 = X1∂q = ∂q,
dq
dε1

= 1 =⇒ q(ε1) = q(0) + ε1

2. v2 = X2∂q = −q∂q dq
dε2

= −q =⇒ q(ε2) = e−ε2q(0)

3. v3 = X3∂q = − q2∂q,
dq
dε3

= − q2 =⇒ q(ε3) = q(0)
1+ε3q(0)
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Theorem

4.8. The finite transformations generated by vector fields v1, v2 and v3 with infinitesimal trans-

formations X1, X2 and X3 may be identified with the projective group of the real line and the group

SL(2,R) of unimodular (det = 1) 2× 2 real matrices,

by identifying the composition g.q =
aq + b

cq + d

with the SL(2,R) matrices[
a b

c d

]
with basis

[
1 ε1

0 1

]
,

[
e−ε2/2 0

0 eε2/2

]
,

[
1 0

ε3 1

]
. (4.15)

Exercise. Show that these 2× 2 matrices form a three-parameter Lie group. F

Proof. The projective group transformations of the real line may be identified with the group SL(2,R) of

unimodular (det = 1) 2× 2 real matrices, as follows

g2.(g1.q) =
(a1a2 + b1c2)q + (a1b2 + b1d2)

(c1a2 + d1c2)q + (c1b2 + d1d2)
and

[
a2 b2

c2 d2

] [
a2 b2

c2 d2

]
=

[
(a1a2 + b1c2) (a1b2 + b1d2)

(c1a2 + d1c2) (c1b2 + d1d2)

]
This means the Lie group of nonlinear projective transformations has a linear matrix representation in

terms of SL(2,R).
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Commutators. Commutators of the vector fields vα = Xα(q)∂q with X1 = 1, X2 = −q and X3 = −q2 are

given by

[v1, v2] = −v1 , [v1, v3] = 2v2 , [v2, v3] = −v3 .

These may be assembled into a commutator table, as

Xα(q)∂qXβ(q)−Xβ(q)∂qXα(q) =:
[
Xα(q)∂q , Xβ(q)∂q

]
=: [vα, vβ] =

[ · , · ] v1 v2 v3

v1

v2

v3

0 −v1 2v2

v1 0 −v3

−2v2 v3 0
(4.16)

or, in index notation,

[vα , vβ]i = vjα
∂viβ
∂qj
− vjβ

∂viα
∂qj

= cγαβv
i
γ , (4.17)

or, upon suppressing Latin indices [
vα , vβ

]
= vα

∂vβ
∂q
− vβ

∂vα
∂q

= cγαβvγ , (4.18)

with

c1
12 = c3

23 = −1 = −c1
21 = −c3

32, c2
13 = 2 = −c2

31 , (4.19)

while the other cγαβ’s are zero.
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Anti-homomorphism. We note that minus the same commutator table (4.16) arises from the following three

linearly independent 2×2 traceless matrices comprising a basis for sl(2,R), obtained by taking the derivatives

at the identity of the SL(2,R) matrices in (4.15),

A1 =

[
0 1

0 0

]
, A2 =

[
−1

2 0

0 1
2

]
, A3 =

[
0 0

1 0

]
for which [Aα, Aβ] =

[ · , · ] A1 A2 A3

A1

A2

A3

0 A1 −2A2

−A1 0 A3

2A2 −A3 0

This overall relative minus sign means the matrix commutation relations will match the vector field commu-

tation relations, provided we define the Jacobi-Lie bracket of vector fields to be[
vα , vβ

]
JL

=
∂vα
∂q

vβ −
∂vβ
∂q

vα
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4.3 Preparation for understanding H. Poincaré’s contribution [Po1901].

To understand [Po1901], let’s introduce two more definitions.

1. Define a reduced Lagrangian l : g → R and an associated variational principle δS = 0 with

S =
∫ b
a l(ξ)dt where ξ = ξkek ∈ g has components ξk in the set of basis vectors ek.

2. Define elements of the dual Lie algebra g∗ by using the fibre derivative of the Lagrangian l : g→ R
to acquire a pairing as

µ :=
∂l(ξ)

∂ξ
∈ g∗ , written in components as µi :=

∂l(ξ)

∂ξi
, with a basis µ = µje

j , and pairing 〈 ej, ei 〉 = δji .

In particular, the relation dl = 〈µ, dξ〉 defines a natural pairing 〈 · , · 〉 : g∗ × g→ R.

The natural dual basis for g∗ satisfies 〈ej, ek〉 = δjk in this pairing and an element µ ∈ g∗ has

components in this dual basis given by µ = µke
k, again with with k = 1, 2, . . . , dim(g).

• Exercise:

(a) Show that Hamilton’s principle δS = 0 with S =
∫ b
a l(ξ) dt implies the Euler-Poincaré (EP) equations:

d

dt
µi = − cijkξjµk , with µk =

∂l(ξ)

∂ξk
,

for variations given by

δξ = η̇ + [ξ, η] with ξ, η ∈ g . (4.20)

In a moment, we will explain how this type of variations arises from variations of the group elements.
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Note: [ej, ek] = cjk
iei, so

[ξ, η] = [ξjej, η
kek] = ξj[ej, ek]η

k = ξjηkcjk
iei = [ξ, η]iei .

• Answer: Variations given by δξ = η̇ + [ξ, η] with ξ, η ∈ g arise from variations of the group elements,

as follows, by a direct computation,

ξ ′ = (g−1ġ) ′ = − g−1g ′g−1ġ + g−1g ˙ ′ = − ηξ + g−1g ˙ ′ ,

η̇ = (g−1g ′) ˙ = − g−1ġg−1g ′ + g−1g ′ ˙ = − ξη + g−1g ′ ˙ .

On taking the difference, the terms with cross derivatives cancel and one finds the variational formula

(4.20),

ξ ′ − η̇ = [ ξ , η ] with [ ξ , η ] := ξ η − η ξ = adξ η . (4.21)

(See Remark 6.5 for more details.)

Upon using formula (6.4), the left-invariant variations in of the action in Hamilton’s principle yield

δS = δ

∫ b

a

l(ξ)dt =

∫ b

a

〈
∂l

∂ξ
, δξ

〉
dt =

∫ b

a

〈
∂l

∂ξ
, η̇ + [ξ, η]

〉
dt

=

∫ b

a

〈
∂l

∂ξn
en, η̇iei + ξjηkcjk

iei

〉
dt since

〈
en, ei

〉
= δni

=

∫ b

a

(
− d

dt

∂l

∂ξi
+

∂l

∂ξk
ξjcji

k

)
︸ ︷︷ ︸
Euler-Poincaré equation

ηi dt +

[
∂l

∂ξi
ηi
]b
a
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where, in the last step, we integrated by parts and relabelled indices. Hence, when ηi vanishes at the

endpoints in time, but is otherwise arbitrary, we recover the EP equations as

d

dt

∂l

∂ξi
+

∂l

∂ξk
ξjcij

k = 0 ,

where we have used the antisymmetry of the structure constant cij
k = − cjik.

These are the equations introduced by Poincaré in [Po1901], which we now write as d
dt
∂l
∂ξ − ad∗ξ

∂l
∂ξ = 0.

Here the notation ad∗ is defined by
〈
− ad∗ξ

∂l
∂ξ , η

〉
:= ∂l

∂ξk
ξjcij

kηi = ∂l
∂ξk

[eiη
i, ejξ

j]k =:
〈
∂l
∂ξ , − adξη

〉
.

• Exercise: Write Noether’s theorem for the Euler-Poincaré theory.

• Answer: To each continuous symmetry group G of the Lagrangian l(ξ), the quantity ( ∂l
∂ξi
ηi) is con-

served by the Euler-Poincaré motion equation, where ηiei ∈ g is the infinitesimal transformation of the

action of the group G× g→ g.

Proof: Look at the end point terms in the variation of the action, assuming δS = 0 because of a

symmetry of the Lagrangian l(ξ).
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• Exercise: The Lie algebra so(3) of the Lie group SO(3) of rotations in three dimensions has struc-

ture constants cij
k = εij

k, where εij
k with i, j, k ∈ {1, 2, 3} is totally antisymmetric under pairwise

permutations of its indices, with ε12
3 = 1, ε21

3 = −1, etc.

Identify the Lie bracket [a, b] of two elements a = aiei, b = bjej ∈ so(3) with the cross product a × b

of two vectors a,b ∈ R3 according to 1

[a, b] = [aiei, b
jej] = aibjεij

kek = (a× b)kek .

(a) Show that in this case the EP equation

µ̇i = −εijkξjµk

is equivalent to the vector equation for ξ,µ ∈ R3

µ̇ = − ξ × µ .

(b) Show that when the Lagrangian is given by the quadratic

l(ξ) =
1

2
‖ξ‖2

K =
1

2
ξ ·Kξ =

1

2
ξiKijξ

j

for a symmetric constant Riemannian metric KT = K, then Euler’s equations for a rotating rigid body

are recovered.

1 (a’) Show that this formula implies the Jacobi identity for the cross product of vectors in R3. This is no surprise because, that familiar cross product relation for
vectors may be proven directly by using the antisymmetric tensor εij

k.
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That is, Euler’s equations for rigid body motion are contained in Poincaré’s equations for motion on

Lie groups!

And Poincaré’s equations generalise Euler’s equations for rigid body motion from R3 to motion on Lie

groups!

(c) Identify the functional dependence of µ on ξ and give the physical meanings of the symbols ξ,µ

and K in Euler’s rigid body equations.
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4.4 Euler-Poincaré variational principle for the rigid body

The Euler rigid-body equations on TR3 are

IΩ̇ = IΩ×Ω , (4.22)

where Ω = (Ω1,Ω2,Ω3) is the body angular velocity vector and I1, I2, I3 are the moments of inertia in the

principal axis frame of the rigid body. We ask whether these equations may be expressed using Hamilton’s

principle on R3. For this, we will first recall the variational derivative of a functional S[(Ω].

Definition

4.9 (Variational derivative). The variational derivative of a functional S[(Ω] is defined as its lin-

earisation in an arbitrary direction δΩ in the vector space of body angular velocities. That is,

δS[Ω] := lim
s→0

S[Ω + sδΩ]− S[Ω]

s
=
d

ds

∣∣∣
s=0
S[Ω + sδΩ]=:

〈 δS
δΩ

, δΩ
〉
,

where the new pairing, also denoted as 〈 · , · 〉, is between the space of body angular velocities and its

dual, the space of body angular momenta.
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Theorem

4.10 (Euler’s rigid-body equations). Euler’s rigid-body equations (4.22) arise from Hamilton’s princi-

ple,

δS(Ω) = δ

∫ b

a

l(Ω) dt = 0, (4.23)

in which the Lagrangian l(Ω) appearing in the action integral S(Ω) =
∫ b
a l(Ω) dt is given by the

kinetic energy in principal axis coordinates,

l(Ω) =
1

2
〈IΩ,Ω〉 =

1

2
IΩ ·Ω =

1

2
(I1Ω2

1 + I2Ω2
2 + I3Ω2

3) , (4.24)

and variations of Ω are restricted to be of the form

δΩ = Ξ̇ + Ω×Ξ , (4.25)

where Ξ(t) is a curve in R3 that vanishes at the endpoints in time.
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Proof. Since l(Ω) = 1
2〈IΩ,Ω〉, and I is symmetric, one obtains

δ

∫ b

a

l(Ω) dt =

∫ b

a

〈
IΩ, δΩ

〉
dt

=

∫ b

a

〈
IΩ, Ξ̇ + Ω×Ξ

〉
dt

=

∫ b

a

[〈
− d

dt
IΩ,Ξ

〉
+
〈
IΩ,Ω×Ξ

〉]
dt

=

∫ b

a

〈
− d

dt
IΩ + IΩ×Ω, Ξ

〉
dt +

〈
IΩ, Ξ

〉∣∣∣tb
ta
,

upon integrating by parts. The last term vanishes, upon using the endpoint conditions,

Ξ(a) = 0 = Ξ(b) .

Since Ξ is otherwise arbitrary, (4.23) is equivalent to

− d

dt
(IΩ) + IΩ×Ω = 0,

which recovers Euler’s equations (4.22) in vector form.
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Proposition

4.11 (Derivation of the restricted variation). The restricted variation in (4.25) arises via the following

steps:

(i) Vary the definition of body angular velocity, Ω̂ = O−1Ȯ.

(ii) Take the time derivative of the variation, Ξ̂ = O−1O ′.

(iii) Use the equality of cross derivatives, O ˙ ′ = d2O/dtds = O ′ ˙.

(iv) Apply the hat map.

Proof. One computes directly that

Ω̂ ′ = (O−1Ȯ) ′ = −O−1O ′O−1Ȯ + O−1O ˙ ′ = − Ξ̂Ω̂ + O−1O ˙ ′ ,

Ξ̂ ˙ = (O−1O ′) ˙ = −O−1ȮO−1O ′ + O−1O ′ ˙ = − Ω̂Ξ̂ + O−1O ′ ˙ .

On taking the difference, the cross derivatives cancel and one finds a variational formula equivalent to

(4.25),

Ω̂ ′ − Ξ̂ ˙ =
[

Ω̂ , Ξ̂
]

with [ Ω̂ , Ξ̂ ] := Ω̂Ξ̂− Ξ̂Ω̂ . (4.26)

Under the bracket relation

[ Ω̂ , Ξ̂ ] = (Ω×Ξ)̂ (4.27)

for the hat map, this equation recovers the vector relation (4.25) in the form

Ω ′ − Ξ̇ = Ω×Ξ . (4.28)
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Thus, Euler’s equations for the rigid body in TR3,

IΩ̇ = IΩ×Ω , (4.29)

follow from the variational principle (4.23) with variations of the form (4.25) derived from the definition of

body angular velocity Ω̂.

Exercise. What conservation law does Noether’s theorem imply for the rigid-body equations (4.22).

Hint, is the Lagrangian in (4.24) invariant under rotations around Ξ? F
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4.5 Clebsch variational principle for the rigid body

Proposition

4.12 (Clebsch v̇ariational ṗrinciple).

The Euler rigid-body equations on TR3 given in equation (4.22) as

IΩ̇ = IΩ×Ω ,

are equivalent to the constrained variational principle,

δS(Ω,Q, Q̇; P) = δ

∫ b

a

l(Ω,Q, Q̇; P) dt = 0, (4.30)

for a constrained action integral

S(Ω,Q, Q̇) =

∫ b

a

l(Ω,Q, Q̇) dt (4.31)

=

∫ b

a

1

2
Ω · IΩ + P ·

(
Q̇ + Ω×Q

)
dt .

Remark

4.13 (Reconstruction as constraint).

• The first term in the Lagrangian (4.31),

l(Ω) =
1

2
(I1Ω2

1 + I2Ω2
2 + I3Ω2

3) =
1

2
ΩT IΩ , (4.32)
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is the (rotational) kinetic energy of the rigid body.

• The second term in the Lagrangian (4.31) introduces the Lagrange multiplier P which imposes

the constraint

Q̇ + Ω×Q = 0 .

This reconstruction formula has the solution

Q(t) = O−1(t)Q(0) ,

which satisfies

Q̇(t) = − (O−1Ȯ)O−1(t)Q(0)

= − Ω̂(t)Q(t) = −Ω(t)×Q(t) . (4.33)

Proof. The variations of S are given by

δS =

∫ b

a

( δl

δΩ
· δΩ +

δl

δP
· δP +

δl

δQ
· δQ

)
dt

=

∫ b

a

[(
IΩ−P×Q

)
· δΩ

+ δP ·
(
Q̇ + Ω×Q

)
− δQ ·

(
Ṗ + Ω×P

)]
dt .

Thus, stationarity of this implicit variational principle implies the following set of equations:

IΩ = P×Q , Q̇ = −Ω×Q , Ṗ = −Ω×P . (4.34)
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These symmetric equations for the rigid body first appeared in the theory of optimal control of rigid

bodies. Euler’s form of the rigid-body equations emerges from these, upon elimination of Q and P, as

IΩ̇ = Ṗ×Q + P× Q̇

= Q× (Ω×P) + P× (Q×Ω)

= −Ω× (P×Q) = −Ω× IΩ ,

which are Euler’s equations for the rigid body in TR3.

Remark

4.14. The Clebsch approach is a natural path across to the Hamiltonian formulation of the rigid-body

equations. This becomes clear in the course of the following exercise.

Exercise. Given that the canonical Poisson brackets in Hamilton’s approach are

{Qi, Pj} = δij and {Qi, Qj} = 0 = {Pi, Pj} ,

show that the Poisson brackets for Π=P×Q∈R3 are

{Πa,Πi} = {εabcPbQc , εijkPjQk} = − εailΠl .

Derive the corresponding Lie–Poisson bracket {f, h}(Π) for functions of the Π’s. F
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Answer.

The R3 components of the angular momentum Π = IΩ = P×Q in (4.34) are

Πa = εabcPbQc ,

and their canonical Poisson brackets are (noting the similarity with the hat map)

{Πa,Πi} = {εabcPbQc , εijkPjQk} = − εailΠl .

Consequently, the derivative property of the canonical Poisson bracket yields

{f, h}(Π) =
∂f

∂Πa
{Πa,Πi}

∂h

∂Πb
= − εabcΠc

∂f

∂Πa

∂h

∂Πb
= −Π · ∂f

∂Π
× ∂h

∂Π
, (4.35)

which is the Lie–Poisson bracket on functions of the Π’s. This Poisson bracket satisfies the Jacobi identity

as a result of the Jacobi identity for the vector cross product on R3.

Remark

4.15. This exercise proves that the map T ∗R3 → R3 given by Π = P × Q ∈ R3 in (4.34) is

Poisson. That is, the map takes Poisson brackets on one manifold into Poisson brackets on another

manifold. This is one of the properties of a momentum map.
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Exercise.

(a) The Euler–Lagrange equations in matrix commutator form of Manakov’s formulation of the

rigid body on SO(n) are
dM

dt
= [M , Ω ] , (4.36)

where the n×n matrices M, Ω are skew-symmetric. Show that these equations may be derived

from Hamilton’s principle δS = 0 with constrained action integral

S(Ω, Q, P ) =

∫ b

a

l(Ω) + tr
(
P T
(
Q̇−QΩ

))
dt , (4.37)

for which M = δl/δΩ = P TQ − QTP and Q,P ∈ SO(n) satisfy the following symmetric

equations reminiscent of those in (4.34),

Q̇ = QΩ and Ṗ = PΩ , (4.38)

as a result of the constraints.

(b) How does equation (4.36) for the SO(n) rigid body dynamics change, if the Lagrangian l(Ω)

in (4.37) is changed to accommodate dependence on Q, i.e., if we have l(Ω, Q)?

(c) Derive the Lie-Poisson bracket for the Hamiltonian formulation of the N -dimensional heavy

top.
F
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Answer.

(a)

0 = δS(Ω, Q, P ) = δ

∫ b

a

l(Ω) +
〈
P , Q̇−QΩ

〉
dt

=

∫ b

a

〈
∂l

∂Ω
−QTP , δΩ

〉
+
〈
δP , Q̇−QΩ

〉
−
〈
Ṗ − PΩ , δQ

〉
dt +

〈
P , δQ

〉∣∣∣b
a
.

Thus, we have the variational equations,

δΩ :
∂l

∂Ω
= QTP

δP : Q̇ = QΩ

δQ : Ṗ = PΩ

To derive the Euler equation, we compute

(QTP )˙ = Q̇TP + QT Ṗ = ΩTQTP + QTPΩ = [QTP , Ω]

since ΩT = −Ω. Likewise, (P TQ)˙ = [P TQ , Ω].

Consequently, upon antisymmetrising because δΩT = −δΩ, we find that M = 1
2(δl/δΩ −

δl/δΩT ) = 1
2(QTP − P TQ) satisfies the Euler equation, Ṁ = [M,Ω].
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(b) By slightly modifying the previous calculation to include ∂l/∂Q, we find

dM

dt
= [M , Ω ] +

1

2

(
QT ∂l

∂Q
− ∂l

∂Q

T

Q

)
,

dQ

dt
= QΩ (4.39)

where we have antisymmetrised the term QT ∂l
∂Q so the equation transforms properly under taking

transpose.

(c) By Legendre transforming to the Hamiltonian

h(M,Q) = 〈M,Ω〉 − l(Ω, Q)

and by taking the time derivative and rearranging using MT = −M and the Frobenius pairing

〈A,B〉 = tr(ATB) as

d

dt
f (M,Q) =

〈
∂f

∂M
,
dM

dt

〉
+

〈
∂f

∂Q
,
dQ

dt

〉
=

〈
∂f

∂M
,

[
M ,

∂h

∂M

]
−QT ∂h

∂Q

〉
+

〈
∂f

∂Q
, Q

∂h

∂M

〉
= −

〈
M ,

[
∂f

∂M
,
∂h

∂M

]〉
−
〈
Q ,

∂f

∂Q

∂h

∂M
− ∂h

∂Q

∂f

∂M

〉
=:
{
f , h

}
we have built the Lie-Poisson bracket for the Hamiltonian formulation! For SE(3), this Lie-

Poisson bracket becomes, via the hat map,{
f , h

}
= −Π · ∂f

∂Π
× ∂h

∂Π
− Γ ·

(
∂f

∂Γ
× ∂h

∂Π
− ∂h

∂Γ
× ∂f

∂Π

)
N
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5 Integrability of motion on SO(n): the rigid body

5.1 Manakov’s formulation of the SO(n) rigid body

Proposition

5.1 (Manakov [Ma1976]). Euler’s equations for a rigid body on SO(n) take the matrix commuta-

tor form,
dM

dt
= [M , Ω ] with M = AΩ + ΩA , (5.1)

where the n×n matrices M, Ω are skew-symmetric (forgoing superfluous hats) and A is symmetric.

Proof. Manakov’s commutator form of the SO(n) rigid-body Equations (5.1) follows as the Euler–Lagrange

equations for Hamilton’s principle δS = 0 with S =
∫
l dt for the Lagrangian

l =
1

2
tr(ΩTAΩ) = −1

2
tr(ΩAΩ) ,

where Ω = O−1Ȯ ∈ so(n) and the n× n matrix A is symmetric. Taking matrix variations in Hamilton’s

principle yields

δS = −1

2

∫ b

a

tr
(
δΩ (AΩ + ΩA)

)
dt = −1

2

∫ b

a

tr
(
δΩM

)
dt ,

after cyclically permuting the order of matrix multiplication under the trace and substituting M := AΩ +

ΩA.
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Using the variational formula

δΩ = δ(O−1Ȯ) = Ξ ˙ + [ Ω , Ξ ] , with Ξ = (O−1δO) (5.2)

for δΩ now leads to

δS = −1

2

∫ b

a

tr
(
(Ξ ˙ + ΩΞ− ΞΩ)M

)
dt .

Integrating by parts and permuting under the trace then yields the equation

δS =
1

2

∫ b

a

tr
(
Ξ ( Ṁ + ΩM −MΩ )

)
dt .

Finally, invoking stationarity for arbitrary Ξ implies the commutator form (5.1).

5.2 Matrix Euler–Poincaré equations

Manakov’s commutator form of the rigid-body equations in (5.1) recalls much earlier work by Poincaré

[Po1901], who also noticed that the matrix commutator form of Euler’s rigid-body equations suggests

an additional mathematical structure going back to Lie’s theory of groups of transformations depending

continuously on parameters. In particular, Poincaré [Po1901] remarked that the commutator form of Euler’s

rigid-body equations would make sense for any Lie algebra, not just for so(3). The proof of Manakov’s

commutator form (5.1) by Hamilton’s principle is essentially the same as Poincaré’s proof in [Po1901].
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Theorem

5.2 (Matrix Euler–Poincaré equations). The Euler–Lagrange equations for Hamilton’s princi-

ple δS = 0 with S =
∫
l(Ω) dt may be expressed in matrix commutator form,

dM

dt
= [M , Ω ] with M =

δl

δΩ
, (5.3)

for any Lagrangian l(Ω), where Ω = g−1ġ ∈ g and g is the matrix Lie algebra of any matrix Lie

group G.

Proof. The proof here is the same as the proof of Manakov’s commutator formula via Hamilton’s prin-

ciple, modulo replacing O−1Ȯ ∈ so(n) with g−1ġ ∈ g.

Remark

5.3.

Poincaré’s observation leading to the matrix Euler–Poincaré Equation (5.3) was reported in two pages with

no references [Po1901]. The proof above shows that the matrix Euler–Poincaré equations possess a natural

variational principle. Note that if Ω = g−1ġ ∈ g, then M = δl/δΩ ∈ g∗, where the dual is defined in

terms of the matrix trace pairing.
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Exercise. Retrace the proof of the variational principle for the Euler–Poincaré equation, replacing

the left-invariant quantity g−1ġ with the right-invariant quantity ġg−1. F

5.3 An isospectral eigenvalue problem for the SO(n) rigid body

The solution of the SO(n) rigid-body dynamics

dM

dt
= [M , Ω ] with M = AΩ + ΩA ,

for the evolution of the n× n skew-symmetric matrices M, Ω, with constant symmetric A, is given by

a similarity transformation (later to be identified as coadjoint motion),

M(t) = O(t)−1M(0)O(t) =: Ad∗O(t)M(0) ,

with O(t) ∈ SO(n) and Ω := O−1Ȯ(t). Consequently, the evolution of M(t) is isospectral. This

means that

• The initial eigenvalues of the matrix M(0) are preserved by the motion; that is, dλ/dt = 0 in

M(t)ψ(t) = λψ(t) ,
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provided its eigenvectors ψ ∈ Rn evolve according to

ψ(t) = O(t)−1ψ(0) .

The proof of this statement follows from the corresponding property of similarity transformations.

• Its matrix invariants are preserved:

d

dt
tr(M − λId)K = 0 ,

for every non-negative integer power K.

This is clear because the invariants of the matrix M may be expressed in terms of its eigenvalues;

but these are invariant under a similarity transformation.

Proposition

5.4. Isospectrality allows the quadratic rigid-body dynamics (5.1) on SO(n) to be rephrased

as a system of two coupled linear equations: the eigenvalue problem for M and an evolution

equation for its eigenvectors ψ, as follows:

Mψ = λψ and ψ̇ = −Ωψ , with Ω = O−1Ȯ(t) .
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Proof. Applying isospectrality in the time derivative of the first equation yields

0 =
d

dt
(Mψ − λψ) = Ṁψ + Mψ̇ − λψ̇

(By ψ̇ = −Ωψ) = Ṁψ −MΩψ + Ωλψ

(By Mψ = λψ) = Ṁψ −MΩψ + ΩMψ = (Ṁ + [ Ω , M ] )ψ .

This recovers (5.1) as Ṁ + [ Ω , M ] = 0.

5.4 Manakov’s integration of the SO(n) rigid body

Manakov [Ma1976] observed that Equations (5.1) may be “deformed” into

d

dt
(M + λA) = [(M + λA), (Ω + λB)] , (5.4)

where A, B are also n× n matrices and λ is a scalar constant parameter. For these deformed rigid-body

equations on SO(n) to hold for any value of λ, the coefficient of each power must vanish.

• The coefficent of λ2 is

0 = [A,B] .

Therefore, A and B must commute. For this, let them be constant and diagonal:

Aij = diag(ai)δij , Bij = diag(bi)δij (no sum).
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• The coefficent of λ is

0 =
dA

dt
= [A,Ω] + [M,B] .

Therefore, by antisymmetry of M and Ω,

(ai − aj)Ωij = (bi − bj)Mij ,

which implies that

Ωij =
bi − bj
ai − aj

Mij (no sum).

Hence, angular velocity Ω is a linear function of angular momentum, M .

• Finally, the coefficent of λ0 recovers the Euler equation

dM

dt
= [M,Ω] ,

but now with the restriction that the moments of inertia are of the form

Ωij =
bi − bj
ai − aj

Mij (no sum).

This relation turns out to possess only five free parameters for n = 4.

Under these conditions, Manakov’s deformation of the SO(n) rigid-body equation into the commutator

form (5.4) implies for every non-negative integer power K that

d

dt
(M + λA)K = [(M + λA)K, (Ω + λB)] .
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Since the commutator is antisymmetric, its trace vanishes and K conservation laws emerge, as

d

dt
tr(M + λA)K = 0 ,

after commuting the trace operation with the time derivative. Consequently,

tr(M + λA)K = constant ,

for each power of λ. That is, all the coefficients of each power of λ are constant in time for the SO(n) rigid

body. Manakov [Man1976] proved that these constants of motion are sufficient to completely determine

the solution for n = 4.

Remark

5.5.

This result generalises considerably. For example, Manakov’s method determines the solution for all the

algebraically solvable rigid bodies on SO(n). The moments of inertia of these bodies possess only 2n− 3

parameters. (Recall that in Manakov’s case for SO(4) the moment of inertia possesses only five parame-

ters.)

Exercise. Try computing the constants of motion tr(M + λA)K for the values K = 2, 3, 4.

Hint: Keep in mind that M is a skew-symmetric matrix, MT = −M , so the trace of the product

of any diagonal matrix times an odd power of M vanishes. F
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Answer.

The traces of the powers trace(M + λA)n are given by

n = 2 : trM 2 + 2λtr(AM) + λ2trA2 ,

n = 3 : trM 3 + 3λtr(AM 2) + 3λ2trA2M + λ3trA3 ,

n = 4 : trM 4 + 4λtr(AM 3)

+ λ2(2trA2M 2 + 4trAMAM)

+ λ3trA3M + λ4trA4 .

The number of conserved quantities for n = 2, 3, 4 are, respectively, one (C2 = trM 2), one (C3 = trAM 2)

and two (C4 = trM 4 and I4 = 2trA2M 2 + 4trAMAM).

Exercise. How do the Euler equations look on so(4)∗ as a matrix equation? Is there an analogue

of the hat map for so(4)? Hint: The Lie algebra so(4) is locally isomorphic to so(3)× so(3). F

Exercise. Consider the Euler-Poincaré for geodesic motion on the unitary group SU(2) using

the Fubini-Study metric. What is the corresponding isospectral problem, a lá Manakov? F
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6 Action principles on Lie algebras

6.1 The Euler–Poincaré theorem

In the notation for the AD, Ad and ad actions of Lie groups and Lie algebras, Hamilton’s principle (that

the equations of motion arise from stationarity of the action) for Lagrangians defined on Lie algebras may

be expressed as follows. This is the Euler–Poincaré theorem [Po1901].

Theorem

6.1 (Euler–Poincaré theorem). Stationarity

δS(ξ) = δ

∫ b

a

l(ξ) dt = 0 (6.1)

of an action

S(ξ) =

∫ b

a

l(ξ) dt ,

whose Lagrangian is defined on the (left-invariant) Lie algebra g of a Lie group G by l(ξ) : g 7→ R,

yields the Euler–Poincaré equation on g∗,

d

dt

δl

δξ
= ad∗ξ

δl

δξ
, (6.2)

for variations of the left-invariant Lie algebra element

ξ = g−1ġ(t) ∈ g
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that are restricted to the form

δξ = η̇ + adξ η , (6.3)

in which η(t) ∈ g is a curve in the Lie algebra g that vanishes at the endpoints in time.

Exercise. What is the solution to the Euler–Poincaré Equation (6.2) in terms of Ad∗g(t)?

Hint: Take a look at the earlier equation (4.12). F

Remark

6.2. Such variations are defined for any Lie algebra.

Proof. A direct computation proves Theorem 6.1. Later, we will explain the source of the constraint (6.3)

on the form of the variations on the Lie algebra. One verifies the statement of the theorem by computing
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with a nondegenerate pairing 〈 · , · 〉 : g∗ × g→ R,

0 = δ

∫ b

a

l(ξ) dt =

∫ b

a

〈 δl
δξ
, δξ
〉
dt

=

∫ b

a

〈 δl
δξ
, η̇ + adξ η

〉
dt

=

∫ b

a

〈
− d

dt

δl

δξ
+ ad∗ξ

δl

δξ
, η
〉
dt +

〈 δl
δξ
, η
〉∣∣∣∣b

a

,

upon integrating by parts. The last term vanishes, by the endpoint conditions, η(b) = η(a) = 0.

Since η(t) ∈ g is otherwise arbitrary, (6.1) is equivalent to

− d

dt

δl

δξ
+ ad∗ξ

δl

δξ
= 0 ,

which recovers the Euler–Poincaré Equation (6.2) in the statement of the theorem.

Corollary

6.3 (Noether’s theorem for Euler–Poincaré).
If η is an infinitesimal symmetry of the Lagrangian, then 〈 δlδξ , η〉 is its associated constant of the

Euler–Poincaré motion.

Proof. Consider the endpoint terms 〈 δlδξ , η〉|
b
a arising in the variation δS in (6.1) and note that this implies

for any time t ∈ [a, b] that when the Euler–Poincaré Equations (6.2) are satisfied,〈 δl

δξ(t)
, η(t)

〉
= constant .



Lecture Notes: Dynamics, Symmetry and Integrability DD Holm Spring Term 2021 77

Corollary

6.4 (Interpretation of Noether’s theorem). Noether’s theorem for the Euler–Poincaré sta-

tionary principle may be interpreted as conservation of the spatial momentum quantity(
Ad∗g−1(t)

δl

δξ(t)

)
= constant,

as a consequence of the Euler–Poincaré Equation (6.2).

Proof. Invoke left-invariance of the Lagrangian l(ξ) under g → hεg with hε ∈ G. For this symmetry

transformation, one has δg = ζg with ζ = d
dε

∣∣
ε=0
hε, so that

η = g−1δg = Adg−1ζ ∈ g .

In particular, along a curve η(t) we have

η(t) = Adg−1(t)η(0) on setting ζ = η(0),

at any initial time t = 0 (assuming of course that [0, t] ∈ [a, b]). Consequently,〈 δl

δξ(t)
, η(t)

〉
=
〈 δl

δξ(0)
, η(0)

〉
=
〈 δl

δξ(t)
, Adg−1(t)η(0)

〉
.

For the nondegenerate pairing 〈 · , · 〉, this means that

δl

δξ(0)
=

(
Ad∗g−1(t)

δl

δξ(t)

)
= constant.
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The constancy of this quantity under the Euler–Poincaré dynamics in (6.2) is verified, upon taking the

time derivative and using the coadjoint motion relation (4.11) in Proposition 4.5.

Remark

6.5. The form of the variation in (6.3) arises directly by

(i) computing the variations of the left-invariant Lie algebra element ξ = g−1ġ ∈ g induced by taking

variations δg in the group;

(ii) taking the time derivative of the variation η = g−1g ′ ∈ g ; and

(iii) using the equality of cross derivatives (g ˙ ′ = d2g/dtds = g ′ ˙).

Namely, one computes,

ξ ′ = (g−1ġ) ′ = − g−1g ′g−1ġ + g−1g ˙ ′ = − ηξ + g−1g ˙ ′ ,

η̇ = (g−1g ′) ˙ = − g−1ġg−1g ′ + g−1g ′ ˙ = − ξη + g−1g ′ ˙ .

On taking the difference, the terms with cross derivatives cancel and one finds the variational formula

(6.3),

ξ ′ − η̇ = [ ξ , η ] with [ ξ , η ] := ξ η − η ξ = adξ η . (6.4)

The same formal calculations as for vectors and quaternions also apply to Hamilton’s principle on

(matrix) Lie algebras.
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Euler–Poincaré equation for SE(3).

The Euler–Poincaré Equation (6.2) for SE(3) is equivalent to(
d

dt

δl

δξ
,
d

dt

δl

δα

)
= ad∗(ξ , α)

(
δl

δξ
,
δl

δα

)
. (6.5)

Show that this formula produces the Euler–Poincaré Equation for SE(3) upon using the definition

of the ad∗ operation for se(3). F
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6.2 Hamilton–Pontryagin principle

Formula (6.4) for the variation of the vector ξ = g−1ġ ∈ g may be imposed as a constraint in Hamil-

ton’s principle and thereby provide an immediate derivation of the Euler–Poincaré Equation (6.2). This

constraint is incorporated into the following theorem.

Theorem

6.6 (Hamilton–Pontryagin principle). The Euler–Poincaré equation

d

dt

δl

δξ
= ad∗ξ

δl

δξ
(6.6)

on the dual Lie algebra g∗ is equivalent to the following implicit variational principle,

δS(ξ, g, ġ) = δ

∫ b

a

l(ξ, g, ġ) dt = 0, (6.7)

for a constrained action

S(ξ, g, ġ) =

∫ b

a

l(ξ, g, ġ) dt

=

∫ b

a

[
l(ξ) + 〈µ , (g−1ġ − ξ) 〉

]
dt . (6.8)
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Proof. The variations of S in formula (6.8) are given by

δS =

∫ b

a

〈 δl
δξ
− µ , δξ

〉
+
〈
δµ , (g−1ġ − ξ)

〉
+
〈
µ , δ(g−1ġ)

〉
dt .

Substituting δ(g−1ġ) from (6.4) into the last term produces∫ b

a

〈
µ , δ(g−1ġ)

〉
dt =

∫ b

a

〈
µ , η̇ + adξ η

〉
dt

=

∫ b

a

〈
− µ̇ + ad∗ξ µ , η

〉
dt +

〈
µ , η

〉∣∣∣b
a
,

where η = g−1δg vanishes at the endpoints in time. Thus, stationarity δS = 0 of the Hamilton–Pontryagin

variational principle yields the following set of equations:

δl

δξ
= µ , g−1ġ = ξ , µ̇ = ad∗ξ µ . (6.9)

Remark

6.7 (Interpreting the variational formulas (6.9)).

The first formula in (6.9) is the fibre derivative needed in the Legendre transformation g 7→ g∗, for

passing to the Hamiltonian formulation. The second is the reconstruction formula for obtaining the

solution curve g(t) ∈ G on the Lie group G given the solution ξ(t) = g−1ġ ∈ g. The third formula in
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(6.9) is the Euler–Poincaré equation on g∗. The interpretation of Noether’s theorem in Corollary

6.4 transfers to the Hamilton–Pontryagin variational principle as preservation of the quantity(
Ad∗g−1(t)µ(t)

)
= µ(0) = constant,

under the Euler–Poincaré dynamics.

This Hamilton’s principle is said to be implicit because the definitions of the quantities describing

the motion emerge only after the variations have been taken.

Exercise. Compute the Euler–Poincaré equation on g∗ when ξ(t) = ġg−1 ∈ g is right-invariant.F
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6.3 Clebsch approach to Euler–Poincaré

The Hamilton–Pontryagin (HP) Theorem 6.6 elegantly delivers the three key formulas in (6.9) needed for

deriving the Lie–Poisson Hamiltonian formulation of the Euler–Poincaré equation. Perhaps surprisingly,

the HP theorem accomplishes this without invoking any properties of how the invariance group of the

Lagrangian G acts on the configuration space M .

An alternative derivation of these formulas exists that uses the Clebsch approach and does invoke the

action G×M → M of the Lie group on the configuration space, M , which is assumed to be a manifold.

This alternative derivation is a bit more elaborate than the HP theorem. However, invoking the Lie group

action on the configuration space provides additional valuable information. In particular, the alternative

approach will yield information about the momentum map T ∗M 7→ g∗ which explains precisely how the

canonical phase space T ∗M maps to the Poisson manifold of the dual Lie algebra g∗.

Proposition

6.8 (Clebsch version of the Euler–Poincaré principle). The Euler–Poincaré equation

d

dt

δl

δξ
= ad∗ξ

δl

δξ
(6.10)

on the dual Lie algebra g∗ is equivalent to the following implicit variational principle,

δS(ξ, q, q̇, p) = δ

∫ b

a

l(ξ, q, q̇, p) dt = 0, (6.11)
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for an action constrained by the reconstruction formula

S(ξ, q, q̇, p) =

∫ b

a

l(ξ, q, q̇, p) dt

=

∫ b

a

[
l(ξ) +

〈〈
p , q̇ + £ξq

〉〉]
dt , (6.12)

in which the pairing 〈〈 · , · 〉〉 : T ∗M×TM 7→ R maps an element of the cotangent space (a momentum

covector) and an element from the tangent space (a velocity vector) to a real number. This is the

natural pairing for an action integrand and it also occurs in the Legendre transformation.

Remark

6.9. The Lagrange multiplier p in the second term of (6.12) imposes the constraint

q̇ + £ξq = 0 . (6.13)

This is the formula for the evolution of the quantity q(t) = g−1(t)q(0) under the left action of the

Lie algebra element ξ ∈ g on it by the Lie derivative £ξ along ξ. (For right action by g so that

q(t) = q(0)g(t), the formula is q̇ −£ξq = 0.)

6.4 Recalling the definition of the Lie derivative

One assumes the motion follows a trajectory q(t) ∈ M in the configuration space M given by q(t) =

g(t)q(0), where g(t) ∈ G is a time-dependent curve in the Lie group G which operates on the configuration
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space M by a flow φt : G×M 7→ M . The flow property of the map φt ◦ φs = φs+t is guaranteed by the

group composition law.

Just as for the free rotations, one defines the left-invariant and right-invariant velocity vectors. Namely,

as for the body angular velocity,

ξL(t) = g−1ġ(t) is left-invariant under g(t)→ hg(t),

and as for the spatial angular velocity,

ξR(t) = ġg−1(t) is right-invariant under g(t)→ g(t)h,

for any choice of matrix h ∈ G. This means neither of these velocities depends on the initial configuration.

6.4.1 Right-invariant velocity vector

The Lie derivative £ξ appearing in the reconstruction relation q̇ = −£ξq in (6.13) is defined via the Lie

group operation on the configuration space exactly as for free rotation. For example, one computes the

tangent vectors to the motion induced by the group operation acting from the left as q(t) = g(t)q(0) by

differentiating with respect to time t,

q̇(t) = ġ(t)q(0) = ġg−1(t)q(t) =: £ξRq(t) ,

where ξR = ġg−1(t) is right-invariant. This is the analogue of the spatial angular velocity of a freely

rotating rigid body.
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6.4.2 Left-invariant velocity vector

Likewise, differentiating the right action q(t) = q(0)g(t) of the group on the configuration manifold yields

q̇(t) = q(t)g−1ġ(t) =: £ξLq(t) ,

in which the quantity

ξL(t) = g−1ġ(t) = Adg−1(t)ξR(t)

is the left-invariant tangent vector.

This analogy with free rotation dynamics should be a good guide for understanding the following ma-

nipulations, at least until we have a chance to illustrate the ideas with further examples.

Exercise. Compute the time derivatives and thus the forms of the right- and left-invariant velocity

vectors for the group operations by the inverse q(t) = q(0)g−1(t) and q(t) = g−1(t)q(0). Observe

the equivalence (up to a sign) of these velocity vectors with the vectors ξR and ξL, respectively.

Note that the reconstruction formula (6.13) arises from the latter choice.
F

6.5 Clebsch Euler–Poincaré principle

Let us first define the concepts and notation that will arise in the course of the proof of Proposition 6.8.
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Definition

6.10 (The diamond operation �). The diamond operation (�) in Equation (6.17) is defined

as minus the dual of the Lie derivative with respect to the pairing induced by the variational

derivative in q, namely, 〈
p � q , ξ

〉
=
〈〈
p , −£ξq

〉〉
. (6.14)

Definition

6.11 (Transpose of the Lie derivative). The transpose

of the Lie derivative £T
ξ p is defined via the pairing 〈〈 · , · 〉〉 between (q, p) ∈ T ∗M and (q, q̇) ∈ TM

as 〈〈
£T
ξ p , q

〉〉
=
〈〈
p , £ξq

〉〉
. (6.15)

Proof. The variations of the action integral

S(ξ, q, q̇, p) =

∫ b

a

[
l(ξ) +

〈〈
p , q̇ + £ξq

〉〉]
dt (6.16)
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from formula (6.12) are given by

δS=

∫ b

a

〈 δl
δξ
, δξ

〉
+
〈〈 δl
δp
, δp

〉〉
+
〈〈 δl
δq
, δq

〉〉
+
〈〈
p , £δξq

〉〉
dt

=

∫ b

a

〈 δl
δξ
− p � q , δξ

〉
+
〈〈
δp , q̇ + £ξq

〉〉
−
〈〈
ṗ−£T

ξ p , δq
〉〉
dt .

Thus, stationarity of this implicit variational principle implies the following set of equations:

δl

δξ
= p � q , q̇ = −£ξq , ṗ = £T

ξ p . (6.17)

In these formulas, the notation distinguishes between the two types of pairings,

〈 · , · 〉 : g∗ × g 7→ R and 〈〈 · , · 〉〉 : T ∗M × TM 7→ R . (6.18)

(The third pairing in the formula for δS is not distinguished because it is equivalent to the second one

under integration by parts in time.)

The Euler–Poincaré equation emerges from elimination of (q, p) using these formulas and the properties
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of the diamond operation that arise from its definition, as follows, for any vector η ∈ g:〈 d

dt

δl

δξ
, η
〉

=
d

dt

〈 δl
δξ
, η
〉
,

[Definition of � ] =
d

dt

〈
p � q , η

〉
=
d

dt

〈〈
p , −£ηq

〉〉
,

[Equations (6.17)] =
〈〈

£T
ξ p , −£ηq

〉〉
+
〈〈
p , £η£ξq

〉〉
,

[Transpose, � and ad ] =
〈〈
p , −£[ξ, η]q

〉〉
=
〈
p � q , adξη

〉
,

[Definition of ad∗ ] =
〈

ad∗ξ
δl

δξ
, η
〉
.

This is the Euler–Poincaré Equation (6.10).

Exercise. Show that the diamond operation defined in Equation (6.14) is antisymmetric,〈
p � q , ξ

〉
= −

〈
q � p , ξ

〉
. (6.19)

F

Exercise. (Euler–Poincaré equation for right action) Compute the Euler–Poincaré

equation for the Lie group action G ×M 7→ M : q(t) = q(0)g(t) in which the group acts from
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the right on a point q(0) in the configuration manifold M along a time-dependent curve g(t) ∈ G.

Explain why the result differs in sign from the case of left G-action on manifold M . F

Exercise. (Clebsch approach for motion on T ∗(G × V )) Often the Lagrangian will

contain a parameter taking values in a vector space V that represents a feature of the potential

energy of the motion. We have encountered this situation already with the heavy top, in which the

parameter is the vector in the body pointing from the contact point to the centre of mass. Since

the potential energy will affect the motion we assume an action G× V → V of the Lie group G

on the vector space V . The Lagrangian then takes the form L : TG× V → R.

Compute the variations of the action integral

S(ξ, q, q̇, p) =

∫ b

a

[
l̃(ξ, q) +

〈〈
p , q̇ + £ξq

〉〉]
dt

and determine the effects in the Euler–Poincaré equation of having q ∈ V appear in the Lagrangian

l̃(ξ, q).

Show first that stationarity of S implies the following set of equations:

δl̃

δξ
= p � q , q̇ = −£ξq , ṗ = £T

ξ p +
δl̃

δq
.
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Then transform to the variable δl/δξ to find the associated Euler–Poincaré equations on the space

g∗ × V ,

d

dt

δl̃

δξ
= ad∗ξ

δl̃

δξ
+
δl̃

δq
� q ,

dq

dt
= −£ξq .

Perform the Legendre transformation to derive the Lie–Poisson Hamiltonian formulation corre-

sponding to l̃(ξ, q). F

6.6 Lie–Poisson Hamiltonian formulation

The Clebsch variational principle for the Euler–Poincaré equation provides a natural path to its canonical

and Lie–Poisson Hamiltonian formulations. The Legendre transform takes the Lagrangian

l(p, q, q̇, ξ) = l(ξ) +
〈〈
p , q̇ + £ξq

〉〉
in the action (6.16) to the Hamiltonian,

H(p, q)=
〈〈
p , q̇

〉〉
− l(p, q, q̇, ξ) =

〈〈
p , −£ξq

〉〉
− l(ξ) ,
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whose variations are given by

δH(p, q)=
〈〈
δp , −£ξq

〉〉
+
〈〈
p , −£ξδq

〉〉
+
〈〈
p , −£δξq

〉〉
−
〈 δl
δξ
, δξ

〉
=
〈〈
δp , −£ξq

〉〉
+
〈〈
−£T

ξ p , δq
〉〉

+
〈
p � q − δl

δξ
, δξ

〉
.

These variational derivatives recover Equations (6.17) in canonical Hamiltonian form,

q̇ = δH/δp = −£ξq and ṗ = −δH/δq = £T
ξ p .

Moreover, independence of H from ξ yields the momentum relation,

δl

δξ
= p � q . (6.20)

The Legendre transformation of the Euler–Poincaré equations using the Clebsch canonical variables

leads to the Lie–Poisson Hamiltonian form of these equations,

dµ

dt
= {µ, h} = ad∗δh/δµ µ , (6.21)

with

µ = p � q =
δl

δξ
, h(µ) = 〈µ, ξ〉 − l(ξ) , ξ =

δh

δµ
. (6.22)
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By Equation (6.22), the evolution of a smooth real function f : g∗ → R is governed by

df

dt
=

〈
δf

δµ
,
dµ

dt

〉
=

〈
δf

δµ
, ad∗δh/δµ µ

〉
=

〈
adδh/δµ

δf

δµ
, µ

〉
= −

〈
µ ,

[
δf

δµ
,
δh

δµ

]〉
=:
{
f, h
}
. (6.23)

The last equality defines the Lie–Poisson bracket {f, h} for smooth real functions f and h on the

dual Lie algebra g∗. One may check directly that this bracket operation is a bilinear, skew-symmetric

derivation that satisfies the Jacobi identity. Thus, it defines a proper Poisson bracket on g∗.
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Exercise. Let the set of 2 × 2 matrices Mi with i = 1, 2, 3 satisfy the defining relation for the

symplectic Lie group Sp(2),

MiJM
T
i = J with J =

(
0 −1

1 0

)
. (6.24)

The corresponding elements of its Lie algebra mi = ṀiM
−1
i ∈ sp(2) satisfy (Jmi)

T = Jmi for

each i = 1, 2, 3. Thus, Xi = Jmi satisfying XT
i = Xi is a set of three symmetric 2 × 2 matrices.

Define X = JṀM−1 with time derivative Ṁ = ∂M(t, x)/∂t and Y = JM ′M−1 with space

derivative M ′ = ∂M(t, x)/∂x. Then show that

X′ = Ẏ + [X,Y]J , (6.25)

for the J-bracket defined by

[X,Y]J := XJY − YJX =: 2sym(XJY) =: adJXY .

In terms of the J-bracket, compute the continuum Euler–Poincaré equations for a Lagrangian

`(X,Y) defined on the symplectic Lie algebra sp(2).

Compute the Lie–Poisson Hamiltonian form of the system comprising the continuum Euler–

Poincaré equations on sp(2)∗ and the compatibility equation (6.25) on sp(2). F
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Exercise. Find the isospectral problem for Bloch-Iserles via geodesic motion on Sp(2) a lá page

357 of [Ho2011GM2]!

What is the corresponding isospectral problem, a lá Manakov? F
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Figure 4: This section is about using EPDiff to model unidirectional shallow water wave trains and their interactions in one dimension.
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7 EPDiff and Shallow Water Waves

7.1 Introduction to wave equations

Wave equations are evolutionary equations for time dependent curves in a space of smooth maps C∞(Rn, V )

for solutions, u ∈ V , a vector space V .

∂tu = f (u) , or ∂tui(x, t) = fi(ui, ui,j, ui,jk, ui,jkl, . . . ) . (7.1)

Typically, V is R or C, n = 1. We are interested in the Cauchy problem. Namely, solve (7.1) for u(x, t),

given the initial condition u(x, 0) and boundary conditions u(x|∂D, t).

Travelling waves. The simplest wave solution is called a travelling wave. This solution is a function u of the

form

u(x, t) = F (x− ct) ,
where F : R→ V is a function defining the wave shape, and c is a real number defining the propagation

speed of the wave. Thus, travelling waves preserve their shape and simply translate to the right at constant

speed, c.

Exercise. Find the travelling wave solutions u(x, t) = F (x−ct) of 1+1 linear PDEs ut+cux = 0

and utt − c2uxx. Hint: notice that (∂t − c∂x)(∂t + c∂x) = (∂2
t − c2∂2

x). Upon introducing

independent variables ξ = x − ct and η = x + ct the second equation becomes uξη = 0 so that

u(ξ, η) = F (ξ) + G(η). F
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Plane waves. A complex-valued travelling wave, called a plane wave, plays a fundamental role in the theory

of linear wave equations. The general form of a plane wave is

u(x, t) = <e(Aei(kx−ωt),

where |A| is the wave amplitude, k is wave number, ω is wave frequency, and cp = ω/k is the speed along

the oscillating wave form.

Exercise. Find dispersion relations ω = ω(k) and phase velocities cp(k) := ω(k)/k for the plane

wave solutions of ut + cux = 0, utt − c2uxx = 0, ut + γuxxx = 0, and ut = −∂xP (∂2
x)u, where

P ( · ) is a real polynomial of its argument.

Why are these called dispersion relations? (Hint: consider the initial Fourier k-spectrum.) What

is the importance of the relative signs? How do polynomial dispersion relations differ from linear

ones? F

7.2 Conservation laws

Conservation laws for evolutionary equations of the form ut = f (u) satisfy

d

dt

∫
F (u) dx =

∫
δF

δu
ut dx =

∫
δF

δu
f (u) dx =

∫
dG(u) = 0 ,

for some functions F and G of u and its derivatives, and for suitable boundary conditions.
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For example, the inviscid Burgers equation

ut + uux = 0 , (7.2)

has an infinite number of conservation laws, given by Cn =
∫

un

n dx

dCn
dt

=
d

dt

∫
un

n
dx =

∫
un−1ut dx = −

∫
unux dx = −

∫
1

n + 1
∂xu

n+1 dx = − 1

n + 1

∫
d(un+1) = 0 ,

(7.3)

for homogeneous boundary conditions and any integer n.

Even so, the solutions of the inviscid Burgers equation carry the seeds of their own destruction, since

they exhibit wave breaking in finite time. That is, they develop negative vertical slope in finite time. This

is shown in the proof of the following Lemma.

Lemma

7.1 (Steepening Lemma for the inviscid Burgers equation).

Suppose the initial profile of velocity u(0, x) for the inviscid Burgers equation (7.2) has an inflection point

of negative slope ux(0, x(0)) < 0 located at x = x(0) to the right of its maximum, and otherwise it decays

to zero in each direction sufficiently rapidly for all of its conservation laws in equation (7.3) to be finite.

Then the negative slope at the inflection point will become vertical in finite time.

Proof. Consider the evolution of the slope at the inflection point, defined by s(t) = ux(x(t), t). Then the

inviscid Burgers equation (7.2) yields an evolution equation for the slope, s(t). Namely, using uxx(x(t), t) =



Lecture Notes: Dynamics, Symmetry and Integrability DD Holm Spring Term 2021 100

0 the spatial derivative of equation (7.2) leads to

ds

dt
= − s2 =⇒ s(t) =

s(0)

1 + s(0)t
. (7.4)

Thus, if s(0) < 0, the slope at the inflection point s(t) will become increasingly more negative, until it

becomes vertical at time t = −1/s(0).

7.3 Survey of weakly nonlinear water wave equations: KdV and CH

The derivation of weakly nonlinear water wave equations starts with Laplace’s equation for the velocity

potential of an inviscid, incompressible, and irrotational fluid moving in a vertical plane under gravity with

an upper free surface, as, e.g., in [1].

The equations are then expanded in the small parameters ε1 = a/h and ε2 = h2/l2. Here ε1 ≥ ε2 > ε21
and a, h, and l denote the wave amplitude, the mean water depth, and a typical horizontal length scale

(e.g., a wavelength), respectively. Length is measured in terms of l, height in h and time in l/c0. The

elevation η is scaled with a and fluid velocity u is scaled with c0a/h. Here, c0 =
√
gh is the linear wave

speed for undisturbed water at rest at spatial infinity, where u and its derivatives ux and uxx are taken to

vanish.

The result of the expansion to quadratic order in ε1 and ε2 is the equation for the surface elevation η

[1], p. 466, while higher order terms (HOT ) can e.g. be found, e.g., in [11],

0 = ηt + ηx +
3

2
ε1 η ηx +

1

6
ε2 ηxxx −

3

8
ε2

1 η
2 ηx + ε1ε2

(
23

24
ηx ηxx +

5

12
η ηxxx

)
+ ε2

2

19

360
ηxxxxx + HOT(7.5)

where partial derivatives are denoted by subscripts.
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Next, following Kodama [9, 10] one applies the near-identity transformation,

η = u + ε1 f (u) + ε2 g(u) ,

to the η−equation (7.5) and seeks functionals f (u) and g(u) that consolidate the terms of order O(ε2
1) and

O(ε1ε2) in (7.5) into one orderO(ε2
2) term under normal form transformations. This procedure produces the

following 1+1 quadratically nonlinear equation for unidirectional water waves with fluid velocity, u (x, t)

and momentum m = u− α2uxx, with constant α 2 = (19/60)ε2, see [8],

mt + c0ux +
ε1

2
(umx + 2mux) + ε2

3

20
uxxx = 0 . (7.6)

After these normal form transformations, equation (7.6) is equivalent to the shallow water wave equation

(7.5) up to, and including, terms of order O(ε2
2).

Equation (7.6) restricts to two separately integrable soliton equations for water waves. After setting

α 2 → 0 and rescaling, this equation becomes the classic Korteweg-de Vries (KdV) equation,

ut + c0ux + 3uux + γ uxxx = 0 , (7.7)

which for c0 = 0 has the famous soliton solution u(x, t) = u0 sech2((x − ct)
√
u0/γ/2), c = c0 + u0 see,

e.g., [2].
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Remark

7.2. Equation (7.6) is not invariant under Galilean transformations. Hence, its coefficients de-

pend on the choice of Galilean reference frame. For example, one may choose a Galilean frame

which simplifies it to remove the uxxx term, as

ut + c0ux + 3uux + γ uxxx = α 2
(
uxxt + 2uxuxx + uuxxx

)
, (7.8)

Setting c0 = 0 admits the “peakon” soliton solutions u(x, t) =
∑N

j=1 pj(t)e
−|x−qj(t)| discovered and

analyzed in [3], [4].

For the remainder of these notes, we will investigate the inviscid Burgers equation (7.2) and the KdV

and CH soliton equations (7.7) and (7.8) all in the context of geometric mechanics.

Exercise. Derive the CH equation (7.8) from the following Hamilton’s principle

0 = δS = δ

∫ b

a

L(φt, φx) dt = δ

∫ b

a

∫
R

(
φx − α2φxxx

)
φt −

1

2

(
φ3
x + c0φ

2
x + γφxφxxx + α2φxφ

2
xx

)
dx dt

= δ

∫ b

a

∫
R
πφtdx dt− δ

∫ b

a

∫
R
H1(φx)dx dt with π(x, t) =

δL

δφt
= φx − α2φxxx

F
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Answer.

π(x, t) =
δL

δφt
= φx − α2φxxx =: u− α2uxx =: m(x, t)

∂tπ = − δH1

δφ
= − ∂x

δH1

δφx
= − ∂x

δH1

δu

with

H1(u) =
1

2

∫
R

(
u3 + c0u

2 + γuuxx + α2uu2
x

)
dx

so that

∂tπ = − ∂x
δH1

δu
= − 1

2
∂x

(
3u2 + 2c0u + 2γuxx − α2(u2

x + 2uuxx)
)

= −
(

3uux − α2(2uxuxx + uuxxx) + c0ux + γuxxx

)
∂tm = −

(
(∂xm + m∂x)u + c0ux + γuxxx

)
= −

(
∂x − α2∂3

x

)δH1

δm
=: −B2

δH1

δm

By inspection, we also see that the CH equation also follows from

∂tm = −
(
∂xm + m∂x + c0∂x + γ∂3

x

)δH2

δm
=: −B1

δH2

δm
with

δH2

δm
= u where H2 =

1

2

∫
R
mudx
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for m(x, t) = u− α2uxx. This becomes the KdV equation when α2 → 0 and thus m→ u,

∂tu = −
(
∂xu + u∂x + c0∂x + γ∂3

x

)δH2

δu
with

δH2

δu
= u where H2 =

1

2

∫
R
u2 dx

These calculations show that the KdV and CH equations are bi-Hamiltonian.

Definition

7.3 (Bi-Hamiltonian). An equation which may be written in two different but compatible Hamilto-

nian forms

mt = −B2
δH1

δm
= −B1

δH2

δm
,

is said to be bi-Hamiltonian.

For the CH equation, the bi-Hamiltonian structure is given by

H1 =
1

2

∫
u 3 + α 2uu 2

x + c0u
2 + γ u 2

x dx , and B2 = ∂x − α 2∂3
x

H2 =
1

2

∫
(u 2 + α 2u 2

x) dx , and B1 = ∂xm + m∂x + c0∂x + γ ∂3
x .

(7.9)

These bi-Hamiltonian forms of CH restrict properly to the following:

(1) to KdV when α 2 → 0;

(2) to EPDiff when c0, γ → 0; and

(3) to inviscid Burgers when α 2, c0, γ → 0.
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The inviscid Burgers equation is also bi-Hamiltonian.

Show directly that the inviscid Burgers equation in (7.2) is Hamiltonian with two Poisson brackets

and has an infinite number of conservation laws in involution with each other. F

Answer.

The 1st Poisson bracket is given by

dF

dt
=
{
F,H2

}
1

= −
∫
δF

δu
B1
δH2

δu
dx = −

∫
δF

δu
∂x
δH2

δu
dx ,

with Hamiltonian H2 = 1
6

∫
u3 dx. The 2nd Poisson bracket is given by

dF

dt
=
{
F,H1

}
2

= −
∫
δF

δu
B2
δH1

δu
dx = −

∫
δF

δu
(∂xu + u∂x)

δH1

δu
dx ,

with Hamiltonian H1 = 1
6

∫
u2 dx.

Thus, the inviscid Burgers equation in (7.2) may be written in two Hamiltonian forms,

ut = −B1δH2 = −B2δH1 = −uux ,
with Hamiltonian operators B1 = ∂x and B2 = ∂xu + u∂x.

Show that the Casimirs for these two Poisson brackets are Cn =
∫

un

n dx. In particular, show that

0 =
{
Cn, Cm

}
1

=
{
Cn, Cm+1

}
2

+
{
Cn+1, Cm

}
2

and
{
Cn, Cm

}
2

= 0 .

This means that the Casimir conservation laws are “in involution” with each other.
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7.4 The Lax equations and Isospectrality Principles for KdV and CH

Isospectral Principle Let L(t) and B(t) be smooth one-parameter families of self-adjoint and skew-adjoint

operators respectively on a Hilbert space H , satisfying the Lax Equation Lt = [B,L], and let ψ(t) be a

curve in H that is a solution of the time-dependent linear ODE ψt = Bψ(t).

If the initial value, ψ(x, 0), is an eigenvector of L(0) belonging to an eigenvalue λ, then ψ(x, t) is an

eigenvector of L(t) belonging to the same eigenvalue λ.

Lax equation Lt = [B,L] Suppose we have a smooth one-parameter family U(t) (with U(0) = I) of unitary

transformations of a Hilbert space H , so that ψ(t) = U(t)ψ(0) for ψ(0) ∈ H . The time derivative Ut(t) of

U(t), is a tangent vector at U(t) of the group U(H) of unitary transformations of H , satisfying U−1 = U †,

where superscript U † denotes Hermitian adjoint of U . Consider the right-invariant Lie algebra operator

B(t) ∈ u given by

B(t) = Ut(t)U(t)−1 = Ut(t)U(t)† ∈ u ,

which is a tangent vector to the curve U(H) at the identity, I . Differentiating UU † = I shows that

B = UtU
† = −(UtU

†)† = −B† is a skew-Hermitian operator on H .

Now suppose that L(0) is a self-adjoint operator on H , and define a family of unitarily equivalent

operators L(t) by

L(t) = U(t)L(0)U(t)−1 , so L(0) = U(t)†L(t)U(t) .

Differentiating the latter equation with respect to t yields,

0 = U †tLU + U †LtU + U †LUt = U †(−BL + Lt + LB)U .
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Hence, writing [B,L] = BL− LB as usual for the commutator of B and L, we see that L(t) satisfies the

so-called Lax Equation,

Lt = [B,L] .

For any ψ(0) in H , recall that ψ(t) = U(t)ψ(0). Since U(t)L(0) = L(t)U(t), it follows that if ψ(0) satisfies

the eigenvalue equation L(0)ψ(0) = λψ(0), then L(t)ψ(t) = λψ(t), so that ψ(t) remains an function of

L(t) belonging to the same eigenvalue λ. In addition, since ψ(0) = U(t)−1ψ(t),

ψt = Ut(t)ψ(0) = Bψ(t) ,

so ψ(t) solves this linear evolutionary ODE with initial value ψ(0).

Next, we will recall the geometrical meaning of the Lax equation as a Zero Curvature Condition (ZCC).

Then we will discuss the Isospectral Principle for the celebrated KdV equation, for which H = L2(R).

Remark

7.4 (Geometrical interpretation). Geometrically, the Lax equation is a Zero Curvature Condition

(ZCC).

The differential geometric meaning of the Lax equation Lt = [B,L] can be seen by rewriting

L = ∂x − A for an operator A and computing the commutation relations

Lt =
[
B , L

]
=
[
B , ∂x − A

]
= −Bx −

[
B , A

]
= −

[
L , ∂t

]
= −

[
∂x − A , ∂t

]
= −

[
∂x , ∂t

]
+
[
A , ∂t

]
= −At .

Provided we have equality of cross derivatives, ψxt = ψtx, the previous calculation produces the result[
∂x − A , ∂t −B

]
= At −Bx +

[
A , B

]
= 0 with Aψ = ψx and Bψ = ψt .
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As we will now discuss, the previous relation may be interpreted as the Zero Curvature Condition

(ZCC) for a flat connection on the trivial principal bundle R2 ×G, where G is a matrix Lie group.

On this bundle, we may write the flat connection as ∇ = d−$, where $ is a 1-form on R2 with

values in the matrix Lie algebra g of G. In coordinates (x, t) ∈ R2, we may write the connection

1-form as $ = Adx + Bdt where A and B are smooth maps of R2 into the matrix Lie algebra g.

For a vector field X on R2, the covariant derivative operator in the direction X is given by

∇X = ∂X −$(X). In particular, the covariant derivatives in the coordinate directions ∂x and ∂t for

the connection 1-form $ = Adx + Bdt are

∇∂x = ∂x − A , and ∇∂t = ∂t −B .

The flatness of the connection ∇ may be expressed in several equivalent ways. First, the curvature

2-form vanishes. This is shown by computing

d$ −$ ∧$ = 0 .

Equivalently, the covariant derivative operators in the ∂x and ∂t directions commute, i.e.,[
∇∂x , ∇∂t

]
= 0 ,

and finally, cross-derivatives of ψ are equal, (Aψ)t = ψxt = ψtx = (Bψ)x.

In the first paragraph of this remark, we showed directly that equality of cross-derivatives of ψ is

sufficient for the Lax pair relation to imply the ZCC. The last remark shows that the converse also

holds. That is, the ZCC implies the Lax pair relation.
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Remark. In the next theorem, we will see that if u(x, t) satisfies the KdV equation in the form, ut+ c0ux+

3uux + γ uxxx = 0, then the family of Schroedinger operators L(t) = 4γ∂2
x + 2u(x, t) + c0 on H satisfies

the Lax Equation,

Lt = [B,L] , with Lψ =
(

4γ∂2+2u(x, t)+c0

)
ψ = λψ and Bψ = −

(
c0∂+4γ∂3+

3

2

(
u∂+∂u

))
ψ ,

(7.10)

where L∗ = L is a self-adjoint operator on H = L2(R), and B∗ = −B is a skew-adjoint operator. This

Lax Equation is the basis for the complete integrability of the KdV equation as a Hamiltonian PDE.

Exercise. Check that the Lax Equation with the L and B operators in equation (7.10) produces

the KdV equation, provided dλ/dt = 0. F

7.5 KdV Isospectrality Theorem

Here is the Isospectral Principle Theorem for the celebrated KdV equation, for which the Hilbert space H

is L2(R).

Theorem

7.5 (KdV Isospectrality Theorem). Suppose u(x, t) is a solution of the KdV equation for weakly non-

linear surface waves propagating in shallow water of depth h in a reference frame moving with the
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linear wave speed c0 =
√
gh, where g is gravitational acceleration,

ut + c0ux + 3uux + γ uxxx = 0 . (7.11)

Suppose the initial value u(x, 0) lies in the Schwartz space S(R) of rapidly decreasing functions on R,

and that ψ(x) is an eigenfunction of the Schroedinger Equation with potential u(x, 0) and eigenvalue

λ:

L(0)ψ(x) = 4γψxx(x) + 2u(x, 0)ψ(x) + c0ψ(x) = λψ(x) . (7.12)

Let ψ(x, t) be the solution of the evolution equation ψt = Bψ, with

ψt = Bψ = −
(
c0∂ + 4γ∂3 +

3

2
(u∂ + ∂u)

)
ψ(x, t) (7.13)

with the initial value ψ(x, 0) = ψ(x). Then ψ(x, t) is an eigenfunction for the Schroedinger Equation

with potential 2u(x, t) + c0 and the same eigenvalue λ:

4γψxx(x, t) +
(
2u(x, t) + c0

)
ψ(x, t) = λψ(x, t) . (7.14)

Moreover, if ψ(x) is in L2, then the L2 norm of ψ(·, t) is independent of time t. Finally, ψ(x, t) also

satisfies the first-order evolution equation

ψt + (λ + u)ψx −
1

2
uxψ = 0. (7.15)

Proof. Except for the final statement, this is an immediate application of the Isospectrality Principle.

Differentiating the eigenvalue equation for ψ(x, t) with respect to x gives

−4γψxxx = uxψ + (u− λ)ψx ,
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and substituting this into the assumed evolution equation ψt = Bψ(t) for ψ gives the asserted first-order

equation (7.15) for ψ.

Corollary

7.6 (KdV Compatibility relation). Requiring compatibility ψxxt = ψtxx between equations (7.14) and

(7.15) in the KdV Isospectrality Theorem 7.6 yields the KdV equation (7.11), as the condition for

dλ/dt = 0. (The proof is a direct calculation.)

Exercise. Verify the KdV Compatibility Theorem 7.6 via direct computation. F
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7.6 The CH equation

The Camassa-Holm (CH) equation (7.8) for unidirectional water waves with fluid velocity u (x, t) may be

written compactly as [3],

mt + c0ux + (∂xm + m∂x)u = − γ uxxx . (7.16)

Here m = u−α 2uxx is a momentum variable, partial derivatives are denoted by subscripts, the constants

α 2 and γ/c0 are squares of length scales, and c0 =
√
gh is the linear wave speed for undisturbed water at

rest at spatial infinity, where u and m are taken to vanish. (Any constant value u = u0 is also a solution.)

The interplay between the local and nonlocal linear dispersion in this equation is evident in its phase

velocity relation,

cp(k) =
ω

k
=
c0 − γ k2

1 + α 2k2
, (7.17)

for waves with frequency ω and wave number k linearized around u = 0. For γ/c0 < 0, short waves

and long waves travel in the same direction. Long waves travel faster than short ones (as required in

shallow water) provided γ/c0 > −α2. In that case, the phase velocity cp = ω/k lies in the interval,

ω/k ∈ (− γ/α 2, c0].

Exercise. Verify the phase velocity relation for CH claimed in equation (7.17). F

The CH water wave equation in (7.16) is not Galilean invariant. Upon shifting the velocity variable by

u0 and moving into a Galilean frame ξ = x − ct with velocity c, so that u(x, t) = ũ(ξ, t) + c + u0, this
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equation transforms to

m̃t + (∂ξm + m∂ξ)ũ = −c̃0 ũξ − γ̃ ũξξξ , (7.18)

with c̃0 = (c0 +2c+3u0), γ̃ = (γ−u0α
2) and appropriately altered boundary conditions at spatial infinity.

Hence, we must regard equation (7.6) as a family of equations whose linear dispersion parameters c0, γ

depend on the appropriate choice of Galilean frame and boundary conditions. The parameters c0 and γ

may even be removed by making such a choice. For example, as we have seen in the CH equation in (7.8),

γ̃ may be removed in (7.18) by choosing u0 = γ/α 2 in the boundary condition at spatial infinity.

Below, we shall identify how the dispersion coefficients for the linearized water waves appear as param-

eters in the isospectral problem for CH.

7.7 CH Compatibility Theorem

Theorem

7.7 (CH Compatibility Theorem). The nonlinear equation (7.16) arises as a compatibility condition

for two linear equations, namely, the isospectral eigenvalue problem,

λ
(1

4
− α 2∂ 2

x

)
ψ =

(
c0

4
+
m(x, t)

2
+ γ ∂ 2

x

)
ψ , (7.19)

and the evolution equation for the eigenfunction ψ,

ψt = − (u + λ)ψx +
1

2
ux ψ . (7.20)
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Compatibility of these two linear equations (ψxxt = ψtxx) and isospectrality (dλ/dt = 0) imply equation

(7.16).

Proof. Direct computation.

Exercise. Verify the CH Compatibility Theorem 7.7 by direct computation. F

Corollary

7.8 (CH Isospectrality Theorem).

The nonlinear equation (7.16) preserves the spectrum of the operator

L =
(1

4
− α 2∂ 2

x

)−1

∗
(
c0

4
+
m(x, t)

2
+ γ ∂ 2

x

)
. (7.21)

Consequently, the nonlinear water wave equation (7.16) admits the IST method for the solution of

its initial value problem, just as the KdV and CH equations do. In fact, the isospectral problem for

equation (7.16) restricts to the isospectral problem for KdV (i.e., the Schrödinger equation) when

α 2 → 0 and it restricts to the isospectral problem for CH discovered in [3] when γ → 0.
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Remark

7.9 (The spectral problem for the CH equation corresponds to the modes of a plucked string.).

The spectral problem on the real line can be transformed to the string density problem on a finite

interval. The special case c0 = 0 = γ, the inverse problem was solved by Stieltjes (1894).

Importantly, the eigenvalue spectrum for that case is purely discrete!

For more discussion of the relationship between the isospectral problem for the CH equation and

the classical inverse problem for a plucked string, see

Beals, R., Sattinger, D.H. and Szmigielski, J. [2007] The string density problem and the Camassa–Holm equation.

Phil Trans Roy Soc London A, 365(1858), pp.2299-2312.
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7.8 What follows from the bi-Hamiltonian nature of the CH equation?

The CH equation is written as

mt + (∂xm + m∂x)u = −c0ux + γuxxx︸ ︷︷ ︸
Linear Dispersion

, m = u− α2uxx , (7.22)

with u = K ∗m =
∫
RK(x, y)m(y, t)dy with K(x, y) = 1

2e
−|x−y|/α. The CH equation describes shallow

water dynamics as completely integrable soliton motion at quadratic order in the asymptotic expansion for

unidirectional shallow water waves on a free surface under gravity.

Review. According to definition 7.3, the term bi-Hamiltonian given in means the CH equation may be

written in two compatible Hamiltonian forms, namely as

mt = −B2
δH1

δm
= −B1

δH2

δm
(7.23)

with

H1 =
1

2

∫
R

(u 2 + α 2u 2
x) dx , and B2 = ∂xm + m∂x + c0∂x + γ ∂3

x

H2 =
1

2

∫
R
u 3 + α 2uu 2

x + c0u
2 − γ u 2

x dx , and B1 = ∂x − α 2∂3
x .

(7.24)

These bi-Hamiltonian forms restrict properly to those for KdV when α 2 → 0, and to those for EPDiff

when c0, γ → 0. Compatibility of B1 and B2 is assured, because (∂xm+m∂x), ∂x and ∂3
x are all mutually
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compatible Hamiltonian operators. That is, any linear combination of these operators defines a Poisson

bracket,

{f, h}(m) = −
∫
R

δf

δm
(c1B1 + c2B2)

δh

δm
dx , (7.25)

as a bilinear skew-symmetric operation which satisfies the Jacobi identity. Moreover, no further defor-

mations of these Hamiltonian operators involving higher order partial derivatives would be compatible

with B2, as shown in [Ol2000]. These properties were already known in the literature for KdV, whose

bi-Hamilton structure has the same Poisson operators B1 = ∂x and B2 as CH, except that m→ u.

Theorem

7.10 (Magri 1978, Bi-Hamiltonian PDE systems form infinite integrable hierarchies).

Bi-Hamiltonian PDE systems possess an infinite set of conservation laws in involution which com-

prise the Hamiltonians for an infinite hierarchy of completely integrable systems.

The conserved hierarchy of mutually Poisson-commuting Hamiltonians can be constructed by defin-

ing the transpose operator RT = B−1
1 B2 which leads from the variational derivative of one conser-

vation law to the next, according to

δHn

δm
= RT δHn−1

δm
, n = −1, 0, 1, 2, . . . . (7.26)

The operator RT = B−1
1 B2 recursively takes the variational derivative of H−1 to that of H0, to that

of H1, to then that of H2. The next steps are not so easy for the integrable CH hierarchy, because

each application of the recursion operator introduces an additional convolution integral into the sequence.
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Correspondingly, the recursion operator R = B2B
−1
1 leads to a hierarchy of commuting flows, defined by

Kn+1 = RKn, for n = 0, 1, 2, . . . ,

m
(n+1)
t = Kn+1[m] = −B1

δHn

δm
= −B2

δHn−1

δm
= B2B

−1
1 Kn[m] . (7.27)

Nonetheless, the first three flows in the “positive hierarchy” when c0, γ → 0 are

m
(1)
t = 0 , m

(2)
t = −mx , m

(3)
t = − (m∂ + ∂m)u , (7.28)

the third being EPDiff. The next flow is too complicated to be usefully written here. However, by

construction, all of these flows commute with the other flows in the hierarchy, so they each conserve Hn

for n = 0, 1, 2, . . . .

The recursion operator can also be continued for negative values of n. The conservation laws generated

this way do not introduce convolutions, but care must be taken to ensure the conserved densities are

integrable. All the Hamiltonian densities in the negative hierarchy are expressible in terms of m only and

do not involve u. Thus, for instance, the first few Hamiltonians in the negative hierarchy of EPDiff are

given by

H0 =

∫ ∞
−∞

mdx , H−1 =

∫ ∞
−∞

√
mdx , (7.29)

and

H−2 =
1

2

∫ ∞
−∞

[
α2

4

m2
x

m5/2
− 2√

m

]
. (7.30)

The flow defined by (7.27) for these is thus,

m
(0)
t = −B1

δH−1

δm
= −B2

δH−2

δm
= −(∂ − α2∂3)

(
1

2
√
m

)
. (7.31)
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This flow is similar to the Dym equation,

uxxt = ∂3

(
1

2
√
uxx

)
. (7.32)

7.9 Proof via the Gelfand-Dorfman approach that the CH equation (7.22) is isospectral

The isospectral eigenvalue problem associated with equation (7.22) may be found by using the recursion

relation of the bi-Hamiltonian structure, following the Gelfand-Dorfman approach [GeDo1979]. In this

approach, one introduces a real spectral parameter λ and multiplies by λn the n−th step of the recursion

relation (7.27), then summing yields

B1

∞∑
n=0

λn
δHn

δm
= λB2

∞∑
n=0

λ(n−1)δHn−1

δm
, (7.33)

or, by introducing the squared eigenfunction relation,

ψ2(x, t;λ) :=

∞∑
n=−1

λn
δHn

δm
, (7.34)

one finds that, formally,

B1ψ
2(x, t;λ) = λB2ψ

2(x, t;λ) . (7.35)

This is a third order eigenvalue problem for the squared-eigenfunction ψ2, which turns out after a calcu-

lation to be equivalent to the following second order Sturm-Liouville eigenvalue problem for ψ,

λ
(1

4
− α 2∂ 2

x

)
ψ =

(
c0

4
+
m(x, t)

2
+ γ ∂ 2

x

)
ψ . (7.36)
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Exercise. Show that if ψ satisfies the eigenvalue equation (7.36) then ψ2 is a solution of (7.35)

with

B1 = ∂x − α 2∂3
x and B2 = ∂xm + m∂x + c0∂x + γ ∂3

x ,

which are the two Hamiltonian structures for CH, as given in equation (7.9). F

Upon assuming λ will be independent of time, we seek, in analogy with the KdV equation, an evolution

equation for ψ of the form,

ψt = aψx + bψ , (7.37)

where a and b are functions of u and its derivatives to be determined by the requirement that the compat-

ibility condition ψxxt = ψtxx between (7.36) and (7.37) implies (7.22). Cross differentiation shows

b = − 1

2
ax , and a = − (λ + u) . (7.38)

Consequently,

ψt = − (λ + u)ψx +
1

2
uxψ , (7.39)

is the desired evolution equation for ψ.
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Summary of the isospectral property of equation (7.22). Thus, according to the Gelfand-

Dorfman theory of [GeDo1979] for obtaining the isospectral problem for equation via the squared-eigenfunction

approach, its bi-Hamiltonian property implies that the nonlinear shallow water wave equation (7.22) arises

as a compatibility condition for two linear equations. These are the isospectral eigenvalue problem,

λ
(1

4
− α 2∂ 2

x

)
ψ =

(
c0

4
+
m(x, t)

2
+ γ ∂ 2

x

)
ψ , (7.40)

and the evolution equation for the eigenfunction ψ,

ψt = −(u + λ)ψx +
1

2
ux ψ .

Compatibility of these linear equations (ψxxt = ψtxx) together with isospectrality

dλ/dt = 0 ,

imply equation (7.22). Consequently, the nonlinear water wave equation (7.22) admits the IST method for

the solution of its initial value problem, just as the KdV equation does. In fact, the isospectral problem for

equation (7.22) restricts to the isospectral problem for KdV (i.e., the Schrödinger equation) when α 2 → 0.
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Dispersionless CH – Peakons In the dispersionless case c0 = 0 = γ, the shallow water equation

(7.22) becomes the 1D geodesic equation EPDiff(H1) in (??)

mt + umx + 2mux = 0 , m = u− α2uxx , (7.41)

and the spectrum of its eigenvalue problem (7.40) becomes purely disctrete. The traveling wave solutions

of 1D EPDiff (7.41) in this dispersionless case are the “peakons,” described by the reduced, or collective,

solutions (8.8) for EPDiff equation (??) with traveling waves

u(x, t) = cK(x− ct) = c e−|x−ct|/α .

In this case, the EPDiff equation (??) may also be written as a conservation law for momentum,

∂tm = −∂x
(
um +

1

2
u2 − α2

2
u2
x

)
. (7.42)

Its isospectral problem forms the basis for completely integrating the EPDiff equation as a Hamiltonian

system and, thus, for finding its soliton solutions. Remarkably, the isospectral problem (7.40) in the

dispersionless case c0 = 0 = Γ has purely discrete spectrum on the real line and the N−soliton solutions

for this equation have the peakon form,

u(x, t) =

N∑
i=1

pi(t)e
−|x−qi(t)|/α . (7.43)

Here pi(t) and qi(t) satisfy the finite dimensional geodesic motion equations obtained as canonical Hamil-

tonian equations

q̇i =
∂H

∂pi
and ṗi = − ∂H

∂qi
, (7.44)
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when the Hamiltonian is given by,

H =
1

2

N∑
i,j=1

pi pj e
−|qi−qj |/α . (7.45)

Thus, the CH peakons turn out to be an integrable subcase of the pulsons.

Integrability of the N−peakon dynamics One may verify integrability of theN−peakon dynamics

by substituting the N−peakon solution (7.43) (which produces the sum of delta functions in (8.5) for the

momentum map m) into the isospectral problem (7.40). This substitution reduces (7.40) to an N × N
matrix eigenvalue problem.

In fact, the canonical equations (7.44) for the peakon Hamiltonian (7.45) may be written directly in Lax

matrix form,
dL

dt
= [L,A] ⇐⇒ L(t) = U(t)L(0)U †(t) , (7.46)

with A = U̇U †(t) and UU † = Id. Explicitly, L and A are N ×N matrices with entries

Ljk =
√
pjpk φ(qj − qk) , Ajk = −2

√
pjpk φ

′(qj − qk) . (7.47)

Here φ′(x) denotes derivative with respect to the argument of the function φ, given by φ(x) = e−|x|/2α.

The Lax matrix L in (7.47) evolves by time-dependent unitary transformations, which leave its spectrum

invariant. Isospectrality then implies that the traces trLn, n = 1, 2, . . . , N of the powers of the matrix L

(or, equivalently, its N eigenvalues) yield N constants of the motion. These turn out to be independent,

nontrivial and in involution. Hence, the canonically Hamiltonian N−peakon dynamics (7.44) is integrable.
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Exercise. Show that the peakon Hamiltonian HN in (7.45) is expressed as a function of the

invariants of the matrix L, as

HN = −trL2 + 2(trL)2 . (7.48)

Show that evenness of HN implies

1. The N coordinates qi, i = 1, 2, . . . , N keep their initial ordering.

2. The N conjugate momenta pi, i = 1, 2, . . . , N keep their initial signs.

This means no difficulties arise, either due to the nonanalyticity of φ(x), or the sign in the square-

roots in the Lax matrices L and A. F

7.10 Steepening Lemma: the mechanism underlying peakon formation

We now address the mechanism for the formation of the peakons, by showing that initial conditions exist

for which the solution of the EPDiff(H1) equation,

∂tm + umx + 2uxm = 0 with m = u− α2uxx , (7.49)

can develop a vertical slope in its velocity u(t, x), in finite time. The mechanism turns out to be associated

with inflection points of negative slope, such as occur on the leading edge of a rightward propagating

velocity profile. In particular, we have the following steepening lemma.
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Lemma

7.11 (Steepening Lemma).

Suppose the initial profile of velocity u(0, x) has an inflection point at x = x to the right of its maximum,

and otherwise it decays to zero in each direction sufficiently rapidly for the Hamiltonian H1 in equation

(7.9) to be finite. Then the negative slope at the inflection point will become vertical in finite time.

Proof. Consider the evolution of the slope at the inflection point. Define s = ux(x(t), t). Then the

EPDiff(H1) equation (7.49), rewritten as,

(1− α2∂2)(ut + uux) = − ∂
(
u2 +

α2

2
u2
x

)
, (7.50)

yields an equation for the evolution of s. Namely, using uxx(x(t), t) = 0 leads to

ds

dt
= − 1

2
s2 +

1

2

∫ ∞
−∞

sgn(x− y)e−|x−y|∂y

(
u2 +

1

2
u2
y

)
dy . (7.51)

Integrating by parts and using the inequality a2 + b2 ≥ 2ab, for any two real numbers a and b, leads to

ds

dt
= − 1

2
s2 − 1

2

∫ ∞
−∞

e−|x−y|
(
u2 +

1

2
u2
y

)
dy + u2(x(t), t)

≤ − 1

2
s2 + 2u2(x(t), t) . (7.52)

Then, provided u2(x(t), t) remains finite, say less than a number M/4, we have

ds

dt
= − 1

2
s2 +

M

2
, (7.53)



Lecture Notes: Dynamics, Symmetry and Integrability DD Holm Spring Term 2021 127

which implies, for negative slope initially s ≤ −
√
M , that

s ≤
√
M coth

(
σ +

t

2

√
M

)
, (7.54)

where σ is a negative constant that determines the initial slope, also negative. Hence, at time t = −2σ/
√
M

the slope becomes negative and vertical. The assumption that M in (7.53) exists is verified in general by

a Sobolev inequality. In fact, M = 8H1, since

max
x∈R

u2(x, t) ≤
∫ ∞
−∞

(
u2 + u2

x

)
dx = 2H1 = const . (7.55)

Remark

7.12 (Steepening lemma results).

• If the initial condition is antisymmetric, then the inflection point at u = 0 is fixed and dx/dt = 0, due

to the symmetry (u, x)→ (−u,−x) admitted by equation (7.22). In this case, M = 0 and no matter

how small |s(0)| (with s(0) < 0) verticality s→ −∞ develops at x in finite time.

• The steepening lemma indicates that traveling wave solutions of EPDiff(H1) in (7.49) must not have

the usual sech2 shape, since inflection points with sufficiently negative slope can lead to unsteady

changes in the shape of the profile if inflection points are present.
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• Numerical simulations in Figure 5 show that the presence of an inflection point in any confined initial

velocity distribution is the mechanism for the formation of the peakons.

• Figure 5 shows that the initial (positive) velocity profile “leans” to the right and steepens, then produces

a peakon which is taller than the initial profile, so it propagates away to the right.

• This leaves a profile behind with an inflection point of negative slope; so the process repeats, thereby

producing a train of peakons with the tallest and fastest ones moving rightward in order of height.

• This discrete process of peakon creation corresponds to the discreteness of the isospectrum for the

eigenvalue problem (7.40) in the dispersionless case, when c0 = 0 = γ.

• These discrete eigenvalues correspond in turn to the asymptotic speeds of the peakons. The discreteness

of the isospectrum means that only peakons will emerge in the initial value problem for EPDiff(H1)

in 1D.
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8 The Euler-Poincaré equation, EPDiffH1(R), aka the CH equation for c0 = 0 = γ

The CH equation for the case c0 = 0 = γ reduces to the following equation, called EPDiffH1(R),

mt + umx + 2mux = 0 , where m = u− α2uxx , and lim
|x|→∞

(u, ux, uxx)→ 0 . (8.1)

where subscripts denote partial derivatives in x and t, and we have assumed that u(x) and its first two

derivatives vanish as |x| → ∞. This is the EPDiff evolution equation on the real line (R) for a Lagrangian

`(u) = 1
2‖u‖

2
H1, written in terms of its velocity u and its momentum m = δl/δu = u− α2uxx.

This EPDiffH1(R) equation will turn out to be an integrable soliton equation and, thus, will share all of

the fundamental properties of the famous KdV equation.

Exercise.

Verify that the EPDiffH1(R) equation (8.1) arises as an Euler-Poincaré equation, when the La-

grangian is chosen to be half the square of the H1 norm ‖u‖H1 of the vector field of velocity

u = ġg−1 ∈ X(R) on the real line R with g ∈ Diff(R). That is, the Lagrangian is chosen as

`(u) =
1

2
‖u‖2

H1 =
1

2

∫ ∞
−∞

u2 + α2u2
x dx . (8.2)

Explain the geometric meaning of the solutions of the initial value problem for the EPDiffH1(R)

evolution equation. Hint: consider geodesic motion. Discuss the issue of existence of geodesics.

F
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Remark

8.1 (Solution behaviour of EPDiffH1(R) ). EPDiffH1(R) peakon-trains are an emergent phenomenon.

Figure 5: Under the evolution of the EPDiffH1(R) equation (8.1) an ordered wave train of peakons emerges from a smooth localized initial condition (a Gaussian).
The spatial profiles at successive times are offset in the vertical to show the evolution. The peakon wave train eventually wraps around the periodic domain, thereby
allowing the leading peakons to overtake the slower peakons from behind in collisions that conserve momentum and preserve the peakon shape but cause phase shifts
in the positions of the peaks, as discussed in [CaHo1993].
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Exercise. (Some geometric properties of the EPDiff equation

(A) Obtain the EPDiff equation (8.1) by computing

d

dt

(
Ad∗g−1(t)µ(x, t)

)
= 0 with µ(x, t) = m(x, t) (dx)2 .

Answer.

One computes directly that

0 =
d

dt

(
Ad∗g−1(t)µ(x, t)

)
= Ad∗g−1(t)

(
∂tµ(x, t)+ad∗

ġtg
−1
t
µ(x, t)

)
= Ad∗g−1(t)

(
∂tµ(x, t)+£ġtg

−1
t
µ(x, t)

)
,

where the coadjoint operation ad∗
ġtg
−1
t

is the Lie derivative £ġtg
−1
t

for 1-form densities such as

µ(x, t) = m(x, t)(dx)2. Finally, one substitutes ġtg
−1
t = u, which completes the comparison

with the EPDiff equation.

N
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(B) Regard the momentum 1-form density µ as the pullback x = gtl = χ(l, t) of an Eulerian

point x by the flow gt; namely,

µ(gtl, t) = g∗t (m(l, 0)(dl)2) = m(gtl, t)(d(gtl))
2 = m(χ(l, t), t)(dχ(l, t))2 ,

where χ(l, t) = gtl is the Lagrangian trajectory of fluid parcels in the flow of gt, labelled

by their initial positions x(l, 0) = g0l = l. Prove by direct computation that the EPDiff

equation (8.1) is equivalent to the following relation,

d

dt

(
m(χ(l, t), t)(dχ(l, t))2

)
= 0 along

dχ(l, t)

dt
= u(χ(l, t), t) , arising from ġt = u◦gt .

Answer.

0 =
d

dt

(
m(χ(l, t), t)(dχ(l, t))2

)
=
[(
∂tm(x, t) + umx + 2mux

)
(dx)2

]
x=χ(l,t)

,

since dχ(l,t)
dt = u(χ(l, t), t) and d

dtdχ(l, t) = ddχdt = du = ux dx along x = χ(l, t).

N
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(C) By using the Euler-Poincaré approach with Lagrangian `(u) = 1
2‖u‖

2
H1, derive the EPDiff

equation on the real line (8.1) in terms of its velocity u and its momentum m = δl/δu =

u− uxx in one Eulerian spatial dimension for this Lagrangian.

Hint: Prove a Lemma first, that u = ġtg
−1
t implies δu = ∂tη − aduη with η = δgg−1(t).

Answer.

Lemma

The definition of velocity u = ġg−1 implies δu = ηt − aduη with η = δgg−1.

Proof. Write u = ġg−1 and η = g′g−1 in natural notation and express the partial derivatives

ġ = ∂g/∂t and g′ = ∂g/∂ε using the right translations as

ġ = u ◦ g and g′ = η ◦ g .

By the chain rule, these definitions have mixed partial derivatives

ġ′ = u′ = ∇u · η and ġ′ = η̇ = ∇η · u .

The difference of the mixed partial derivatives implies the desired formula,

u′ − η̇ = ∇u · η −∇η · u = − [u, η] =: −aduη ,

so that

u′ = η̇ − aduη .



Lecture Notes: Dynamics, Symmetry and Integrability DD Holm Spring Term 2021 134

In 3D, this becomes

δu = v̇ − aduv . (8.3)

This formula may be rederived as follows. We write u = ġg−1 and v = g′g−1 in natural

notation and express the partial derivatives ġ = ∂g/∂t and g′ = ∂g/∂ε using the right

translations as

ġ = u ◦ g and g′ = v ◦ g .

To compute the mixed partials, consider the chain rule for say u(g(t, ε)x0) and set x(t, ε) =

g(t, ε) · x0. Then,

u′ =
∂u

∂x
· ∂x

∂ε
=
∂u

∂x
· g′(t, ε)x0 =

∂u

∂x
· g′g−1x =

∂u

∂x
· v(x) .

The chain rule for v̇ gives a similar formula with u and v exchanged. Thus, the chain rule

gives two expressions for the mixed partial derivative ġ′ as

ġ′ = u′ = ∇u · v and ġ′ = v̇ = ∇v · u .

The difference of the mixed partial derivatives then implies the desired formula (8.3), since

u′ − v̇ = ∇u · v −∇v · u = − [u,v] = − aduv .
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The EPDiff(H1) equation on R. The EPDiff(H1) equation is written on the real line

in terms of its velocity u and its momentum m = δl/δu in one spatial dimension as

mt + umx + 2mux = 0 , where m = u− uxx (8.4)

where subscripts denote partial derivatives in x and t.

Proof. This equation is derived from the variational principle with l(u) = 1
2‖u‖

2
H1 as follows.

0 = δS = δ

∫
l(u)dt =

1

2
δ

∫∫
u2 + u2

x dx dt

=

∫∫
(u− uxx) δu dx dt =:

∫∫
mδu dx dt

=

∫∫
m (ηt − aduη) dx dt

=

∫∫
m (ηt + uηx − ηux) dx dt

= −
∫∫

(mt + (um)x + mux) η dx dt

= −
∫∫

(mt + ad∗um) η dx dt ,

where u = ġg−1 implies δu = ηt − aduη with η = δgg−1.

N
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(D) Re-derive the EPDiff equation (8.1), by using the Hamilton-Pontryagin approach, by using

the constrained action

S(u,m, g) =

∫
`(u) dt +

∫
m(x, t)

(
ġtg
−1
t x− u(x, t)

)
dx dt .

Answer.

The Hamilton-Pontryagin principle is given by

0 = δS(u,m, g) = δ

∫
`(u) dt + δ

∫
m(x, t)

(
ġtg
−1
t x− u(x, t)

)
dx dt .

Taking variations yields

δu :
δ`

δu
−m(x, t) = 0 , δg : δ

(
ġtg
−1
t

)
= (η̇ − adġtg−1

t
η) , with η = δgtg

−1
t .

Integrations by parts in time and space in the 2nd integral, while using the definition of ad∗

then yields the EPDiff equation for m = δ`/δu.

N
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(E) Derive the EPDiff equation (8.1) once more, by using the Clebsch approach based on the

inverse map g−1
t x = l(x, t), where l(x, t) is the initial label of the Lagrangian parcel that is

occupying Eulerian spatial position x at a given time t during the flow. The label is carried

by the flow, so it satisfies the scalar advection law, ∂tl + u(x, t)lx = 0. In terms of these

variables, the Clebsch-constrained Hamilton’s principle is given explicitly by,

0 = δS(u, l, π) = δ

∫
`(u) dt + δ

∫
π(x, t)

(
∂tl + u(x, t)lx

)
dx dt .

Answer.

The Clebsch Hamilton principle is given by,

0 = δS(u, l, π) = δ

∫
`(u) dt + δ

∫
π(x, t)

(
∂tl + u(x, t)lx

)
dx dt .

Taking variations yields

δu :
δ`

δu
+ π∂xl = 0 , δπ : ∂tl + u(x, t)lx = 0 , δl : ∂tπ + ∂x(u(x, t)π) = 0 .

Substituting the 2nd and 3rd equations into the partial time derivative of the 1st equation

now yields the EPDiff equation for m = δ`/δu.

N
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(F) Determine the cotangent-lift momentum map JR(l, π) := −π∂xl from the Clebsch Hamilton

principle and show via the canonical Poisson bracket, {l(x, t), π(x′, t)} = δ(x − x′), that∫
JR(l, π) generates an infinitesimal Eulerian spatial shift in both the Lagrangian label or

inverse map l(x, t) = g−1
t x and in its conjugate momentum in phase space, π(x, t).

Answer.

The momentum map is given by the variation in velocity, u, as δ`
δu + πlx = 0, so

JR(l, π) = − π∂xl

The canonical Poisson bracket {l(x, t), π(x′, t)} = δ(x−x′) with
∫
JR(l, π)dx = −

∫
π∂xl dx

yields

δl = {l(x, t) , JR} = − ∂xl and δπ = {π(x, t) , JR} = − ∂xπ

N
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(G) Use the Clebsch-constrained Hamilton’s principle

S(u, p, q) =

∫
`(u) dt +

N∑
a=1

∫
pa(t)

(
q̇a(t)− u(qa(t), t)

)
dt

to derive the peakon singular solution of EPDiff

m(x, t) =
δl

δu
=

N∑
a=1

pa(t)δ(x− qa(t)) =: JL(q, p) (8.5)

as a cotangent-lift momentum map in terms of canonically conjugate variables qa(t) and

pa(t), with a = 1, 2, . . . , N .

Answer.

The constrained Clebsch action integral is given as

S(u, p, q) =

∫
l(u) dt +

N∑
a=1

∫
pa(t)

(
q̇a(t)− u(qa(t), t)

)
dt
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whose variation in u is gotten by inserting a delta function, so that

0 = δS =

∫ (
δl

δu
−

N∑
a=1

paδ(x− qa(t))

)
δu dx dt

−
∫ (

ṗa(t) +
∂u

∂qa
pa(t)

)
δqa − δpa

(
q̇a(t)− u(qa(t), t)

)
dt .

The singular momentum solution m(x, t) of EPDiff is thus obtained as the cotangent-lift

momentum map in (8.5); namely,

m(x, t) = δl/δu =

N∑
a=1

pa(t)δ(x− qa(t)) (8.6)

The two momentum maps JR(l, π) and JL(q, p) may be assembled into a single figure as

follows:

T ∗Diff(R)

JL(q, p) JR(l, π)

X(R)∗ X(R)∗

�
�
�

�	

@
@
@
@R

N
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(H) Determine the group actions responsible for the two momentum maps JR(l, π) and JL(q, p).

Answer.

The group actions responsible for the two momentum maps JR(l, π) and JL(q, p) are obvious

from the Clebsch constraints. The equation lt + ulx = 0 for the scalar label l(x, t) has

the solution l(x, t) = l(x, 0)g−1
t , which is a right action by g−1

t . The Lie-algebra action

(̇q) = u(q(t), t) is a left action, since it corresponds to q(t) = gtq(0) for which q̇(t) =

ġtq(0) = ġtg
−1
t gtq(0) = ġtg

−1
t q(t) = u(q(t), t).

N

(I) Use the momentum map m = − π∂xl to transform from the canonical Poisson bracket in

the variables (l(x, t), π(x, t)) to the associated Lie-Poisson bracket in the variable m(x, t) for

the Hamiltonian form of EPDiff(R).

Answer.

The momentum map m = − π∂xl allows one to transform from the canonical Poisson bracket

in the variables (l(x, t), π(x, t)) to the associated Lie-Poisson bracket in the variable m(x, t)
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for the Hamiltonian form of EPDiff(R), as follows.

B2 = JB1J
† =

[
δm
δl = −π∂, δm

δπ = −lx
] [ 0 1

−1 0

] [
∂π

−lx

]
= π∂lx + lxπ∂π = ∂(πlx) + (πlx)∂ = −

(
m∂x + ∂xm

)
N

(J)(a) Legendre transform the Lagrangian `(u) in equation (8.2) and determine its corresponding

Hamiltonian, h(m).

(b) Then use the EPDiff equation and the fibre derivative to compute the associated Lie-

Poisson bracket for the Hamiltonian form of EPDiff(R). Is this the same bracket as in

previous part?

(c) Determine the Lie algebra to which the Lie-Poisson bracket is dual.

(d) Find the Casimir for this Lie-Poisson bracket.
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Answer.

(a) The Legendre transform h(m) =< m, u > − `(u) of the Lagrangian `(u) in equation

(8.2) implies the corresponding Hamiltonian,

h(m) =
1

2

〈
m, (1− α2∂2)−1 ∗m

〉
=

1

4

∫ ∞
−∞

m(x)e−|x−y|/αm(y) dx dy .

(b) The Lie-Poisson bracket for the Hamiltonian form of EPDiff(R) is

{f, h} = −
∫

δf

δm

(
m∂x + ∂xm

) δh
δm

dx

Is this the same bracket as in previous part? Yes, including the minus sign!

(c) The Lie-Poisson bracket is defined on X∗(R) ' Λ1⊗dens(R), the 1-form densities, which

comprise the dual of the Lie algebra of vector fields on the real line, X(R) with respect to

the L2 pairing.

(d) The Casimir for this Lie-Poisson bracket is C =
∫ √

mdx, as is easily shown, since

{f, C} = − 1

2

∫
δf

δm

(
m∂x + ∂xm

) 1√
m
dx = 0, for all f
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Summary of the Lie-Poisson Hamiltonian form of EPDiff. In terms of m,

the conserved energy Hamiltonian for the EPDiff equation (8.1) is obtained by Legendre

transforming the kinetic-energy Lagrangian l(u), as

h(m) =
〈
m,u

〉
− l(u) =

1

2

∫
m(x)K(x− y)m(y) dxdy ,

which also reveals the geodesic nature of the EPDiff equation (8.1) and the role of

K(x, y) in the kinetic energy metric on the Hamiltonian side.

The corresponding Lie-Poisson bracket for EPDiff as a Hamiltonian evolution equation

is given by,

∂tm =
{
m,h

}
= −ad∗δh/δmm = − (∂xm + m∂x)

δh

δm
and

δh

δm
= u ,

which recovers the starting equation and indicates some of its connections with fluid equations

on the Hamiltonian side. For any two smooth functionals f, h of m in the space for which

the solutions of EPDiff exist, this Lie-Poisson bracket may be expressed as,{
f, h
}

= −
∫

δf

δm
(∂xm + m∂x)

δh

δm
dx = −

∫
m

[
δf

δm
,
δh

δm

]
dx

where [· , ·] denotes the Lie algebra bracket of vector fields. That is,[
δf

δm
,
δh

δm

]
=
δf

δm
∂x
δh

δm
− δh

δm
∂x
δf

δm
.
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N

(K) For the Lagrangian in equation (8.2), use the singular momentum map (8.5) to determine

the Hamiltonian and its canonical equations of motion for the finite-dimensional system of

conjugate variables qa(t) and pa(t).

Answer.

Inserting the momentum map (8.5) into the Legendre transform

h(m) = 〈m,u 〉 − l(u)

yields the conserved energy as the Hamiltonian in canonical variables,

e =
1

2

∫
m(x, t)u(x, t) dx =

1

2

N∑
a=1

∫
pa(t)δ(x− qa(t))u(x, t) dx =

1

2

N∑
a=1

pa(t)u(qa(t), t) .

(8.7)

Consequently, the variables (qa, pa) satisfy the canonical Hamiltonian equations,

q̇a(t) = u(qa(t), t) , ṗa(t) = − ∂u
∂qa

pa(t) , (8.8)

with the pulse-train solution for velocity

u(qa, t) =

N∑
b=1

pbK(qa, qb) =
1

2

N∑
b=1

pbe
−|qa−qb| (8.9)
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where K(x, y) = 1
2e
−|x−y| is the Green’s function kernel for the Helmholtz operator 1− ∂2

x.

Each pulse in the pulse-train solution for velocity (8.9) has a sharp peak. For that reason,

these pulses are called peakons.

In fact, equations (8.8) are Hamilton’s canonical equations with Hamiltonian obtained from

equations (8.7) for energy and (8.9) for velocity, as given in [CaHo1993],

HN(q, p) =
1

2

N∑
a,b=1

pa pbK(qa, qb) =
1

4

N∑
a,b=1

pa pb e−|qa−qb| . (8.10)

The first canonical equation in eqn (8.8) implies that the peaks at the positions x = qa(t) in

the peakon-train solution (8.9) move with the flow of the fluid velocity u at those positions,

since u(qa(t), t) = q̇a(t). This means the positions qa(t) are Lagrangian coordinates

frozen into the flow of EPDiff.

Thus, the singular solution obtained from the cotangent-lift momentum map (8.5 is the

Lagrange-to-Euler map) for the momentum.

N
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(L) Use any variational method you like to derive the new EP equation(s) obtained for a La-

grangian `(u, ρ) with ρ := lx.

Answer.

The equation lt + ulx = 0 for the scalar label l(x, t) implies for ρ := lx that ρt + ∂x(ρu) = 0.

Thus, ρ(x, t)dx is a density, satisfying

ρt + ∂x(ρu) = 0 , or equivalently (∂t + £u)(ρ(x, t)dx) = 0 .

Correspondingly, the variation of ρ is given by δ(ρdx) = −£η(ρdx) and δρ = − (ρη)x.

Consequently, the Euler-Poincaré variations will yield

0 = δS =

∫ (
−
(
mt + m∂x + ∂xm

)
η +

δ`

δρ
δρ
)
dxdt

=

∫ (
−
(
mt + m∂xu + ∂x(mu)

)
η +

δ`

δρ
(−(ρη)x)

)
dxdt

=

∫
−
(
mt + m∂xu + ∂x(mu)− ρ∂x

δ`

δρ

)
η dxdt

Thus the full EP system for a Lagrangian `(u, ρ) will be

mt + m∂xu + ∂x(mu) + ρ∂x
δ`

δρ
= 0 , and ρt + ∂x(ρu) = 0 .
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N

(M) Derive the Lie-Poisson bracket for the full Euler-Poincaré system arising from the Lagrangian

`(u, ρ) and identify the Lie algebra to which it is dual.

Answer.

The corresponding Lie-Poisson bracket may be used to express the Hamiltonian equations as

∂t

[
m

ρ

]
= −

[
m∂x + ∂xm ρ∂x

∂xρ 0

] [ δh
δm = u
δh
δρ = − δ`

δρ

]
This Lie-Poisson bracket is dual to the semidirect-product Lie algebra XsΛ0, of vector fields

X ∈ X acting scalar functions φ ∈ Λ0, with commutator[(
X,φ

)
,
(
X̄, φ̄

)]
=
([
X, X̄

]
, X(φ̄)− X̄(φ)

)
=
(
XX̄x − X̄Xx , Xφ̄x − X̄φx

)
The dual coordinates are m ∈ X∗ and ρ ∈ Λ1.

N

F
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8.1 Nonlinear waves of the b-equation mt + umx + buxm = νmxx with m = u− α2uxx

For more fun with nonlinear waves, go to the arXiv at https://arxiv.org, search on “Holm Staley” and

look at

1. arXiv:nlin/0203007

Nonlinear balance and exchange of stability in dynamics of solitons, peakons, ramps/cliffs and leftons in a

1+1 nonlinear evolutionary PDE.

Holm, D.D. and Staley, M.F., 2003. Physics Letters A, 308(5-6), pp.437-444.

https://doi.org/10.1016/S0375-9601(03)00114-2

Solutions of mt + umx + buxm = νmxx with m = u − α2uxx for fluid velocity u(x, t) change their

behavior at the special values b = 0,±1,±2,±3.

2. arXiv:nlin/0202059

Wave Structures and Nonlinear Balances in a Family of 1+1 Evolutionary PDEs

SIAM J. Appl. Dyn. Syst. 2 (3) 323-380 (2003).

https://doi.org/10.1137/S1111111102410943

Investigates b-equation mt + umx + buxm = νmxx with m = u− α2uxx for fluid velocity u(x, t).

3. arXiv:1301.1460

Interaction Dynamics of Singular Wave Fronts

Darryl D. Holm, Martin F. Staley

https://arxiv.org/abs/1301.1460

A suite of 2d and 3d numerical simulations provide collision rules for 2D wavefront reconnection.

https://arxiv.org
https://doi.org/10.1016/S0375-9601(03)00114-2
https://doi.org/10.1137/S1111111102410943
https://arxiv.org/abs/1301.1460
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9 The Euler-Poincaré framework: fluid dynamics à la [HoMaRa1998a]

The basic idea for the description of fluid dynamics by the action of diffeomorphisms is sketched in Fig 6.

Figure 6: The forward and inverse group actions g(t) and g−1(t) that represent ideal fluid flow are sketched here.

The forward and inverse maps sketched in Fig 6 represent ideal fluid flow by left group action of gt ∈ Diff

on reference (X ∈M) and current (x ∈M) coordinates. They are denoted as,

gt : x(t,X) = gtX and g−1
t : X(t, x) = g−1

t x , (9.1)

so that taking time derivatives yields

ẋ(t,X) = ġtX = (ġtg
−1
t )x = £ux =: u(x, t) = ut ◦ gtX , (9.2)
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and

Ẋ(t, x) = (Txg
−1
t )(ġtg

−1
t x) = TxX · u = £uX =: V (X, t) = Vt ◦ g−1

t x . (9.3)

Here u = ġtg
−1
t is called the Eulerian velocity, and V = Adg−1

t
u is called the convective velocity. For

Ot ∈ SO(3), these correspond to the spatial angular velocity ω = ȮtO
−1
t and the body angular velocity

Ω = AdO−1
t
ω = O−1

t Ȯt. We shall mainly deal with the Eulerian fluid velocity in these notes.

Exercise. Use the Clebsch method to find the momentum maps for the left group actions in (9.1).

F

9.1 The Euler-Poincaré framework for ideal fluids [HoMaRa1998a]

Almost all fluid models of interest admit the following general assumptions. These assumptions form the

basis of the Euler-Poincaré theorem for ideal fluids that we shall state later in this section, after introducing

the notation necessary for dealing geometrically with the reduction of Hamilton’s Principle from the material

(or Lagrangian) picture of fluid dynamics, to the spatial (or Eulerian) picture. This theorem was first stated

and proved in [HoMaRa1998a], to which we refer for additional details, as well as for abstract definitions and

proofs.

Basic assumptions underlying the Euler-Poincaré theorem for continua
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• There is a right representation of a Lie group G on the vector space V and G acts in the natural way

on the right on TG× V ∗: (Ug, a)h = (Ugh, ah).

• The Lagrangian function L : TG× V ∗ → R is right G–invariant.2

• In particular, if a0 ∈ V ∗, define the Lagrangian La0 : TG → R by La0(Ug) = L(Ug, a0). Then La0 is

right invariant under the lift to TG of the right action of Ga0 on G, where Ga0 is the isotropy group of

a0.

• Right G–invariance of L permits one to define the Lagrangian on the Lie algebra g of the group G.

Namely, ` : g× V ∗ → R is defined by,

`(u, a) = L
(
Ugg

−1(t), a0g
−1(t)

)
= L(Ug, a0) ,

where u = Ugg
−1(t) and a = a0g

−1(t) , Conversely, this relation defines for any ` : g × V ∗ → R a

function L : TG× V ∗ → R that is right G–invariant, up to relabeling of a0.

• For a curve g(t) ∈ G, let u(t) := ġ(t)g(t)−1 and define the curve a(t) as the unique solution of the

linear differential equation with time dependent coefficients ȧ(t) = − a(t)u(t) = £ua(t), where the

right action of an element of the Lie algebra u ∈ g on an advected quantity a ∈ V ∗ is denoted by

concatenation from the right. The solution with initial condition a(0) = a0 ∈ V ∗ can be written as

a(t) = a0g(t)−1.
2For fluid dynamics, right G–invariance of the Lagrangian function L is traditionally called “particle relabeling symmetry.”
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Notation for reduction of Hamilton’s Principle by symmetries

• Let g(D) denote the space of vector fields on D of some fixed differentiability class. These vector fields

are endowed with the Lie bracket given in components by (summing on repeated indices)

[u,v]i = uj
∂vi

∂xj
− vj ∂u

i

∂xj
=: − (adu v)i . (9.4)

The notation adu v := −[u, v] formally denotes the adjoint action of the right Lie algebra of Diff(D)

on itself. This Lie algebra is given by the smooth right-invariant vector fields, g = X.

• Identify the Lie algebra of vector fields g with its dual g∗ by using the L2 pairing

〈u,v〉 =

∫
D

u · v dV . (9.5)

• Let g(D)∗ denote the geometric dual space of g(D), that is, g(D)∗ := Λ1(D) ⊗ Den(D). This is the

space of one–form densities on D. If m ⊗ dV ∈ Λ1(D) ⊗ Den(D), then the pairing of m ⊗ dV with

u ∈ g(D) is given by the L2 pairing,

〈m⊗ dV,u〉 =

∫
D

m · u dV (9.6)

where m · u is the standard contraction of a one–form m with a vector field u.

• For u ∈ g(D) and m ⊗ dV ∈ g(D)∗, the dual of the adjoint representation is defined by

〈ad∗u(m⊗ dV ),v〉 =

∫
D

m · aduv dV = −
∫
D

m · [u,v] dV (9.7)
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and its expression is

ad∗u(m⊗ dV ) = (£um + (divdV u)m)⊗ dV = £u(m⊗ dV ) , (9.8)

where divdVu is the divergence of u relative to the measure dV , that is, £udV = (divdVu)dV . Hence,

ad∗u coincides with the Lie-derivative £u for one-form densities.

• If u = uj∂/∂xj, m = midx
i, then the one–form factor in the preceding formula for ad∗u(m⊗ dV ) has

the coordinate expression(
ad∗u m

)
i
dxi =

(
uj
∂mi

∂xj
+ mj

∂uj

∂xi
+ (divdV u)mi

)
dxi =

(
∂

∂xj
(ujmi) + mj

∂uj

∂xi

)
dxi . (9.9)

The last equality assumes that the divergence is taken relative to the standard measure dV = dnx in

Rn. (On a Riemannian manifold the metric divergence needs to be used.)

Definition

9.1. The representation space V ∗ of Diff(D) in continuum mechanics is often some subspace of

the tensor field densities on D, denoted as T(D)⊗ Den(D), and the representation is given by pull back.

It is thus a right representation of Diff(D) on T(D)⊗ Den(D). The right action of the Lie algebra g(D)

on V ∗ is denoted as concatenation from the right. That is, we denote

au := £ua ,

which is the Lie derivative of the tensor field density a along the vector field u.
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Definition

9.2. The Lagrangian of a continuum mechanical system is a function

L : T Diff(D)× V ∗ → R ,

which is right invariant relative to the tangent lift of right translation of Diff(D) on itself and pull back on

the tensor field densities. Invariance of the Lagrangian L induces a function ` : g(D)× V ∗ → R given by

`(u, a) = L(u ◦ η, η∗a) = L(U, a0) ,

where u ∈ g(D) and a ∈ V ∗ ⊂ T(D) ⊗ Den(D), and where η∗a denotes the pull back of a by the

diffeomorphism η and u is the Eulerian velocity. That is,

U = u ◦ η and a0 = η∗a . (9.10)

The evolution of a is by right action, given by the equation

ȧ = −£u a = − au. (9.11)

The solution of this equation, for the initial condition a0, is

a(t) = ηt∗a0 = a0g
−1(t) , (9.12)

where the lower star denotes the push forward operation and ηt is the flow of u = ġg−1(t).

Definition
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9.3. Advected Eulerian quantities are defined in continuum mechanics to be those variables which

are Lie transported by the flow of the Eulerian velocity field. Using this standard terminology, equation

(9.11), or its solution (9.12) states that the tensor field density a(t) (which may include mass density and

other Eulerian quantities) is advected.

Remark

9.4 (Dual tensors). As we mentioned, typically V ∗ ⊂ T(D) ⊗ Den(D) for continuum mechanics. On

a general manifold, tensors of a given type have natural duals. For example, symmetric covariant tensors

are dual to symmetric contravariant tensor densities, the pairing being given by the integration of the

natural contraction of these tensors. Likewise, k–forms are naturally dual to (n − k)–forms, the pairing

being given by taking the integral of their wedge product.

Definition

9.5. The diamond operation � between elements of V and V ∗ produces an element of the dual Lie

algebra g(D)∗ and is defined as

〈b � a,w〉 = −
∫
D
b ·£w a , (9.13)

where b · £w a denotes the contraction, as described above, of elements of V and elements of V ∗ and

w ∈ g(D). (These operations do not depend on a Riemannian structure.)

For a path ηt ∈ Diff(D), let u(x, t) be its Eulerian velocity and consider the curve a(t) with initial condition
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a0 given by the equation

ȧ + £ua = 0. (9.14)

Let the Lagrangian La0(U) := L(U, a0) be right-invariant under Diff(D). We can now state the Euler–

Poincaré Theorem for Continua of [HoMaRa1998a].

Theorem

9.6 (Euler–Poincaré Theorem for Continua.). Consider a path ηt in Diff(D) with Lagrangian veloc-

ity U and Eulerian velocity u. The following four statements are equivalent:

i Hamilton’s variational principle

δ

∫ t2

t1

L (X,Ut(X), a0(X)) dt = 0 (9.15)

holds, for variations δηt vanishing at the endpoints.

ii ηt satisfies the Euler–Lagrange equations for La0 on Diff(D).

iii The constrained variational principle in Eulerian coordinates

δ

∫ t2

t1

`(u, a) dt = 0 (9.16)

holds on g(D)× V ∗, using variations of the form

δu =
∂w

∂t
+ [u,w] =

∂w

∂t
− ad uw , δa = −£w a, (9.17)
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where wt = δηt ◦ η−1
t vanishes at the endpoints.

iv The Euler–Poincaré equations for continua

∂

∂t

δ`

δu
= − ad∗u

δ`

δu
+
δ`

δa
� a = −£u

δ`

δu
+
δ`

δa
� a , (9.18)

hold, with auxiliary equations (∂t + £u)a = 0 for each advected quantity a(t). The � operation

defined in (9.13) needs to be determined on a case by case basis, depending on the nature of the

tensor a(t). The variation m = δ`/δu is a one–form density and we have used relation (9.8) in

the last step of equation (9.18).

We refer to [HoMaRa1998a] for the proof of this theorem in the abstract setting. We shall see some of

the features of this result in the concrete setting of continuum mechanics shortly.

Discussion of the Euler-Poincaré equations

The following string of equalities shows directly that iii is equivalent to iv:

0 = δ

∫ t2

t1

l(u, a)dt =

∫ t2

t1

(
δl

δu
· δu +

δl

δa
· δa
)
dt

=

∫ t2

t1

[
δl

δu
·
(
∂w

∂t
− adu w

)
− δl

δa
·£w a

]
dt

=

∫ t2

t1

w ·
[
− ∂

∂t

δl

δu
− ad∗u

δl

δu
+
δl

δa
� a
]
dt . (9.19)
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The rest of the proof follows essentially the same track as the proof of the pure Euler-Poincaré theorem,

modulo slight changes to accomodate the advected quantities.

In the absence of dissipation, most Eulerian fluid equations3 can be written in the EP form in equation

(9.18),
∂

∂t

δ`

δu
+ ad∗u

δ`

δu
=
δ`

δa
� a , with

(
∂t + £u

)
a = 0 . (9.20)

Equation (9.20) is Newton’s Law: The Eulerian time derivative of the momentum density m = δ`/δu

(a one-form density dual to the velocity u) is equal to the force density (δ`/δa) � a, with the � operation

defined in (9.13). Thus, Newton’s Law is written in the Eulerian fluid representation as,4

d

dt

∣∣∣
Lag

m :=
(
∂t + £u

)
m =

δ`

δa
� a , with

d

dt

∣∣∣
Lag
a :=

(
∂t + £u

)
a = 0 . (9.21)

• The left side of the EP equation in (9.21) describes the fluid’s dynamics due to its kinetic energy. A

fluid’s kinetic energy typically defines a norm for the Eulerian fluid velocity, KE = 1
2‖u‖

2. The left

side of the EP equation is the geodesic part of its evolution, with respect to this norm. See [Ar1966,

Ar1979, ArKh1998] for discussions of this interpretation of ideal incompressible flow and references to
3Exceptions to this statement are certain multiphase fluids, and complex fluids with active internal degrees of freedom such as liquid crystals. These require a further

extension, not discussed here.
4 In coordinates, a one-form density takes the form m · dx⊗ dV and the EP equation (9.18) is given neumonically by

d

dt

∣∣∣
Lag

(
m · dx⊗ dV

)
=

dm

dt

∣∣∣
Lag
· dx⊗ dV︸ ︷︷ ︸

Advection

+ m · du⊗ dV︸ ︷︷ ︸
Stretching

+ m · dx⊗ (∇ · u)dV︸ ︷︷ ︸
Expansion

=
δ`

δa
� a

with d
dt

∣∣∣
Lag
dx :=

(
∂t+£u

)
dx = du = u,jdx

j , upon using commutation of Lie derivative and exterior derivative. Compare this formula with the definition of ad∗
u(m⊗dV )

in equation (9.9).
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the literature. However, in a gravitational field, for example, there will also be dynamics due to potential

energy. And this dynamics will by governed by the right side of the EP equation.

• The right side of the EP equation in (9.21) modifies the geodesic motion. Naturally, the right side of

the EP equation is also a geometrical quantity. The diamond operation � represents the dual of the Lie

algebra action of vectors fields on the tensor a. Here δ`/δa is the dual tensor, under the natural pairing

(usually, L2 pairing) 〈 · , · 〉 that is induced by the variational derivative of the Lagrangian `(u, a). The

diamond operation � is defined in terms of this pairing in (9.13). For the L2 pairing, this is integration

by parts of (minus) the Lie derivative in (9.13).

• The quantity a is typically a tensor (e.g., a density, a scalar, or a differential form) and we shall sum over

the various types of tensors a that are involved in the fluid description. The second equation in (9.21)

states that each tensor a is carried along by the Eulerian fluid velocity u. Thus, a is for fluid “attribute,”

and its Eulerian evolution is given by minus its Lie derivative, −£ua. That is, a stands for the set of

fluid attributes that each Lagrangian fluid parcel carries around (advects), such as its buoyancy, which is

determined by its individual salt, or heat content, in ocean circulation.

• Many examples of how equation (9.21) arises in the dynamics of continuous media are given in [HoMaRa1998a].

The EP form of the Eulerian fluid description in (9.21) is analogous to the classical dynamics of rigid

bodies (and tops, under gravity) in body coordinates. Rigid bodies and tops are also governed by Euler-

Poincaré equations, as Poincaré showed in a two-page paper with no references, over a century ago

[Po1901]. For modern discussions of the EP theory, see, e.g., [MaRa1994], or [HoMaRa1998a].
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Exercise. For what types of tensors a0 can one recast the EP equations for continua (9.18) as

geodesic motion, perhaps by using a version of the Kaluza-Klein construction? F

Exercise. State the EP theorem and write the EP equations for the convective velocity. F

9.2 Corollary of the EP theorem: the Kelvin-Noether circulation theorem

Corollary

9.7 (Kelvin-Noether Circulation Theorem.). Assume u(x, t) satisfies the Euler–Poincaré equations for

continua:
∂

∂t

(
δ`

δu

)
= −£u

(
δ`

δu

)
+
δ`

δa
� a

and the quantity a satisfies the advection relation

∂a

∂t
+ £ua = 0. (9.22)
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Let ηt be the flow of the Eulerian velocity field u, that is, u = (dηt/dt) ◦ η−1
t . Define the advected fluid

loop γt := ηt ◦ γ0 and the circulation map I(t) by

I(t) =

∮
γt

1

D

δ`

δu
. (9.23)

In the circulation map I(t) the advected mass density Dt satisfies the push forward relation Dt = η∗D0.

This implies the advection relation (9.22) with a = D, namely, the continuity equation,

∂tD + divDu = 0 .

Then the map I(t) satisfies the Kelvin circulation relation,

d

dt
I(t) =

∮
γt

1

D

δ`

δa
� a . (9.24)

Both an abstract proof of the Kelvin-Noether Circulation Theorem and a proof tailored for the case of

continuum mechanical systems are given in [HoMaRa1998a]. We provide a version of the latter below.

Proof. First we change variables in the expression for I(t):

I(t) =

∮
γt

1

Dt

δl

δu
=

∮
γ0

η∗t

[
1

Dt

δl

δu

]
=

∮
γ0

1

D0
η∗t

[
δl

δu

]
.

Next, we use the Lie derivative formula, namely

d

dt
(η∗tαt) = η∗t

(
∂

∂t
αt + £uαt

)
,
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applied to a one–form density αt. This formula gives

d

dt
I(t) =

d

dt

∮
γ0

1

D0
η∗t

[
δl

δu

]
=

∮
γ0

1

D0

d

dt

(
η∗t

[
δl

δu

])
=

∮
γ0

1

D0
η∗t

[
∂

∂t

(
δl

δu

)
+ £u

(
δl

δu

)]
.

By the Euler–Poincaré equations (9.18), this becomes

d

dt
I(t) =

∮
γ0

1

D0
η∗t

[
δl

δa
� a
]

=

∮
γt

1

Dt

[
δl

δa
� a
]
,

again by the change of variables formula.

Corollary

9.8. Since the last expression holds for every loop γt, we may write it as(
∂

∂t
+ £u

)
1

D

δl

δu
=

1

D

δl

δa
� a . (9.25)

Remark

9.9. The Kelvin-Noether theorem is called so here because its derivation relies on the invariance of the
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Lagrangian L under the particle relabeling symmetry, and Noether’s theorem is associated with this sym-

metry. However, the result (9.24) is the Kelvin circulation theorem: the circulation integral I(t)

around any fluid loop (γt, moving with the velocity of the fluid parcels u) is invariant under the fluid

motion. These two statements are equivalent. We note that two velocities appear in the integrand I(t):

the fluid velocity u and D−1δ`/δu. The latter velocity is the momentum density m = δ`/δu divided by

the mass density D. These two velocities are the basic ingredients for performing modeling and analysis in

any ideal fluid problem. One simply needs to put these ingredients together in the Euler-Poincaré theorem

and its corollary, the Kelvin-Noether theorem.

9.3 The Hamiltonian formulation of ideal fluid dynamics

Legendre transform Taking the Legendre-transform of the Lagrangian l(u, a): g × V → R yields the Hamil-

tonian h(m, a) : g∗ × V → R, given by

h(m, a) =
〈
m, u

〉
− l(u, a) . (9.26)

Differentiating the Hamiltonian determines its partial derivatives:

δh =
〈
δm ,

δh

δm

〉
+
〈 δh
δa
, δa

〉
=
〈
δm , u

〉
+
〈
m− δl

δu
, δu

〉
−
〈 δ`
δa
, δa

〉
⇒ δl

δu
= m,

δh

δm
= u and

δh

δa
= − δ`

δa
.



Lecture Notes: Dynamics, Symmetry and Integrability DD Holm Spring Term 2021 165

The middle term vanishes because m − δl/δu = 0 defines m. These derivatives allow one to rewrite the

Euler–Poincaré equation for continua in (9.18) solely in terms of momentum m and advected quantities a as

∂tm = − ad∗δh/δmm−
δh

δa
� a ,

∂ta = −£δh/δm a . (9.27)

Hamiltonian equations The corresponding Hamiltonian equation for any functional of f (m, a) is then

d

dt
f (m, a) =

〈
∂tm,

δf

δm

〉
+
〈
∂ta ,

δf

δa

〉
= −

〈
ad∗δh/δmm +

δh

δa
� a , δf

δm

〉
−
〈

£δh/δm a ,
δf

δa

〉
= −

〈
m,

[
δf

δm
,
δh

δm

]〉
+

〈
a , £T

δf/δm

δh

δa
−£T

δh/δm

δf

δa

〉
(9.28)

=: {f , h}(m, a) ,

which is plainly antisymmetric under the exchange f ↔ h. Assembling these equations into Hamiltonian

form gives, symbolically,
∂

∂t

[
m

a

]
= −

[
ad∗�m � � a
£�a 0

] [
δh/δm

δh/δa

]
(9.29)

The boxes � in Equation (9.29) indicate how the various operations are applied in the matrix multiplication.

For example,

ad∗�m(δh/δm) = ad∗δh/δmm,

so each matrix entry acts on its corresponding vector component.
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Remark

9.10. The expression

{f , h}(m, a) = −
〈
m,

[
δf

δm
,
δh

δm

]〉
+

〈
a , £T

δf/δm

δh

δa
−£T

δh/δm

δf

δa

〉
in (9.28) defines the Lie-Poisson bracket on the dual to the semidirect-product Lie algebra XsV ∗

with Lie bracket

ad(u,α) (u, α) =
(
aduu, £T

uα−£T
uα
)

The coordinates are velocity vector field u ∈ X dual to momentum density m ∈ X∗ and α ∈ V ∗ dual

to the vector space of advected quantities a ∈ V .

Proof. We check that

df

dt
(m, a) = {f , h}(m, a) =

〈
m, ad δf

δm

δh

δm

〉
+

〈
a , £T

δf/δm

δh

δa
−£T

δh/δm

δf

δa

〉
= −

〈
ad∗δh

δm
m,

δf

δm

〉
+

〈
a , £T

δf/δm

δh

δa

〉
+

〈
−£δh/δma ,

δf

δa

〉
= −

〈
ad∗δh

δm
m +

δh

δa
� a , δf

δm

〉
−
〈

£δh/δma ,
δf

δa

〉
Note that the angle brackets refer to different types of pairings. This should cause no confusion.
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10 Worked Example: Euler–Poincaré theorem for GFD

Figure 7 shows a screen shot of numerical simulations of damped and driven geophysical fluid dynamics

(GFD) equations of the type studied in this section, taken from http://www.youtube.com/watch?v=

ujBi9Ba8hqs&feature=youtu.be. The variations in space and time of the driving and damping by the

Sun are responsible for the characteristic patterns of the flow. The nonlinear GFD equations in the absence

of damping and driving are formulated in this section by using the Euler–Poincaré theorem.

10.1 Variational Formulae in Three Dimensions

We compute explicit formulae for the variations δa in the cases that the set of tensors a is drawn from a set

of scalar fields and densities on R3. We shall denote this symbolically by writing

a ∈ {b,D d3x} . (10.1)

We have seen that invariance of the set a in the Lagrangian picture under the dynamics of u implies in the

Eulerian picture that (
∂

∂t
+ £u

)
a = 0 ,

where £u denotes Lie derivative with respect to the velocity vector field u. Hence, for a fluid dynamical

Eulerian action S =
∫
dt `(u; b,D), the advected variables b and D satisfy the following Lie-derivative

http://www.youtube.com/watch?v=ujBi9Ba8hqs&feature=youtu.be
http://www.youtube.com/watch?v=ujBi9Ba8hqs&feature=youtu.be
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Figure 7: Atmospheric flows on Earth (wind currents) are driven by the Sun and its interaction with the surface and they are damped primarily by friction with the
surface.

relations, (
∂

∂t
+ £u

)
b = 0, or

∂b

∂t
= − u · ∇ b , (10.2)(

∂

∂t
+ £u

)
Dd3x = 0, or

∂D

∂t
= − ∇ · (Du) . (10.3)
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In fluid dynamical applications, the advected Eulerian variables b and Dd3x represent the buoyancy b (or

specific entropy, for the compressible case) and volume element (or mass density) Dd3x, respectively. Ac-

cording to Theorem 9.6, equation (9.16), the variations of the tensor functions a at fixed x and t are also

given by Lie derivatives, namely δa = −£w a, or

δb = −£w b = −w · ∇ b ,
δD d3x = −£w (Dd3x) = −∇ · (Dw) d3x . (10.4)

Hence, Hamilton’s principle (9.16) with this dependence yields

0 = δ

∫
dt `(u; b,D)

=

∫
dt

[
δ`

δu
· δu +

δ`

δb
δb +

δ`

δD
δD

]
=

∫
dt

[
δ`

δu
·
(∂w

∂t
− adu w

)
− δ`

δb
w · ∇ b− δ`

δD

(
∇ · (Dw)

)]
=

∫
dt w ·

[
− ∂

∂t

δ`

δu
− ad∗u

δ`

δu
− δ`

δb
∇ b + D ∇ δ`

δD

]
= −

∫
dt w ·

[( ∂
∂t

+ £u

) δ`
δu

+
δ`

δb
∇ b−D ∇ δ`

δD

]
, (10.5)

where we have consistently dropped boundary terms arising from integrations by parts, by invoking natural

boundary conditions. Specifically, we may impose n̂ · w = 0 on the boundary, where n̂ is the boundary’s

outward unit normal vector and w = δηt ◦ η−1
t vanishes at the endpoints.
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10.2 Euler–Poincaré framework for GFD

The Euler–Poincaré equations for continua (9.18) may now be summarized in vector form for advected Eulerian

variables a in the set (10.1). We adopt the notational convention of the circulation map I in equations (9.23)

and (9.24) that a one form density can be made into a one form (no longer a density) by dividing it by the mass

density D and we use the Lie-derivative relation for the continuity equation (∂/∂t + £u)Dd3x = 0. Then,

the Euclidean components of the Euler–Poincaré equations for continua in equation (10.5) are expressed in

Kelvin theorem form (9.25) with a slight abuse of notation as( ∂
∂t

+ £u

)( 1

D

δ`

δu
· dx

)
+

1

D

δ`

δb
∇b · dx − ∇

( δ`
δD

)
· dx = 0 , (10.6)

in which the variational derivatives of the Lagrangian ` are to be computed according to the usual physical

conventions, i.e., as Fréchet derivatives. Formula (10.6) is the Kelvin–Noether form of the equation of motion

for ideal continua. Hence, we have the explicit Kelvin theorem expression, cf. equations (9.23) and (9.24),

d

dt

∮
γt(u)

1

D

δ`

δu
· dx = −

∮
γt(u)

1

D

δ`

δb
∇b · dx , (10.7)

where the curve γt(u) moves with the fluid velocity u. Then, by Stokes’ theorem, the Euler equations

generate circulation of v := (D−1δl/δu) whenever the gradients ∇b and ∇(D−1δl/δb) are not collinear.

The corresponding conservation of potential vorticity q on fluid parcels is given by

∂q

∂t
+ u · ∇q = 0 , where q =

1

D
∇b · curl

(
1

D

δ`

δu

)
. (10.8)
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This is also called PV convection. Equations (10.6-10.8) embody most of the panoply of equations for

GFD. The vector form of equation (10.6) is,( ∂
∂t

+ u · ∇
)( 1

D

δl

δu

)
+

1

D

δl

δuj
∇uj︸ ︷︷ ︸

Geodesic Nonlinearity: Kinetic energy

= ∇ δl

δD
− 1

D

δl

δb
∇b︸ ︷︷ ︸

Potential energy

(10.9)

In geophysical applications, the Eulerian variable D represents the frozen-in volume element and b is the

buoyancy. In this case, Kelvin’s theorem is

dI

dt
=

∫ ∫
S(t)

∇
(

1

D

δl

δb

)
×∇b · dS ,

with circulation integral

I =

∮
γ(t)

1

D

δl

δu
· dx .

10.3 Euler’s Equations for a Rotating Stratified Ideal Incompressible Fluid

The Lagrangian. In the Eulerian velocity representation, we consider Hamilton’s principle for fluid motion in

a three dimensional domain with action functional S =
∫
l dt and Lagrangian l(u, b,D) given by

l(u, b,D) =

∫
ρ0D(1 + b)

(
1

2
|u|2 + u ·R(x)− gz

)
− p(D − 1) d 3x , (10.10)
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where ρtot = ρ0D(1 + b) is the total mass density, ρ0 is a dimensional constant and R is a given function of

x. This variations at fixed x and t of this Lagrangian are the following,

1

D

δl

δu
= ρ0(1 + b)(u + R) ,

δl

δb
= ρ0D

(1

2
|u|2 + u ·R− gz

)
,

δl

δD
= ρ0(1 + b)

(1

2
|u|2 + u ·R− gz

)
− p , δl

δp
= − (D − 1) . (10.11)

Hence, from the Euclidean component formula (10.9) for Hamilton principles of this type and the fundamental

vector identity,

(b · ∇)a + aj∇bj = − b× (∇× a) +∇(b · a) , (10.12)

we find the motion equation for an Euler fluid in three dimensions,

du

dt
− u× curl R + gẑ +

1

ρ0(1 + b)
∇p = 0 , (10.13)

where curl R = 2u(x) is the Coriolis parameter (i.e., twice the local angular rotation frequency). In writing

this equation, we have used advection of buoyancy,

∂b

∂t
+ u · ∇b = 0,

from equation (10.2). The pressure p is determined by requiring preservation of the constraint D = 1, for

which the continuity equation (10.3) implies div u = 0. The Euler motion equation (10.13) is Newton’s

Law for the acceleration of a fluid due to three forces: Coriolis, gravity and pressure gradient. The dynamic

balances among these three forces produce the many circulatory flows of geophysical fluid dynamics. The
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conservation of potential vorticity q on fluid parcels for these Euler GFD flows is given by

∂q

∂t
+ u · ∇q = 0 , where, on using D = 1 , q = ∇b · curl

(
u + R

)
. (10.14)

Semidirect-product Lie-Poisson bracket for compressible ideal fluids.

1. Compute the Legendre transform for the Lagrangian,

l(u, b,D) : X× Λ0 × Λ3 7→ R

whose advected variables satisfy the auxiliary equations,

∂b

∂t
= − u · ∇ b , ∂D

∂t
= − ∇ · (Du) .

2. Compute the Hamiltonian, assuming the Legendre transform is a linear invertible operator on

the velocity u. For definiteness in computing the Hamiltonian, assume the Lagrangian is given

by

l(u, b,D) =

∫
D
(1

2
|u|2 + u ·R(x)− e(D, b)

)
d 3x , (10.15)

with prescribed function R(x) and specific internal energy e(D, b) satisfying the First Law of

Thermodynamics,

de =
p

D2
dD + Tdb ,

where p is pressure, T temperature.
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3. Find the semidirect-product Lie-Poisson bracket for the Hamiltonian formulation of these equa-

tions.

4. Does this Lie-Poisson bracket have Casimirs? If so, what are the corresponding symmetries

and momentum maps?

5. Write the equations of motion and confirm their Kelvin-Noether circulation theorem.

6. Use the Kelvin-Noether circulation theorem for this theory to determine its potential vorticity

and obtain the corresponding conservation laws. Write these conservation laws explicitly.

F



Lecture Notes: Dynamics, Symmetry and Integrability DD Holm Spring Term 2021 175

References

[AbMa1978] Abraham, R. and Marsden, J. E. [1978] Foundations of Mechanics, 2nd ed. Reading, MA: Addison-Wesley.
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