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Abstract

These are notes of lectures given at the LMS Research School, entitled “Mathematics of Climate”, held 8-12 July 2019 at the University
of Reading, UK. The course is intended for PhD students, postdocs and other researchers interested in the variational principles for deriving
the partial differential equations (PDE) underlying meteorology and climate science. Its first 5 lectures summarise the concepts and notation
underlying the mathematical description of ideal fluid dynamics using the geometric theory of flows of smooth invertible maps described by
deterministic PDE. It then shows how to use these concepts to derive fluid equations with Stochastic Advection by Lie Transport (SALT).
The SALT equations answer the question, "How would Kelvin’s circulation theorem change in the presence of noise?" The last lecture derives
stochastic equations for the interaction of climate and weather, by using Lagrangian averaging from the perspective of the old adage, “Climate
is what you expect. Weather is what you get." These are the Lagrangian averaged (LA) SALT equations. They have the potential for modelling
the spatially integrated dynamics of the risk of extreme weather events.
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1 Transformation Theory

motion
motion equation
vector field
diffeomorphism
flow
fixed point
equilibrium

linearisation
infinitesimal transformation
pull-back
push-forward
Jacobian matrix
directional derivative
commutator

differential, d
differential k-form
wedge product, ∧
Lie derivative, £Q

product rule
fluid dynamics
other flows

1.1 Motions, pull-backs, push-forwards, vector fields, commutators & differentials

• Amotion is defined as a smooth curve q(t) ∈M parameterised by t ∈ R that solves
the motion equation, which is a system of differential equations

q̇(t) =
dq

dt
= f (q) ∈ TM , (1)

or in components

q̇i(t) =
dqi

dt
= f i(q) i = 1, 2, . . . , n , (2)
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• The map f : q ∈M → f (q) ∈ TqM is a vector field.
According to standard theorems about differential equations that are not proven
in this course, the solution, or integral curve, q(t) exists, provided f is sufficiently
smooth, which will always be assumed to hold.

• Vector fields can also be defined as differential operators that act on functions, as
d

dt
G(q) = q̇i(t)

∂G

∂qi
= f i(q)

∂G

∂qi
i = 1, 2, . . . , n, (sum on repeated indices) (3)

for any smooth function G(q) : M → R.

• To indicate the dependence of the solution of its initial condition q(0) = q0, we write
the motion as a smooth transformation

q(t) = φt(q0) .

Because the vector field f is independent of time t, for any fixed value of t we may
regard φt as mapping from M into itself that satisfies the composition law

φt ◦ φs = φt+s

and
φ0 = Id .
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Setting s = − t shows that φt has a smooth inverse. A smooth mapping that has
a smooth inverse is called a diffeomorphism. Geometric mechanics deals with
diffeomorphisms.

• The smooth mapping φt : R×M →M that determines the solution φt◦q0 = q(t) ∈
M of the motion equation (1) with initial condition q(0) = q0 is called the flow of
the vector field Q.
A point q? ∈ M at which f (q?) = 0 is called a fixed point of the flow φt, or an
equilibrium.
Vice versa, the vector field f is called the infinitesimal transformation of the
mapping φt, since

d

dt

∣∣∣∣
t=0

(φt ◦ q0) = f (q) .

That is, f (q) is the linearisation of the flow map φt at the point q ∈M .
More generally, the directional derivative of the function h along the vector field
f is given by the action of a differential operator, as

d

dt

∣∣∣∣
t=0

h ◦ φt =

[
∂h

∂φt

d

dt
(φt ◦ q0)

]
t=0

=
∂h

∂qi
q̇i =

∂h

∂qi
f i(q) =: Qh .
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• Under a smooth change of variables q = c(r) the vector field Q in the expression Qh
transforms as

Q = f i(q)
∂

∂qi
7→ R = gj(r)

∂

∂rj
with gj(r)

∂ci

∂rj
= f i(c(r)) or g = c−1

r f◦c ,
(4)

where cr is the Jacobian matrix of the transformation. That is, since h(q) is a
function of q,

(Qh) ◦ c = R(h ◦ c) .

We express the transformation between the vector fields as R = c∗Q and write this
relation as

(Qh) ◦ c =: c∗Q(h ◦ c) . (5)
The expression c∗Q is called the pull-back of the vector field Q by the map c.
Two vector fields are equivalent under a map c, if one is the pull-back of the other,
and fixed points are mapped into fixed points.
The inverse of the pull-back is called the push-forward. It is the pull-back by the
inverse map.
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• The commutator
QR−RQ =:

[
Q, R

]
of two vector fields Q and R defines another vector field. Indeed, if

Q = f i(q)
∂

∂qi
and R = gj(q)

∂

∂qj

then [
Q, R

]
=

(
f i(q)

∂gj(q)

∂qi
− gi(q)∂f

j(q)

∂qi

)
∂

∂qj

because the second-order derivative terms cancel. By the pull-back relation (5) we
have

c∗
[
Q, R

]
=
[
c∗Q, c∗R

]
(6)

under a change of variables defined by a smooth map, c. This means the definition
of the vector field commutator is independent of the choice of coordinates. As we
shall see, the tangent to the relation c∗t

[
Q, R

]
=
[
c∗tQ, c

∗
tR
]
at the identity t = 0

is the Jacobi condition for the vector fields to form an algebra.

• The differential of a smooth function f : M →M is defined as

df =
∂f

∂qi
dqi .
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• Under a smooth change of variables s = φ ◦ q = φ(q) the differential of the compo-
sition of functions d(f ◦ φ) transforms according to the chain rule as

df =
∂f

∂qi
dqi , d(f ◦φ) =

∂f

∂φj(q)

∂φj

∂qi
dqi =

∂f

∂sj
dsj =⇒ d(f ◦φ) = (df )◦φ (7)

That is, the differential d commutes with the pull-back φ∗ of a smooth transformation
φ,

d(φ∗f ) = φ∗df . (8)
In a moment, this pull-back formula will give us the rule for transforming differential
forms of any order.

1.2 Wedge products

• Differential k-forms on an n-dimensional manifold are defined in terms of the differ-
ential d and the antisymmetric wedge product (∧) satisfying

dqi ∧ dqj = − dqj ∧ dqi , for i, j = 1, 2, . . . , n (9)
By using wedge product, any k-form α ∈ Λk onM may be written locally at a point
q ∈M in the differential basis dqj as

αm = αi1...ik(m)dqi1 ∧ · · · ∧ dqik ∈ Λk , i1 < i2 < · · · < ik , (10)
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where the sum over repeated indices is ordered, so that it must be taken over all ij
satisfying i1 < i2 < · · · < ik. Roughly speaking differential forms Λk are objects
that can be integrated. As we shall see, vector fields also act on differential forms in
interesting ways.

• Pull-backs of other differential forms may be built up from their basis elements, the
dqik. By equation (8), we have

Theorem 1 (Pull-back of a wedge product). The pull-back of a wedge product of two
differential forms is the wedge product of their pull-backs:

φ∗t (α ∧ β) = φ∗tα ∧ φ∗tβ . (11)
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1.3 Contraction

1.4 Examples of contraction, or interior product

Definition 2 (Contraction, or interior product). Let α ∈ Λk be a k-form on a
manifold M ,

α = αi1...ikdx
i1 ∧ · · · ∧ dxik ∈ Λk , with i1 < i2 < · · · < ik ,

and let X = Xj∂j be a vector field. The contraction or interior product X α of
a vector field X with a k-form α is defined by

X α = Xjαji2...ikdx
i2 ∧ · · · ∧ dxik . (12)

Note that

X (Y α) = X lY mαmli3...ikdx
i3 ∧ · · · ∧ dxik

= −Y (X α) ,

by antisymmetry of αmli3...ik, particularly in its first two indices.
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Remark 3 (Examples of contraction).

1. A mnemonic device for keeping track of signs in contraction or substitution of
a vector field into a differential form is to sum the substitutions of X = Xj∂j
over the permutations that bring the corresponding dual basis element into the
leftmost position in the k-form α. For example, in two dimensions, contraction of
the vector field X = Xj∂j = X1∂1 +X2∂2 into the two-form α = αjkdx

j ∧ dxk

with α21 = −α12 yields

X α = Xjαji2dx
i2 = X1α12dx

2 + X2α21dx
1 .

Likewise, in three dimensions, contraction of the vector field X = X1∂1 +X2∂2 +
X3∂3 into the three-form α = α123dx

1 ∧ dx2 ∧ dx3 with α213 = −α123, etc.
yields

X α = X1α123dx
2 ∧ dx3 + cyclic permutations

= Xjαji2i3dx
i2 ∧ dxi3 with i2 < i3 .

2. The rule for contraction of a vector field with a differential form develops from
the relation

∂j dxk = δkj ,
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in the coordinate basis ej = ∂j := ∂/∂xj and its dual basis ek = dxk. Contraction
of a vector field with a one-form yields the dot product, or inner product, between
a covariant vector and a contravariant vector is given by

Xj∂j vkdx
k = vkδ

k
jX

j = vjX
j ,

or, in vector notation,
X v · dx = v ·X .

This is the dot product of vectors v and X.
3. By the linearity of its definition (12), contraction of a vector field X with a

differential k-form α satisfies
(hX) α = h(X α) = X hα .

Our previous calculations for two-forms and three-forms provide the following
additional expressions for contraction of a vector field with a differential form,
which may be written in vector notation as:

X B · dS = −X×B · dx ,
X d 3x = X · dS ,

d(X d 3x) = d(X · dS) = (div X) d 3x .



Notes of LMS Research School, “Mathematics of Climate” University of Reading DD Holm 8 – 12 July 2019 13

Remark 4 (Physical examples of contraction).
The first of these contraction relations represents the Lorentz, or Coriolis force, when
X is particle velocity and B is either magnetic field, or rotation rate, respectively.
The second contraction relation is the flux of the vector X through a surface element.
The third is the exterior derivative of the second, thereby yielding the divergence of
the vector X.

Exercise. Show that
X (X B · dS) = 0

and
(X B · dS) ∧B · dS = 0 ,

for any vector field X and two-form B · dS. F

Proposition 5 (Contracting through wedge product). Let α be a k-form and β be a
one-form on a manifold M and let X = Xj∂j be a vector field. Then the contraction
of X through the wedge product α ∧ β satisfies

X (α ∧ β) = (X α) ∧ β + (−1)kα ∧ (X β) . (13)

Proof. The proof is a straightforward calculation using the definition of contraction.
The exponent k in the factor (−1)k counts the number of exchanges needed to get
the one-form β to the left most position through the k-form α.
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Proposition 6. [Contraction is natural under pull-back]
That is,

φ∗(X(m) α) = X(φ(m)) φ∗α = φ∗X φ∗α . (14)

Proof. Direct verification using the relation between pull-back of forms and push-
forward of vector fields.
Note the implication, £X(Y α) = [X , Y ] α + Y (£Xα).

Definition 7 (Alternative notations for contraction). Besides the hook notation with
, one also finds in the literature the following two alternative notations for con-

traction of a vector field X with k-form α ∈ Λk on a manifold M :

X α = iXα = α(X, · , · , . . . , ·︸ ︷︷ ︸
k − 1 slots

) ∈ Λk−1 . (15)

In the last alternative, one leaves a dot ( · ) in each remaining slot of the form that
results after contraction. For example, contraction of the Hamiltonian vector field
XH = { · , H} with the symplectic two-form ω ∈ Λ2 produces the one-form

XH ω = ω(XH, · ) = −ω( · , XH) = dH .
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In this alternative notation, the proof of formula (14) in Proposition 6 may be written,
as follows.

Proof. Since forms are multilinear maps to the real numbers, one may define the
pull-back of a k-form, α, by

φ∗α(X1, X2, ...) := α(φ∗X1, φ∗X2, ...) .

Therefore, we are able to use the following proof.

φ∗X φ∗α(X1, X2, ....) = φ∗α(φ∗X,X1, X2, ...)

= α(φ∗φ
∗X,φ∗X1, φ∗X2, ...)

= α(X,φ∗X1, φ∗X2, ...)

= (X α)(φ∗X1, φ∗X2, ...)

= φ∗(X α)(X1, X2, ...)

Now, if we allow X1, X2, . . . to be arbitrary, then formula (14) in Proposition 6
follows.
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1.5 Exercises in exterior calculus operations

Vector notation for differential basis elements One denotes differential basis elements dxi and
dSi = 1

2εijkdx
j ∧ dxk, for i, j, k = 1, 2, 3 in vector notation as

dx := (dx1, dx2, dx3) ,

dS = (dS1, dS2, dS3)

:= (dx2 ∧ dx3, dx3 ∧ dx1, dx1 ∧ dx2) ,

dSi :=
1

2
εijkdx

j ∧ dxk ,

d 3x = dVol := dx1 ∧ dx2 ∧ dx3

=
1

6
εijkdx

i ∧ dxj ∧ dxk .

Exercise. (Vector calculus operations) Show that contraction : X ×
Λk → Λk−1 of the vector field X = Xj∂j =: X · ∇ with the differential basis
elements dx, dS and d 3x recovers the following familiar operations among
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vectors:

X dx = X ,

X dS = X× dx ,
(or, X dSi = εijkX

jdxk)

Y X dS = X×Y ,

X d 3x = X · dS = XkdSk ,

Y X d 3x = X×Y · dx = εijkX
iY jdxk ,

Z Y X d 3x = X×Y · Z .
F
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Exercise. (Exterior ḋerivatives in vector notation) Show
that the exterior derivative and wedge product satisfy the following relations
in components and in three-dimensional vector notation:

df = f,j dx
j =: ∇f · dx ,

0 = d2f = f,jk dx
k ∧ dxj ,

df ∧ dg = f,j dx
j ∧ g,k dxk

=: (∇f ×∇g) · dS ,
df ∧ dg ∧ dh = f,j dx

j ∧ g,k dxk ∧ h,l dxl

=: (∇f · ∇g ×∇h) d 3x . F

Exercise. (Vector calculus formulas) Show that the exterior derivative
yields the following vector calculus formulas:

df = ∇f · dx ,
d(v · dx) = (curl v) · dS ,
d(A · dS) = (div A) d 3x .

The compatibility condition d2 = 0 is written for these forms as
0 = d2f = d(∇f · dx) = (curl grad f ) · dS ,

0 = d2(v · dx) = d
(
(curl v) · dS

)
= (div curl v) d 3x .
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The product rule is written for these forms as

d
(
f (A · dx)

)
= df ∧A · dx + fcurl A · dS
=
(
∇f ×A + fcurl A

)
· dS

= curl (fA) · dS ,

d
(
(A · dx) ∧ (B · dx)

)
= (curl A) · dS ∧B · dx−A · dx ∧ (curl B) · dS
=
(
B · curl A−A · curl B

)
d 3x

= d
(
(A×B) · dS

)
= div(A×B) d 3x .

These calculations yield familiar formulas from vector calculus for quantities
curl(grad), div(curl), curl(fA) and div(A×B). F

1.6 Integral calculus formulas

Exercise. (Integral calculus formulas) Show that the Stokes’ theorem for
the vector calculus formulas yields the following familiar results in R3:
– The fundamental theorem of calculus, upon integrating df along a
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curve in R3 starting at point a and ending at point b:∫ b

a

df =

∫ b

a

∇f · dx = f (b)− f (a) .

– The classical Stokes theorem, for a compact surface S with boundary
∂S: ∫

S

(curl v) · dS =

∮
∂S

v · dx .

(For a planar surface S ∈ R2, this is Green’s theorem.)
– The Gauss divergence theorem, for a compact spatial domain D with
boundary ∂D: ∫

D

(div A) d 3x =

∮
∂D

A · dS .
F

These exercises illustrate the following,

Theorem 8 (Stokes’ ṫheorem). Suppose M is a compact oriented k-dimensional
manifold with boundary ∂M and α is a smooth (k − 1)-form on M . Then∫

M

dα =

∮
∂M

α .
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1.7 Summary of natural operations on differential forms

Besides the wedge product, three basic operations are commonly applied to differ-
ential forms. These are contraction, exterior derivative and Lie derivative.

• Contraction with a vector field X lowers the degree:

X Λk 7→ Λk−1 .

• Exterior derivative d raises the degree:

dΛk 7→ Λk+1 .

• Lie derivative £X by vector field X preserves the degree:

£XΛk 7→ Λk , where £XΛk =
d

dt

∣∣∣∣
t=0

φ∗tΛ
k ,

in which φt is the flow of the vector field X . In analogy with fluids one may write
£XΛk = d

dtΛ
k along dx

dt = X .
• Lie derivative £X satisfies Cartan’s formula: (The proof is a direct calcula-

tion.)

£Xα = X dα + d(X α) for α = αi1...ikdx
i1 ∧ · · · ∧ dxik ∈ Λk .
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Remark 9.
Note also that the Lie derivative commutes with the exterior derivative. That is,

d(£Xα) = £Xdα , for α ∈ Λk(M) and X ∈ X(M) .

1.8 Lie derivatives

Definition 10 (Lie derivative of a differential k-form). The Lie derivative of a
differential k-form Λk by a vector field Q ∈ X is defined by linearising its flow φt
around the identity t = 0,

£QΛk =
d

dt

∣∣∣∣
t=0

φ∗tΛ
k maps X× Λk 7→ Λk .

Hence, by equation (11), the Lie derivative satisfies the product rule for the wedge
product.

Corollary 11 (Product rule for the Lie derivative of a wedge product).

£Q(α ∧ β) = £Qα ∧ β + α ∧£Qβ . (16)

• Pullbacks of vector fields lead to Lie derivative expressions, too.
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Definition 12 (Lie derivative of a vector field). The Lie derivative of a vector
field Y ∈ X by another vector field X ∈ X is defined by linearising the flow φt of X
around the identity t = 0,

£XY =
d

dt

∣∣∣∣
t=0

φ∗tY maps £X ∈ X 7→ X .

Theorem 13.The Lie derivative £XY of a vector field Y by a vector field X satisfies

£XY =
d

dt

∣∣∣∣
t=0

φ∗tY = [X, Y ] , (17)

where [X, Y ] = XY − Y X is the commutator of the vector fields X and Y .

Proof. Denote the vector fields in components as

X = X i(q)
∂

∂qi
=
d

dt

∣∣∣∣
t=0

φ∗t and Y = Y j(q)
∂

∂qj
.

Then, by the pull-back relation (5) a direct computation yields, on using the matrix
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identity dM−1 = −M−1dMM−1,

£XY =
d

dt

∣∣∣∣
t=0

φ∗tY =
d

dt

∣∣∣∣
t=0

(
Y j(φtq)

∂

∂(φtq)j

)
=
d

dt

∣∣∣∣
t=0

Y j(φtq)

[
∂(φtq)

∂q

−1
]k
j

∂

∂qk


=

(
Xj∂Y

k

∂qj
− Y j∂X

k

∂qj

)
∂

∂qk

= [X, Y ] .

Corollary 14. The Lie derivative of the relation (6) for the pull-back of the com-
mutator c∗t

[
Y, Z

]
=
[
c∗tY, c

∗
tZ
]
yields the Jacobi condition for the vector fields to

form an algebra.

Proof. By the product rule and the definition of the Lie bracket (17) we have
d

dt

∣∣∣∣
t=0

φ∗t
[
Y, Z

]
=
[
X,
[
Y, Z

]]
=
[
[X, Y ], Z

]
+
[
Y, [X,Z]

]
=
d

dt

∣∣∣∣
t=0

[
φ∗tY, φ

∗
tZ
]

This is the Jacobi identity for vector fields.
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1.9 Summary and an exercise
Summary

The pull-back φ∗t of a smooth flow φt generated by a smooth vector field X on a smooth
manifold M commutes with the exterior derivative d, wedge product ∧ and contraction

.
That is, for k-forms α, β ∈ Λk(M), and m ∈M , the pull-back φ∗t satisfies

d(φ∗tα) = φ∗tdα ,

φ∗t (α ∧ β) = φ∗tα ∧ φ∗tβ ,
φ∗t (X α) = φ∗tX φ∗tα .

In addition, the Lie derivative £Xα of a k-form α ∈ Λk(M) by the vector field X
tangent to the flow φt on M is defined either dynamically or geometrically (by Cartan’s
formula) as

£Xα =
d

dt

∣∣∣∣
t=0

(φ∗tα) = X dα + d(X α), (18)

in which the last equality is Cartan’s geometric formula in (27) for the Lie derivative.
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Definition 15. (Lie derivative pull-back formula)
The tangent to the pull-back φ∗tα of a differential form α is the pull-back of the Lie
derivative of α wrt the vector field X that generates the flow, φt:

d

dt
(φ∗tα) = φ∗t

(
£Xα

)
.

Likewise, for the push-forward, which is the pull-back by the inverse, we have
d

dt
((φ−1

t )∗α) = −(φ−1
t )∗

(
£Xα

)
.

Definition 16. (Advected quantity)
A quantity which is invariant along a flow trajectory satisfies α0(x0) = αt(xt) = (φ∗tαt)(x0),
so that

0 =
d

dt
α0(x0) =

d

dt
(φ∗tαt)(x0) = φ∗t (∂t + £X)αt(x0) = (∂t + £X)αt(xt)

Or vice versa
αt(xt) = (α0 ◦ φ−1

t )(xt) = ((φt)∗α0)(xt)

satisfies
d

dt
αt(xt) =

d

dt
(φt)∗α0 = −£Xαt .
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2 Exercises

Exercise.

(a) Verify the formula [X , Y ] α = £X(Y α)− Y (£Xα).
(b) Use (a) to verify £[X , Y ]α = £X£Yα−£Y£Xα.
(c) Use (b) to verify the Jacobi identity.
(d) Use (c) to verify that the divergence-free vector fields are closed under com-

mutation.
(e) For a top-form α show that divergence-free vector fields satisfy

[X , Y ] α = d
(
X (Y α)

)
. (19)

(f) Write the equivalent of equation (19) as a formula in vector calculus.

F
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Answer.

(a) The required formula follows immediately from the product rule for the dynamical
definition of the Lie derivative. Since pull-back commutes with contraction, insertion
of a vector field into a k-form transforms under the flow φt of a smooth vector field
Y as

φ∗t (Y α) = φ∗tY φ∗tα .

A direct computation using the dynamical definition of the Lie derivative £Yα =
d
dt|t=0(φ∗tα) , then yields

d

dt

∣∣∣
t=0
φ∗t
(
Y α

)
=
( d
dt

∣∣∣
t=0
φ∗tY

)
α

+ Y
( d
dt

∣∣∣
t=0
φ∗tα
)
.

Hence, we recognise that the desired formula is the product rule met earlier for the
Lie derivative

£X(Y α) = (£XY ) α + Y (£Xα) .

(b) Insert £XY = [X , Y ] into the product rule formula in part (a). Then

[X , Y ] α = £X(Y α)− Y (£Xα).
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Now use Cartan’s formula in (27)

£Xα =
d

dt

∣∣∣∣
t=0

(φ∗tα) = X dα + d(X α),

to compute the required result, as

£[X , Y ]α = d([X , Y ] α) + [X , Y ] dα

= d
(
£X(Y α)− Y (£Xα)

)
+ £X(Y dα)− Y (£Xdα)

= £Xd(Y α)− d(Y (£Xα)

+ £X(Y dα)− Y d(£Xα)

= £X(£Yα)−£Y (£Xα) .

Can you think of an alternative proof based on the dynamical definition of the Lie
derivative?

(c) Applying part (b), (£[X , Y ]α = £X£Yα − £Y£Xα) to α = d3x proves that
£[X , Y ]d

3x = 0; since both£Y d
3x = 0 = £Xd

3x, because, e.g.,£Y d
3x = (divY ) d3x.

(d) As a consequence of part (b),
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£[Z , [X , Y ] ]α = £Z(£X£Y −£Y£X)α− (£X£Y −£Y£X)£Zα

= £Z£X£Yα−£Z£Y£Xα

−£X£Y£Zα + £Y£X£Zα ,

and summing over cyclic permutations verifies that
£[Z , [X , Y ] ] α + £[X , [Y , Z] ] α + £[Y , [Z ,X] ] α = 0 .

This is the Jacobi identity for the Lie derivative.

(e) Substituting the relation £XY = [X, Y ] into the product rule above in part (b) and
rearranging yields

[X, Y ] α = £X(Y α)− Y (£Xα) , (20)

as required, for an arbitrary k-form α.
From formula (20), we have

[X , Y ] α = £X(Y α)− Y (£Xα)

= d
(
X (Y α) + X d(Y α)

)
− Y (£Xα)

= d
(
X (Y α)

)
+ X (£Yα− Y dα)− Y (£Xα)

= d
(
X (Y α)

)
+ X (£Yα)− Y (£Xα)

[X , Y ] α = d
(
X (Y α)

)
+ (div Y)X α− (div X)Y α. (21)
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The last two steps to obtain (21) follow, because dα = 0 and £Xα = (div X)α for
a top-form α.
For divergence-free vectors X and Y, the last result takes the elegant form,

[X , Y ] α = d
(
X (Y α)

)
, (22)

when div X = 0 = div Y.

(f) The vector calculus formula to which equation (21) is equivalent may be found by
writing its left and right sides in a coordinate basis, as

[X , Y ] α = (X · ∇Y −Y · ∇X) · dS
d
(
X (Y α)

)
+ X (£Yα)− Y (£Xα)

= − curl (X×Y) · dS
+ (div Y) X · dS− (div X) Y · dS

Thus, equation (21) for a top-form α dnx is equivalent to the well-known vector
calculus identity

(X · ∇Y −Y · ∇X) = − curl (X×Y) + (div Y) X− (div X) Y .

N
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Exercise.

(a) Starting from

[u , v] α = £u(v α)− v (£uα)

prove the following

£u(v α)−£v(u α) = 2[u, v] α + v £uα− u £vα

= [u, v] α− u (v α) + d(u (v α))

(b) Evaluate the last equation for a k-form α with k = 3, 2, 1, in terms of vector
calculus expressions.

F

Answer.
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(a)

[u, v] α = £u(v α)− v £uα

= d(u (v α)) + u d(v α)− v £uα

= d(u (v α)) + u (£vα− v dα)− v £uα

= d(u (v α)) + u £vα− u (v dα)− v £uα

[u, v] α + u (v α) = d(u (v α))

+ (u £vα− v £uα)

u £vα− v £uα = [u, v] α + u (v α)− d(u (v α))

v £uα− u £vα = [v, u] α + v (u α)− d(v (u α))

= −[u, v] α− u (v α) + d(u (v α))

£u(v α)−£v(u α) = 2[u, v] α + v £uα− u £vα

= [u, v] α− u (v dα) + d(u (v α))

(b) For a 3-form α = d3x (top form in 3D) one again finds the vector calculus identity
in the previous exercise which is antisymmetric under exchange of u and v,

(divv)u− (divu)v − curl(u× v) = (u · ∇)v − (v · ∇)u =: [u,v]
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For a 2-form α = α · dS in 3D one finds the vector calculus identity

−u× curl(α× v) + v× curl(α× u) = α× [u,v] + (divα)(u× v) +∇(α · u× v)

in which we denote as in the previous vector calculus identity

[u,v] := (u · ∇)v − (v · ∇)u = − curl(u× v)− (divu)v + (divv)u

After the substitution of this expression for [u,v] obtained in the case of the 3-form
α = d3x, one sees that the vector calculus identity for a 2-form α = α ·dS has cyclic
permutation symmetry

u× curl(v ×α) + v × curl(α× u) +α× curl(u× v)

= (divu)(v ×α) + (divv)(α× u)

+ (divα)(u× v) +∇(α · u× v)

Also, in the divergence-free case this reduces to

curl
(
u× curl(v ×α) + v × curl(α× u) +α× curl(u× v)

)
= 0.

For a 1-form α = α · dx, the result turns out to be trivial.

N
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3 Hamilton’s principle for fluid dynamics

3.1 Advected quantities in fluid dynamics

We regard fluid flow as a smooth invertible time-dependent transformation of initial
conditions x0 regarded as fluid labels taking values in a configuration manifoldM acted
on by smooth invertible maps Diff(M). Thus, we lift the motion of fluid parcels xt ∈M
with initial condition x0 ∈M to the manifold of diffeomorphisms by identifying it with
a time-dependent curve gt ∈ Diff(M) with g0 = Id, whose action from the left generates
the motion xt,

xt = gtx0 with ẋt = ġtx0 = (ut ◦ gt)x0
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g 1-

x

CurrentReference

g(t)

(t)

x0

Advected quantity. A quantity at(xt) = a0(x0) which remains invariant under the
flow is said to be advected by the flow. In terms of the group action, advected quantities
satisfy

a0(x0) = at(xt) = (at ◦ gt)(x0) = (g∗t at)(x0)

where g∗t at is the pull-back of at by gt. Invariance of an advected quantity implies an
evolution equation

0 =
d

dt
a0(x0) =

d

dt
(g∗t at)(x0) = g∗t

(
(∂t + £u)at

)
(x0) = (∂t + £u)at(xt)

where £u denotes the Lie derivative with respect to the vector field u = ġg−1 which
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generates the flow gt.
Vice versa, we have the push-forward relation

d

dt
at(xt) =

d

dt
(a0g

−1
t )(xt) =

d

dt

(
(gt)∗a0

)
(xt) = −(£uat)(xt) .

The previous formula will be useful in taking variations of advected quantities in Hamil-
ton’s principle, since it implies the following formula for the variation of an advected
quantity, at at fixed t,

δat(xt) = a′t(xt) :=
( d
dε

∣∣∣
ε=0
at,ε

)
(xt) = −(£vtat)(xt)

where
vt =

(dgt,ε
dε

g−1
t,ε

)∣∣∣
ε=0

= g′g−1

and £v denotes the Lie derivative with respect to the vector field v = [gε
′g−1
ε ]ε=0 which

generates the flow gε.
Equality of cross derivatives in t and ε implies the following pair of relations

(ġ)′ ◦ g−1 = (u ◦ g)′ ◦ g−1 = (∂xu)g′ ◦ g−1 + (u′ ◦ g) ◦ g−1

= (∂xu)v + u′

(g′ )˙ ◦ g−1 = (∂xv)u + v̇ ,
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from which we conclude upon substituting u = ġg−1 that

δ(ġg−1) = (ġg−1)′ = v̇ + (∂xv)u− (∂xu)v = v̇ − [u, v] = v̇ − aduv = v̇ − adġg−1v

Now we are ready to compute the Euler-Poincaré equations for fluid dynamics.

3.2 Euler-Poincaré equations for fluid dynamics

We shall compute the compute the Euler-Poincaré equations for fluid dynamics using
the Hamilton-Pontryagin principle,

0 = δS = δ

∫ T

0

`(u, a0g
−1
t ) + 〈m, ġg−1 − u〉 dt

=

∫ T

0

〈
δ`

δu
−m, δu

〉
+

〈
δ`

δa
, −£va

〉
+
〈
m, ∂tv − adġg−1v

〉
+
〈
δm , ġg−1 − u

〉
dt

=

∫ T

0

〈
δ`

δu
−m, δu

〉
+

〈
δ`

δa
� a− ∂tm− ad∗ġg−1m, v

〉
+
〈
δm , ġg−1 − u

〉
dt + 〈m, v〉

∣∣∣T
0
,
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where we have used δ(a0g
−1
t ) = −£va and have defined the diamond operator (�) as

� : V ∗ × V → X∗ defined by
〈
δ`

δa
� a , v

〉
:=

〈
δ`

δa
, −£va

〉
and the ad∗ operation as

ad∗ : X× X∗ → X∗ defined by 〈ad∗um, v〉 =
〈
m, aduv

〉
In particular, ad∗um = £um, so that the fluid motion equation for m = m · dx ⊗ d3x
and advection equations become

(∂t + £u)m =
δ`

δa
� a and (∂t + £u)a = 0

In general, fluid motion advects mass, so that Dt(xt)d
3xt = D0(x0)d3x0, which implies

the continuity equation

0 = (∂t + £u)(Dt(xt)d
3xt) =

(
∂tD + div(Du)

)
d3x

Consequently, the motion equation may be rewritten as(
∂t + £u

)
(D−1m · dx) =

1

D

δ`

δa
� a
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in which 1
D
δ`
δa � a is a 1-form. Integrating this relation around a material loop ct moving

with the fluid yields
d

dt

∮
ct

(D−1m · dx) =

∮
ct

1

D

δ`

δa
� a

This is the Kelvin-Noether theorem, which arises from relabelling symmetry of the La-
grangian fluid parcels.

3.3 Euler’s fluid equations

Euler’s equations for the incompressible motion of an ideal flow of a fluid of unit density
and velocity u satisfying div u = 0 in a rotating frame with Coriolis parameter curl R =
2Ω are given in the form of Newton’s law of force by

∂t u + u · ∇u︸ ︷︷ ︸
acceleration

= u× 2Ω︸ ︷︷ ︸
Coriolis

− ∇p︸︷︷︸
pressure

. (23)

Exercise. Prove that Euler’s equations in a rotating frame arise as Euler-
Poincaré equations from Hamilton’s variational principle for the following action
integral.

0 = δS =

∫ T

0

1

2
D|u|2 + Du ·R− p(D − 1) d3x dt
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F

The Newton’s law equation for Euler fluid motion in (23) may be rearranged into an
alternative form,

∂t v − u× ω +∇
(
p +

1

2
|u|2
)

= 0 , (24)

by denoting
v ≡ u + R , ω = curl v = curl u + 2Ω , (25)

and using the fundamental vector calculus identity of fluid dynamics

u · ∇v + vj∇uj = −u× curl v +∇(u · v) . (26)

This identity follows from equality of the dynamic and geometricdefinitions of the Lie
derivative £uα of a k-form α ∈ Λk(M) by the vector field u = ġg−1 tangent to the flow
gt on M as

£uα =
d

dt

∣∣∣∣
t=0

(g∗tα) = u dα + d(u α), (27)

in which the last equality is Cartan’s geometric formula for the Lie derivative.
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For the case of the circulation 1-form α = v · dx, this becomes

£u(v · dx) =
(
u · ∇v + vj∇uj

)
· dx

= u d(v · dx) + d(u v · dx)

= u (curl v · dS) + d(u · v)

=
(
− u× curl v +∇(u · v)

)
· dx ,

(28)

and the identity (25) emerges. This identity and the calculation (28) recasts Euler’s
fluid motion equation into the following geometric form:(

∂

∂t
+ £u

)
(v · dx) = (∂tv − u× curl v +∇(u · v)) · dx

= −∇
(
p +

1

2
|u|2 − u · v

)
· dx

= − d
(
p +

1

2
|u|2 − u · v

)
.

(29)

Requiring preservation of the divergence-free (volume-preserving) constraint ∇·u = 0
results in a Poisson equation for pressure p, which may be written in several equivalent
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forms,
−∆p = div

(
u · ∇u− u× 2Ω

)
= ui,juj,i − div

(
u× 2Ω

)
= tr S2 − 1

2
|curl u|2 − div

(
u× 2Ω

)
, (30)

where S = 1
2(∇u +∇uT ) is the strain-rate tensor.

We introduce the Lamb vector,
` := −u× ω , (31)

which represents the nonlinearity in Euler’s fluid equation (24). The Poisson equa-
tion (30) for pressure p may now be expressed in terms of the divergence of the Lamb
vector,

− ∆

(
p +

1

2
|u|2

)
= div(−u× curl v) = div ` . (32)

Remark 17 (Boundary conditions).
Because the velocity u must be tangent to any fixed boundary, the normal component
of the motion equation must vanish. This requirement produces a Neumann condition
for pressure given by

∂n

(
p +

1

2
|u|2

)
+ n̂ · ` = 0 , (33)
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at a fixed boundary with unit outward normal vector n̂.

Remark 18 (Helmholtz vorticity dynamics).
Taking the curl of the Euler fluid equation (24) yields the Helmholtz vorticity equa-
tion

∂tω − curl(u× ω) = 0 , (34)
whose geometrical meaning will emerge in discussing Stokes’ Theorem 29 for the vorticity
of a rotating fluid.

The rotation terms have now been fully integrated into both the dynamics and the
boundary conditions. In this form, the Kelvin circulation theorem and the Stokes
vorticity theorem will emerge naturally together as geometrical statements.

3.4 Kelvin’s circulation theorem

Theorem 19 (Kelvin’s circulation theorem). The Euler equations (23) preserve the
circulation integral I(t) defined by

I(t) =

∮
c(u)

v · dx , (35)

where c(u) is a closed circuit moving with the fluid at velocity u.
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Proof. The dynamical definition of the Lie derivative in (27) yields the following for the
time rate of change of this circulation integral:

d

dt

∮
c(u)

v · dx =

∮
c(u)

(
∂

∂t
+ £u

)
(v · dx)

=

∮
c(u)

(
∂v

∂t
+
∂v

∂xj
uj + vj

∂uj

∂x

)
· dx

=−
∮
c(u)

∇
(
p +

1

2
|u|2 − u · v

)
· dx

=−
∮
c(u)

d

(
p +

1

2
|u|2 − u · v

)
= 0 . (36)

The last step in the proof follows, because the integral of an exact differential around a
closed loop vanishes.

The exterior derivative of the Euler fluid equation in the form (29) yields Stokes’ theorem,
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after using the commutativity of the exterior and Lie derivatives [d, £u] = 0,

d£u(v · dx) = d
(
− u× curlv · dx + d(u · v)

)
= £u(curl v · dS)

= − curl
(
u× curl v

)
· dS

=
[
u · ∇curl v + curl v(div u)− (curl v) · ∇u

]
· dS ,

(by div u = 0) =
[
u · ∇curl v − (curl v) · ∇u

]
· dS

=: [u, curl v ] · dS , (37)

where [u, curl v ] denotes (minus) the Jacobi–Lie bracket of the vector fields u and
curl v.
This calculation proves the following.

Theorem 20. Euler’s fluid equations (24) imply that
∂ω

∂t
= − [u, ω ] (38)

where [u, ω ] denotes the Jacobi–Lie bracket of the divergenceless vector fields u and
ω := curl v.

The exterior derivative of Euler’s equation in its geometric form (29) is equivalent to
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the curl of its vector form (24). That is,

d

(
∂

∂t
+ £u

)
(v · dx) =

(
∂

∂t
+ £u

)
(curl v · dS) = 0 . (39)

Hence from the calculation in (37) and the Helmholtz vorticity equation (39) we have(
∂

∂t
+ £u

)
(curl v · dS) =

(
∂tω − curl(u× ω)

)
· dS = 0 , (40)

in which one denotes ω := curl v. This Lie-derivative version of the Helmholtz vorticity
equation may be used to prove the following form of Stokes’ theorem for the Euler
equations in a rotating frame.

Theorem 21. [Kelvin/Stokes’ theorem for vorticity of a rotating fluid]

d

dt

∮
c(u)

v · dx =
d

dt

∫∫
S(u)

curl v · dS

=

∫∫
S(u)

(
∂

∂t
+ £u

)
(curl v · dS)

=

∫∫
S(u)

(
∂tω − curl (u× ω)

)
· dS = 0 ,

(41)
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where the surface S(u) is bounded by an arbitrary circuit ∂S = c(u) moving with the
fluid.

3.5 The conserved helicity of ideal incompressible flows

Definition 22 (Helicity). The helicity Λ[curl v] of a divergence-free vector field curl v
that is tangent to the boundary ∂D of a simply connected domain D ∈ R3 is defined as

Λ[curl v] =

∫
D

v · curl v d 3x , (42)

where v is a divergence-free vector-potential for the field curl v.

Remark 23.
The helicity is unchanged by adding a gradient to the vector v. Thus, v is not unique
and div v = 0 is not a restriction for simply connected domains in R3, provided curl v
is tangent to the boundary ∂D.

The helicity of a vector field curl v measures the total linking of its field lines, or their
relative winding. (For details and mathematical history, see [ArKh1998].) The idea of
helicity goes back to Helmholtz and Kelvin in the 19th century. The principal feature
of this concept for fluid dynamics is embodied in the following theorem.
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Theorem 24 (Euler flows preserve helicity).When homogeneous or periodic bound-
ary conditions are imposed, Euler’s equations for an ideal incompressible fluid flow in a
rotating frame with Coriolis parameter curl R = 2Ω preserves the helicity

Λ[curl v] =

∫
D

v · curl v d 3x , (43)

with v = u+R, for which u is the divergenceless fluid velocity (div u = 0) and curl v =
curl u + 2Ω is the total vorticity.

Proof. Rewrite the geometric form of the Euler equations (29) for rotating incompressible
flow with unit mass density in terms of the circulation one-form v := v · dx as(

∂t + £u

)
v = − d

(
p +

1

2
|u|2 − u · v

)
=: − d$ , (44)

and £u d
3x = 0. Here, $ is an augmented pressure variable,

$ := p +
1

2
|u|2 − u · v . (45)

The fluid velocity vector field is denoted as u = u ·∇ with div u = 0. Then the helicity
density, defined as

v ∧ dv = v · curl v d 3x = λ d 3x , with λ = v · curl v , (46)
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obeys the dynamics it inherits from the Euler equations,(
∂t + £u

)
(v ∧ dv) = −d$ ∧ dv − v ∧ d2$ = −d($dv) , (47)

after using d2$ = 0 and d2v = 0. In vector form, this result may be expressed as a
conservation law, (

∂tλ + div λu
)
d 3x = − div($ curl v) d 3x . (48)

Consequently, the time derivative of the integrated helicity in a domain D obeys
d

dt
Λ[curl v] =

∫
D

∂tλ d
3x = −

∫
D

div(λu + $ curl v) d 3x

= −
∮
∂D

(λu + $ curl v) · dS , (49)

which vanishes when homogeneous, or periodic, or even Neumann boundary conditions
are imposed on the values of u and curl v at the boundary ∂D.
Remark 25.
This result means the helicity integral

Λ[curl v] =

∫
D

λ d 3x

is conserved in periodic domains, or in all of R3 with vanishing boundary conditions
at spatial infinity. However, if either the velocity or total vorticity at the boundary
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possesses a nonzero normal component, then the boundary is a source of helicity (that
is, it causes winding of field lines of curl v). For a fixed impervious boundary, the
normal component of velocity does vanish, but no such condition is imposed on the
total vorticity by the physics of fluid flow. Thus, we have the following.
Corollary 26. A flux of total vorticity curl v into the domain is a source of helicity.

Exercise. Use Cartan’s formula in (27) to compute £u(v∧dv) in Equation (47).
F

Theorem 27 (Diffeomorphisms preserve helicity).The helicity Λ[ξ] of any divergenceless
vector field ξ is preserved under the action on ξ of any volume-preserving diffeomorphism
of the manifold M [ArKh1998].
Remark 28 (Helicity is a topological invariant).
The helicity Λ[ξ] is a topological invariant, not a dynamical invariant, because its in-
variance is independent of which diffeomorphism acts on ξ. This means the invariance
of helicity is independent of which Hamiltonian flow produces the diffeomorphism. This
is the hallmark of a Casimir function. Although it is defined above with the help of
a metric, every volume-preserving diffeomorphism carries a divergenceless vector field
ξ into another such field with the same helicity. However, independently of any met-
ric properties, the action of diffeomorphisms does not create or destroy linkages of the
characteristic curves of divergenceless vector fields.
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3.6 Ertel theorem for potential vorticity

Euler–Boussinesq equations The Euler–Boussinesq equations for the incompressible motion of
an ideal flow of a stratified fluid and velocity u satisfying div u = 0 in a rotating frame
with Coriolis parameter curl R = 2Ω are given by

∂t u + u · ∇u︸ ︷︷ ︸
acceleration

= − gb∇z︸ ︷︷ ︸
buoyancy

+ u× 2Ω︸ ︷︷ ︸
Coriolis

− ∇p︸ ︷︷ ︸
pressure

(50)

where −g∇z is the constant downward acceleration of gravity and b is the buoyancy, a
scalar function of space and time which satisfies the advection relation,

∂t b + u · ∇b = 0 . (51)

As for Euler’s equations without buoyancy, requiring preservation of the divergence-free
(volume-preserving) constraint ∇ · u = 0 results in a Poisson equation for pressure p,

− ∆

(
p +

1

2
|u|2
)

= div(−u× curl v) + g∂zb , (52)

which satisfies a Neumann boundary condition because the velocity u must be tangent
to the boundary. where we denote

v ≡ u + R , ω = curl v = curl u + 2Ω , (53)
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The Newton’s law form of the Euler–Boussinesq equations (50) may be rearranged as

∂t v − u× curl v + gb∇z +∇
(
p +

1

2
|u|2
)

= 0 , (54)

where v ≡ u + R and ∇ · u = 0.

Exercise. Prove that the Euler–Boussinesq equations in (50) emerge as Euler-
Poincaré equations from Hamilton’s variational principle for the following action
integral.

0 = δS = δ

∫ T

0

1

2
D|u|2 + Du ·R−Dbz − p(D − 1) d3x dt

F
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Theorem 29. [The Kelvin/Stokes’ theorem for a stratified, rotating fluid]
d

dt

∮
c(u)

v · dx =
d

dt

∫∫
S(u)

curl v · dS

=

∫∫
S(u)

(
∂

∂t
+ £u

)
(curl v · dS)

=

∫∫
S(u)

(
∂tω − curl (u× ω)

)
· dS

=

∫∫
S(u)

(
− g∇b×∇z

)
· dS ,

(55)

where the surface S(u) is bounded by an arbitrary circuit ∂S = c(u) moving with the
fluid. Thus, non-alignment of the gradient of buoyancy ∇b with the vertical ∇z creates
circulation. Compare this result with equation (41) in the absence of stratification.

Geometrically, equation (54) may be written as(
∂t + £u

)
v + gbdz + d$ = 0 , (56)

where $ is defined in (45). In addition, the buoyancy satisfies(
∂t + £u

)
b = 0 , with £u d

3x = 0 . (57)
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The fluid velocity vector field is denoted as u = u · ∇ and the circulation one-form as
v = v · dx. The exterior derivatives of the two equations in (56) are written as(

∂t + £u

)
dv = −gdb ∧ dz and

(
∂t + £u

)
db = 0 . (58)

Consequently, one finds from the product rule for Lie derivatives that(
∂t + £u

)
(dv ∧ db) = 0 or ∂t q + u · ∇q = 0 , (59)

in which the quantity
q = ∇b · curl v , (60)

is called potential vorticity and is abbreviated as PV. The potential vorticity is an
important diagnostic for many processes in geophysical fluid dynamics. Conservation of
PV on fluid parcels is called Ertel’s theorem.

Remark 30 (Ertel’s theorem for the vorticity vector field).
Writing the vorticity vector field ω = ω · ∇, we have(

∂t + £u

)
ω = ∂tω + [u, ω] = g∇z ×∇b · ∇ .

Thus, conservation of the potential vorticity may also be proved by the product rule, as(
∂t + £u

)
q =

(
∂t + £u

)
(ω · ∇b) =

(
∂t + £u

)
(ωb) =

((
∂t + £u

)
ω
)
b + ω

(
∂t + £u

)
b = 0 .
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Remark 31 (Material derivative formulation).
Denoting

D

Dt
= ∂t + £u and ω = ω · ∇

provides an intuitive expression of the Ertel theorem (59) that helps understand it in
terms of the time derivative D

Dt following the flow of the fluid particles. Namely, it
suggests writing in vector form

D

Dt
(ω · ∇) = g∇z ×∇b · ∇ and

Db

Dt
= 0 ,

so that the product rule for derivatives yields conservation of PV on fluid parcels, as
Dq

Dt
=
D

Dt
(ω · ∇b) =

(D
Dt

(ω · ∇)
)
b+ (ω · ∇)

Db

Dt
= g∇z ×∇b · ∇b+ (ω · ∇)

Db

Dt
= 0 .

Remark 32 (The conserved quantities associated with Ertel’s theorem).
The constancy of the scalar quantities b and q on fluid parcels implies conservation of
the spatially integrated quantity,

CΦ =

∫
D

Φ(b, q) d 3x , (61)

for any smooth function Φ for which the integral exists.
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Proof.
d

dt
CΦ =

∫
D

Φb∂tb + Φq∂tq d
3x = −

∫
D

Φbu · ∇b + Φqu · ∇q d 3x

= −
∫
D

u · ∇Φ(b, q) d 3x = −
∫
D

∇ ·
(
u Φ(b, q)

)
d 3x = −

∮
∂D

Φ(b, q) u · n̂ d S = 0 ,

when the normal component of the velocity u · n̂ vanishes at the boundary ∂D.

Remark 33 (Energy conservation).
In addition to CΦ, the Euler–Boussinesq fluid equations (54) also conserve the total
energy

E =

∫
D

1

2
|u|2 + bz d 3x , (62)

which is the sum of the kinetic and potential energies.

We do not develop the Hamiltonian formulation of the three-dimensional stratified
rotating fluid equations studied here. However, one may imagine that the conserved
quantity CΦ with the arbitrary function Φ would play an important role. For more
explanation in the framework of Geometric Mechanics, see [Ho2011GM] and references
therein.
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3.7 Rotating shallow water (RSW) equations

Consider dynamics of rotating shallow water (RSW) on a two dimensional domain with
horizontal planar coordinates x = (x, y). This RSW motion is governed by the following
nondimensional equations for variables depending on (x, t) comprising the horizontal
fluid velocity vector u = (u, v) and the total depth η,

ε
d

dt
u + f (x)ẑ× u +∇h = 0 ,

∂η

∂t
+∇ · (ηu) = 0 , (63)

with notation
d

dt
:=

(
∂

∂t
+ u · ∇

)
and h :=

(
η −B
εF

)
,

where ε � 1 and F = O(1) are nondimensional constants. These equations include
spatially variable Coriolis parameter f (x)ẑ = curlR(x) and mean depth B = B(x).

Exercise.

(i) Show that the RSW equations in (63) follow as Euler-Poincaré equations(
∂t + £u

)1

η

δl

δu
=

1

η

δl

δη
� η and

(
∂t + £u

)(
η d2x

)
= 0 ,
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from Hamilton’s variational principle for the following action integral.

0 = δS with S =

∫ T

0

l(u, η)dt and l(u, η) =

∫
ε

2
η|u|2 + ηu ·R(x)− (η −B(x))2

2εF
d2x .

in which η(x, t) d2x is an advected quantity. Recall that � : V ∗×V → X∗ is
defined by 〈 δ`δa � a , v〉 := 〈 δ`δa , −£va〉 for vector field v ∈ X and L2 pairing
〈 · , · 〉.

(ii) Use the Euler-Poincaré equations to show that the RSW equations satisfy
Kelvin’s circulation theorem

d

dt

∮
ct

v · dx = 0 ,

with v = εu + R(x).
(iii) Use the Euler-Poincaré equations to show that the RSW equations satisfy(

∂t + £u

)
d
(
v · dx

)
= 0 ,

with v = εu + R(x).
(iv) Show that d(v · dx) = ω d2x, with ω := ẑ · curlv.
(v) Use (∂t + £u)(ω d

2x) = 0 obtained in the previous two parts to derive con-
servation of potential vorticity on fluid particles.
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F

Answer.
1. The Euler-Poincaré equations are(

∂t + £u

)1

η

δl

δu
=

1

η

δl

δη
� η and

(
∂t + £u

)(
η d2x

)
= 0 ,

where η−1 δl
δu = (εu + R(x)) · dx =: v · dx and η−1 δl

δη � η = d( ε2|u|
2 + u · R − h).

Thus, (
∂t + £u

)
(v · dx) = d

(ε
2
|u|2 + u ·R− h

)
with v = εu + R(x).

2. Integrating the previous equation around a loop moving with the fluid produces
d

dt

∮
ct

v · dx =

∮
ct

d
(ε

2
|u|2 + u ·R− h

)
= 0 ,

with v = εu + R(x).

3. The differential of the Euler-Poincaré equation yields with ω := ẑ · curlv(
∂t + £u

)
(ωd2x) =

(
∂t + £u

)
d(v · dx) = d2

(ε
2
|u|2 + u ·R− h

)
= 0

upon commuting the differential d with the Lie derivative and using d2 = 0.
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4. By direct computation,

d(v · dx) = vi,jdx
j ∧ dxi = v1,2dx

2 ∧ dx1 + v2,1dx
1 ∧ dx2

= (v2,1 − v1,2) d2x = ẑ · curlv d2x = ω d2x

5. We have (∂t + £u)(ωd
2x) and (∂t + £u)(ηd

2x). Therefore, by the product rule for
the evolutionary operator (∂t + £u) we have

0 = (∂t + £u)
(ω
η

(ηd2x)
)

=
(

(∂t + £u)
ω

η

)
(ηd2x) +

ω

η
(∂t + £u)(ηd

2x)

Since the second term vanishes via the continuity equation, (∂t+£u)(ηd
2x), the first

term yields

0 = (∂t + £u)
ω

η
=

(
∂

∂t
+ u · ∇

)
ω

η
. Hence,

dq

dt
= 0 , with q := ω/η .

This is conservation of potential vorticity on fluid particles.

N
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