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1 Solutions of M3-4A16 Assessed Problems # 1

Exercise 1.1

1. Define the sphere Sn−1 and its tangent space TSn−1 in Rn. What is the dimension of TSn−1?

Answer

TSn−1 =
{

(x, ẋ) ∈ Rn × Rn
∣∣∣ |x|2 = 1 and x · ẋ = 0

}
The dimension of TSn−1 is 2n− 2, since two relations are imposed in Rn×Rn, whose
dimension is 2n. N

2. Prove that the two sets of planar coordinates arising from the stereographic projections of the
sphere S2 = {(x, y, z)|x2 + y2 + z2 = 1} from its North and South poles z = ±1
(1) (valid everywhere except z = 1): ξN = −x

1−z , ηN = y
1−z ,

(2) (valid everywhere except z = −1): ξS = x
1+z , ηS = y

1+z .
are diffeomorphic. That is, construct the mapping from (ξN , ηN )→ (ξS , ηS) and verify that it is
a diffeomorphism. Hint: (1 + z)(1− z) = 1− z2 = x2 + y2.

Answer

(ξS , ηS) =
1− z
1 + z

(ξN , ηN ) =
1

ξ2N + η2
N

(ξN , ηN )

Hence, the map (ξN , ηN ) → (ξS , ηS) is smooth and invertible everywhere except at
(ξN , ηN ) = (0, 0) (the North Pole). N

3. If θ is co-latitude, φ is azimuth (longitude), of the stereographic projection of the sphere S2 from
its North pole, show that each latitude on the sphere projects to a circle given in the complex
plane by ζ = cot θ2e

iφ.

Answer At a fixed azimuth, e.g., φ = 0 (in the ξ, z−plane) a point on the sphere
at co-latitude θ from the North Pole has coordinates

ξ = sin θ z = cos θ

Its projection strikes the ξη−plane at radius r and angle ψ, given by

cotψ = r =
r − sin θ

cos θ
Thus ψ = θ/2, since,

cotψ = r =
sin θ

1− cos θ
= cot(θ/2)

The stereographic projection of the circle at polar angle θ thus describes a circle in
the complex plane at ζ = ξ + iη = cot θ2e

iφ. N

4. Let φt : S2 → S2 rotate points on S2 about a fixed axis through an angle ψ(t). Show that φt is
the flow of a certain vector field on S2.

Answer When the axis of rotation is taken as the diameter ẑ connecting the North

and South poles, then in R3 the corresponding vector field is

X = (ẑ× x) · ∂
∂x

.

In spherical polar coordinates (θ, φ) this is

X =
∂

∂φ
.

The points on the sphere then follow latitudes. N
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5. Let f : S2 → R be defined by f(x, y, z) = z, for (x, y, z) ∈ R3. Compute the differential df using
spherical coordinates (θ, φ).

Answer The map to spherical coordinates is (x + iy) = sin θeiφ, z = cos θ. The
differential of f is

df = fxdx+ fydy + fzdz

= fθdθ + fφdφ

For the case f = z = cos θ, we have df = dz = d(cos θ) = − sin θdθ.
N

6. Compute the tangent lifts for the two stereographic projections of S2 → R2 above. That is,
assuming (x, y, z) depend smoothly on t, find

(a) How (ξ̇N , η̇N ) depend on (ẋ, ẏ, ż). Likewise, for (ξ̇S , η̇S).

Answer Write ξiN = ψiN (x1, x2, x3) for i = 1, 2. Then

ξ̇iN =
∂ψiN
∂xA

ẋA

Likewise, when N → S. N

(b) How (ξ̇N , η̇N ) depend on (ξ̇S , η̇S).

Hint: Recall (1 + z)(1 − z) = 1 − z2 = x2 + y2 and use xẋ + yẏ + zż = 0 when (ẋ, ẏ, ż) is
tangent to S2 at (x, y, z).

Answer

ξ̇iN =
∂ξiN
∂ξjS

ξ̇jS

N

7. Consider two sets of local coordinates qi and si on a manifold Q, related by si = ψi
(
q1, . . . , qn

)
.

Check that tangent lifted coordinates q̇i and ṡi are related by

ṡi =
∂ψi

∂qA
q̇A =: (Dψ)iA q̇

A,

and thus show that the corresponding

∂

∂si
=
(
(Dψ)−1

)A
i

∂

∂qA
.

Answer Vector field components will be related by

Y i ∂

∂ψi
= XA ∂

∂qA
, so Y i =

∂ψi

∂qA
XA ,

in which the quantity called the tangent lift

Tf =
∂ψ

∂q
,

of the function f arises from the chain rule and is equal to the Jacobian matrix for
the transformation Tf : TQ 7→ TQ. N
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8. Perform the corresponding calculations on the cotangent bundle side.

Answer The cotangent lift of the function f ,

T ∗f =
∂q

∂ψ
,

arises from

βidψ
i = αAdq

A , so βi = αA
∂qA

∂ψi
,

and T ∗f : T ∗Q 7→ T ∗Q. N

Exercise 1.2

1. Explain why one can conclude that the zero locus map for

S = {U ∈ GL(n,R)|UKUT −K = 0}

is a submersion for K = KT ∈ GL(n,R). (Pay close attention to establishing the constant rank
condition for the linearization of this map.)

Answer

First, S is the zero locus of the mapping

U → UTKU −K , (locus map)

Let U ∈ S, and let δU be an arbitrary element of Rn×n. Then linearize to find

(U + δU)TK(U + δU)−K = UTKU −K + δUTKU + UTKδU +O(δU)2 .

We may conclude that S is a submanifold of Rn×n if we can show that the linearization
of the locus map, namely the linear mapping defined by

L ≡ δU → δUTKU + UTKδU , Rn×n → Rn×n

has constant rank for all U ∈ S.

Lemma 1.3 The linearization map L is onto the space of n× n of symmetric matri-
ces. Hence, it has constant rank and the original map is a submersion.

Proof that L is onto.
• Both the original locus map and the image of L lie in the subspace of n× n

symmetric matrices.
• Indeed, given U and any symmetric matrix S we can find δU such that

δUTKU + UTKδU = S .

Namely
δU = K−1U−TS/2 .

• Thus, the linearization map L is onto the space of n× n of symmetric matrices.
That is, it has constant rank. This means the original locus map U → UKUT −K
to the space of symmetric matrices is a submersion.

N

2. Write the defining relation for the tangent space to S at the identity, TIS.

Answer The tangent space TIS at the identity of the matrix Lie group S defined

by S = {U ∈ GL(n,R)|UKUT −K = 0} is the linear space of matrices A satisfying

ATK +KA = 0
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Proof. Near the identity the defining condition for S expands to

(I + εAT +O(ε2))K(I + εA+O(ε2)) = K , for ε� 1 .

At linear order O(ε) one finds,

ATK +KA = 0 .

This relation defines the linear space of matrices A ∈ TIS. N

3. Show that for any pair of matrices A,B ∈ TIS, the matrix commutator satisfies

[A,B] ≡ AB −BA ∈ TIS.

Answer Using [A,B]T = [BT , AT ], we check closure by a direct computation,

[BT , AT ]K +K[A,B] = BTATK −ATBTK +KAB −KBA
= BTATK −ATBTK −ATKB +BTKA

= BT (ATK +KA)−AT (BTK +KB) = 0 .

Hence, the tangent space of S at the identity TIS is closed under the matrix commu-
tator [· , ·].

N

4. Suppose the n× n matrices A and M satisfy

AM +MAT = 0 .

Show that exp(At)M exp(AT t) = M for all t.

Answer

d

dt

(
exp(At)M exp(AT t)

)
= exp(At)(AM +MAT ) exp(AT t) = 0

N

Exercise 1.4

1. Gauge invariance Show that the Euler-Lagrange equations are unchanged under

L(q(t), q̇(t))→ L′ = L+
d

dt
γ(q(t), q̇(t)) ,

for any function γ : R6N = {(q, q̇) | q, q̇ ∈ R3N} → R.

Answer Hamilton’s principle for the difference is

0 = δ

∫ t2

t1

(
L(q(t), q̇(t))− L′(q(t), q̇(t))

)
dt = δ

[
γ(q(t), q̇(t))

]t2
t1

However, this vanishes for variations δq(t) that vanish at the endpoints in time. N

2. Generalized coordinate theorem Show that the Euler-Lagrange equations are unchanged in
form under any smooth invertible mapping f : {q 7→ s}. That is, with

L(q(t), q̇(t)) = L̃(s(t), ṡ(t)) ,

show that
d

dt

(
∂L

∂q̇

)
− ∂L

∂q
= 0 ⇐⇒ d

dt

(
∂L̃

∂ṡ

)
− ∂L̃

∂s
= 0 .
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Answer This amounts just to a change of notation, so it clearly holds. N

3. How do the Euler-Lagrange equations transform under q(t) = r(t) + s(t), when r(t) and s(t) are
independent of each other?

Answer A sum of two separate Euler-Lagrange equations is obtained. N

4. State and prove Noether’s theorem that each smooth symmetry of Hamilton’s principle implies a
conservation law for the corresponding Euler-Lagrange equations on the tangent space TM of a
smooth manifold M .

Answer In the family of smoothly deformed curves qs(t) = Q(q, t, s) with q0 =

Q(q, t, 0) = q(t) during the time interval t ∈ [t1, t2], the action S =
∫ t2
t1
L(q, q̇, t) dt

transforms to

S =
∫ t2

t1

L

(
Q(q, t, s),

dQ(q, t, s)
dτ(t, s)

, τ(t, s)
)
dτ(t, s) .

We denote

δq(t) =
d

ds

∣∣∣∣
s=0

Q(q, t, s) = ξ(q(t), t) , δt =
d

ds

∣∣∣∣
s=0

τ(t, s) = θ(t) ,

so that at linear order in s we have

Q(q, t, s) = q(t)+sξ(q, t) , τ(t, s) = t+sθ(t) ,
dQ(q, t, s)
dτ(t, s)

=
dq

dt
+s
(
ξ̇(q, t)−q̇θ̇

)
.

Here the dot-notation as in ξ̇(q, t) = ∂tξ + q̇∂qξ represents the total time derivative.
We could allow q-dependence in τ , but the result of the calculation would be morally
the same, after keeping track of total time derivatives.
The variations in Hamilton’s principle proceed as follows,

0 = δS =
d

ds

∣∣∣∣
s=0

∫ t2

t1

L

(
Q(q, t, s),

dQ(q, t, s)
dτ(t, s)

, τ(t, s)
)
dτ(t, s)

=
∫ t2

t1

{〈∂L
∂q
, ξ(q, t)

〉
+
〈∂L
∂q̇
, ξ̇(q, t)− q̇θ̇

〉
+
∂L

∂t
θ + L(q, q̇, t)θ̇

}
dt

=
∫ t2

t1

〈
∂L

∂q
− d

dt

∂L

∂q̇
,
(
ξ(q, t)− q̇θ

)〉
dt+

[〈∂L
∂q̇
, ξ
〉
−
(〈∂L

∂q̇
, q̇
〉
− L

)
θ

]t2
t1

=
∫ t2

t1

〈
∂L

∂q
− d

dt

∂L

∂q̇
,
(
δq − q̇δt

)〉
dt+

[〈∂L
∂q̇
, δq
〉
−
(〈∂L

∂q̇
, q̇
〉
− L

)
δt

]t2
t1

with a few algebraic manipulations and integrations by parts in between the lines. (Of
course, these should be checked!)
Thus, stationarity δS = 0 by symmetry and the Euler-Lagrange equations

[L ]qa :=
d

dt

∂L

∂q̇
− ∂L

∂q
= 0

imply that the quantity

C(t, q, q̇) =
〈∂L
∂q̇
, δq
〉
−
(〈∂L

∂q̇
, q̇
〉
− L

)
δt (1)

=: 〈 p , δq 〉 − E δt , (2)

has the same value at every time along the solution path. That is, C(t, q, q̇) is a
constant of the motion. This is Noether’s theorem.

N
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5. Show that conservation of energy results from Noether’s theorem if, in Hamilton’s prin-
ciple, the variations of L(q(t), q̇(t)) are chosen as

δq(t) =
d

ds

∣∣∣∣
s=0

q(t, s) ,

corresponding to symmetry of the Lagrangian under reparametrisations of time t → τ(t, s) so
that q(t)→ q(τ(t, s)) along a given curve q(t).

Answer For reparametrisations of time, δq vanishes and δt is a function of time
in the previous part; so stationarity of the action δS = 0 in the presence of time-
reparametrisation symmetry implies that the quantity

C(t, q, q̇) =
(〈∂L

∂q̇
, q̇
〉
− L

)
δt =: E(t, q, q̇) δt(t) , (3)

is a constant of motion along solutions of the Euler-Lagrange equations. This does
not yet imply conservation of the energy E. For that, δt must be a constant.
For simple translations in time, δq again vanishes and δt is a constant ; so stationarity
of the action δS = 0 in the presence of time-translation symmetry implies that the
energy

E(t, q, q̇) :=
〈∂L
∂q̇
, q̇
〉
− L , (4)

is a constant of motion along solutions of the Euler-Lagrange equations.
This energy is also the expression for the Legendre transform of the Lagrangian
L(t, q, q̇). N

Exercise 1.5 (Example Lagrangians)

(i) For the following Lagrangians, determine which of them are hyperregular. (A Lagrangian is
hyperregular if its fibre derivative is invertible, so that the velocity may be expressed in terms of
the position and canonical momentum.)

(ii) Write the Euler-Lagrange for these equations.

(iii) For the hyperregular Lagrangians apply the Legendre transformation to determine the Hamilto-
nian and Hamilton’s canonical equations.

1. The kinetic energy Lagrangian K(q, q̇) = 1
2gij(q)q̇

iq̇j with i, j = 1, 2, . . . , N , for a Riemannian
manifold Q with metric g, written as (Q, g).

Answer

(i) The fibre derivative in this case is FK(vq) = g(q)(vq, ·), for vq ∈ TqQ. In coordi-
nates, this is

FK(q, q̇) =
(
qi,

∂K

∂q̇i

)
= (qi, gij(q)q̇j) =: (qi, pi),

This Lagrangian is hyperregular for invertible g(q); that is, when the metric is
nondegenerate. In that case, one may solve for the velocity in terms of position
and canonical momentum as

q̇i = (g−1(q))ijpj
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(ii) The Euler-Lagrange equations for this Lagrangian produce the geodesic equa-
tions for the metric g, and are given (for finite dimensional Q in a local chart)
by

q̈i + Γijkq̇
j q̇k = 0, i = 1, . . . n,

where the three-index quantities

Γhjk =
1
2
ghl
(
∂gjl
∂qk

+
∂gkl
∂qj
−
∂gjk
∂ql

)
, with gihg

hl = δli ,

are the Christoffel symbols of the Levi-Civita connection on (Q, g) and ghl is
called the co-metric.
The calculation of these Euler-Lagrange equations, done in class, involves a step of
symmetrising by using vanishing trace Tr(SA) = 0 for the product of a symmetric
matrix with an antisymmetric one.

(iii) The Legendre transform of this Lagrangian yields the corresponding Hamiltonian

H =
1
2
pig

ij(q)pj

whose canonical equations are

q̇i =
∂H

∂pi
= gij(q)pj , ṗi = − ∂H

∂qi
= − pk

∂gkj(q)
∂qi

pj .

N

2. L(q, q̇) =
(
gij(q)q̇iq̇j

)1/2
(Is it possible to assume that L(q, q̇) = 1? Why?)

Answer

(i) Fibre derivative
This Lagrangian is not hyperregular. Its fibre derivative begins well enough

∂L

∂q̇i
=

1√
gkl(q)q̇kq̇l

gij q̇
j

The difficulty is that this Lagrangian is homogeneous of degree one in the veloci-
ties. Such functions satisfy Euler’s relation,

∂L

∂q̇i
q̇i − L = 0 .

This already spells trouble, because its Legendre transform produces a Hamilto-
nian that vanishes identically

H = piq̇
i − L ≡ 0

Taking another derivative of the Euler’s relation yields

∂2L

∂q̇i∂q̇j
q̇j = 0

so the Hessian of this Lagrangian L with respect to the tangent vectors is sin-
gular (has zero determinant). This means the Legendre transformation for this
Lagrangian is not invertible.
A singular Lagrangian might become problematic in some situations. However,
there is a simple way of obtaining a regular Lagrangian from it whose trajectories,
as we shall see, are the same as those for the singular Lagrangian.
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The Lagrangian function in this part of the problem is related to the Lagrangian
for geodesics in the previous part by

K(q, q̇) =
1
2
gij(q)q̇iq̇j = 1

2L
2(q, q̇) .

Computing the Hessian with respect to the tangent vector yields the Riemannian
metric,

1
2
∂2L2

∂q̇i∂q̇j
= gij(q) .

The emergence of a Riemannian metric from the Hessian of the square of a ho-
mogenous function of degree 1 is the hallmark of Finsler geometry, of which
Riemannian geometry is a special case. Finsler geometry, however, is beyond our
present scope.

(ii) Euler-Lagrange equations

On setting
√
gkl(q)q̇kq̇l =: ‖q̇‖, the Euler-Lagrange equations become

d

dt

(
1
‖q̇‖

gij
dqj

dt

)
=

1
2‖q̇‖

(
dqk

dt

∂gkl
∂qi

dql

dt

)
On dividing by ‖q̇‖ and setting dτ := ‖q̇‖dt, this becomes

d

dτ

(
gij
dqj

dτ

)
=

1
2

(
dqk

dτ

∂gkl
∂qi

dql

dτ

)
,

which is again the geodesic equation, but now with a reparameterised time.

Assuming that L = ‖q̇‖ = 1 is not possible, because the value of ‖q̇‖ is not
preserved by the flow.

(iii) Hamiltonian and canonical equations
Hamilton’s canonical equations are problematic for a Hamiltonian that vanishes
identically.

N

3. L(q̇) = −
(

1− q̇ · q̇
)1/2

for q̇ ∈ R3.

Answer

(i) Fibre derivative

p =
∂L

∂q̇
=

q̇√
1− q̇ · q̇

=: γ q̇ =⇒ q̇ = ± p√
1 + p · p

so this Lagrangian is hyperregular, after making a choice of sign convention, that
p · q̇ > 0, for example; so that γ =

√
1 + p · p = 1/

√
1− q̇ · q̇.

(ii) Euler-Lagrange equations

d(γ q̇)
dt

= 0

(iii) Hamiltonian and canonical equations
The Hamiltonian for this system is

H = p · q̇− L =
√

1 + |p|2 = γ

and its canonical equations are

dq
dt

=
∂H

∂p
=

p√
1 + |p|2

,
dp
dt

= − ∂H
∂q

= 0

This is geodesic motion in R3 for a relativistic particle of unit mass.
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N

4. The Lagrangian for a free particle of unit mass relative to a moving frame is obtained by setting

L(q̇,q, t) =
1
2
‖q̇ + R(q)‖2

for a function R(q, t) which governs the space and time dependence of the moving frame velocity.
For example, a frame rotating with time-dependent frequency Ω(t) about the vertical axis ẑ is
obtained by choosing R(q, t) = q× Ω(t)ẑ.

Answer

(i) Fibre derivative
The fibre derivative gives a linear relation

p =
∂L

∂q̇
= q̇ + R(q)

so this Lagrangian is hyperregular.
(ii) Euler-Lagrange equations

d

dt
(q̇i +Ri(q)) = (q̇j +Rj(q))

∂Rj

∂qi

or
q̈i = (Rj,i −Ri,j)q̇j +

∂

∂qi
(1
2 |R|

2)

In vector form, this is

q̈ = q̇× 2Ω +
∂

∂q
(1
2 |R|

2) with 2Ω :=
∂

∂q
×R(q)

and the terms on the right comprise the sum of the Coriolis and centrifugal forces.
(iii) Hamiltonian and canonical equations

The Hamiltonian for this system is

H = p · q̇− L = 1
2 |p|

2 − p ·R(q)

and its canonical equations are

dq
dt

=
∂H

∂p
= p−R(q) ,

dp
dt

= − ∂H
∂q

= pj
∂

∂q
Rj(q)

N

5. The Lagrangian for a charged particle of mass m in a magnetic field B = curlA is

L(q, q̇) =
m

2
q̇ · q̇ +

e

c
q̇ ·A(q),

for constants m, e, c and prescribed function A(q).

How do the Euler-Lagrange equations for this Lagrangian differ from those of the previous part
for free motion in a moving frame with velocity e

mcA(q)?
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Answer

(i) Fibre derivative
The fibre derivative gives a linear relation

p =
∂L

∂q̇
= mq̇ +

e

c
A(q)

so this Lagrangian is hyperregular.
(ii) Euler-Lagrange equations

In vector form, this is

q̈ =
e

mc
q̇×B(q) with B(q) :=

∂

∂q
×A(q)

and the terms on the right comprise the Lorentz force.
(iii) Hamiltonian and canonical equations

The Hamiltonian for this system is

H = p · q̇− L =
1

2m

∣∣∣p− e

c
A(q)

∣∣∣2
and its canonical equations are

dq
dt

=
∂H

∂p
=

1
m

(
p− e

c
A(q)

)
,

dp
dt

= − ∂H
∂q

=
e

mc

(
pj −

e

c
Aj(q)

) ∂
∂q

Aj(q)

These are the same equations as in the previous part, modulo the relation R =
eA/mc and neglect of centrifugal force.

N

6. Let Q be the manifold R3 × S1 with variables (q, θ). Introduce the Lagrangian L : TQ '
TR3 × TS1 7→ R as

L(q, θ, q̇, θ̇) =
m

2
‖q̇‖2 +

e

2c

(
q̇ ·A(q) + θ̇

)2
.

The Lagrangian L is positive definite in (q̇, θ̇); so it may be regarded as the kinetic energy of a
metric.

(i) Interpret the motion as geodesic.
(ii) Identify how the Euler-Lagrange equations for this Lagrangian differ from those of the

previous part for a charged particle with mass moving in a magnetic field?

Answer

(i) Fibre derivative
in this example, we have two fibre derivatives that each give a linear relation

p =
∂L

∂q̇
= mq̇ +

e

c

(
q̇ ·A(q) + θ̇

)
A(q) = mq̇ + pθA(q)

pθ =
∂L

∂θ̇
=
e

c

(
q̇ ·A(q) + θ̇

)
so this Lagrangian is hyperregular.

(ii) Euler-Lagrange equations

q̈ =
pθ
m

q̇×B(q) with B(q) :=
∂

∂q
×A(q)

dpθ
dt

= 0

This is the same as the previous part, on setting pθ = e/c.
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(iii) Hamiltonian and canonical equations
The Hamiltonian H associated to L by the Legendre transformation for this La-
grangian is

H(q, θ,p, pθ) = p · q̇ + pθθ̇ − L(q, q̇, θ, θ̇)

= p · 1
m

(p− pθA) + pθ(pθ −A · q̇)

− 1
2
m|q̇|2 − 1

2
p2
θ

= p · 1
m

(p− pθA) +
1
2
p2
θ

− pθA ·
1
m

(p− pθA)− 1
2m
|p− pθA|2

=
1

2m
|p− pθA|2 +

1
2
p2
θ. (5)

Remarks

(i) This example provides an easy but fundamental illustration of the geome-
try of (Lagrangian) reduction by symmetry. The canonical equations for the
Hamiltonian H now reproduce Newton’s equations for the Lorentz force law,
reinterpreted as geodesic motion with respect to the metric defined by the
Lagrangian on the tangent bundle TQ ' TR3 × TS1.

(ii) On the constant level set pθ = e/c, this Hamiltonian H is a function of
only the variables (q,p) and is equal to the Hamiltonian for charged particle
motion under the Lorentz force up to an additive constant.

N

7. Consider the Lagrangian

Lε(q, q̇) =
1
2
‖q̇‖2 − gez · q−

1
4ε

(1− ‖q‖2)2 +
1
ε
π(q · q̇)

for a particle with coordinates q ∈ R3, constants g, ε and vertical unit vector ez. Let γε(t) be the
curve in R3 obtained by solving the Euler-Lagrange equations for Lε with the initial conditions
q0 = γε(0), q̇0 = γ̇ε(0).

Show that

(a) In the limit
lim

g→0,ε→0
γε(t)

the motion is along is a great circle on the two-sphere S2, provided that the initial conditions
satisfy ‖q0‖2 = 1 and q0 · q̇0 = 0.

(b) For constant g > 0 the limit
lim
ε→0

γε(t)

recovers the dynamics of a spherical pendulum.

Answer

(i) Fibre derivative
The fibre derivative gives a linear relation

p =
∂L

∂q̇
= q̇

so this Lagrangian is hyperregular.
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(ii) Euler-Lagrange equations

q̈ = −gê3 +
1
ε

(π̇ + 1− ‖q‖2)q . (6)

Imposing d
dt(q · q̇) = 0 yields

1
ε

(π̇ + 1− ‖q‖2) = ‖q̇‖2 − gê3 · q

which determines π(t) once the motion for q(t) is known.
(iii) Hamiltonian and canonical equations

The corresponding Hamiltonian is obtained by the Legendre transformation as,

H(q,p) = 1
2‖p−

π

ε
q‖2 + gê3 · q +

1
4ε

(1− ‖q‖2)2 , (7)

in which the variable p is the momentum canonically conjugate to the radial
position q. The canonical equations on (1− ‖q‖2) = 0, are

q̇ = {q, H} =
∂H

∂p
= p− π

ε
q

ṗ = {p, H} = − ∂H
∂q

= −gê3 + (p− π

ε
q)
π

ε
+

1
ε

(1− ‖q‖2)q .

These equations seem to be equivalent to the spherical pendulum equations for any
value of ε. Hence, items (a) and (b) above seem to be answered by the spherical
pendulum solution. N

8. How does the motion in the previous part differ from that obtained via Hamilton’s principle for
the following Lagrangian?

Lε(q, q̇) =
1
2
‖q̇‖2 − gez · q− µ(1− ‖q‖2)

where µ is called a Lagrange multiplier and must be determined as part of the solution.

Answer See Exercise 1.9 about the spherical pendulum. N

Exercise 1.6 (Poisson brackets)

1. Show that the canonical Poisson bracket is bilinear, skew symmetric, satisfies the Jacobi identity
and acts as a derivation on products of functions in phase space.

Answer This is easy for all but the last property, which is a bit tedious. N

2. Given two constants of motion, what does the Jacobi identity imply about additional constants
of motion associated with their Poisson bracket?

Answer The Poisson bracket of two constants of motion is another one. N

3. Compute the Poisson brackets among the R3-valued functions

Ji = εijkpjqk

for (q,p) ∈ T ∗R3.
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Answer

{Ji, Jj} = εijkJk

N

4. Verify that Hamilton’s equations for the function

Jξ(q,p) = 〈J(z), ξ〉 = ξ · (q× p)

with z := (q,p) ∈ T ∗R3 and ξ ∈ R3 give infinitesimal rotations of q and p about the ξ-axis.

Answer The Hamiltonian vector field for Jξ is

XJξ := { · , Jξ} =
∂Jξ

∂p
· ∂
∂q
− ∂Jξ

∂q
· ∂
∂p

= ξ × q · ∂
∂q

+ ξ × p · ∂
∂p

,

whose coefficients are the infinitesimal rotations of q and p about the ξ-axis. N

5. Show that for smooth functions c, f, h : R3 → R, the R3-bracket defined by

{f, h} = −∇c · ∇f ×∇h

satisfies the defining properties of a Poisson bracket. Is it also a derivation satisfying the Leibnitz
relation for a product of functions on R3? If so, why?

Answer The R3-bracket is plainly a skew-symmetric bilinear Leibniz operator. Its

Hamiltonian vector fields are divergence free vector fields in R3. These vector fields in
R3 satisfy the Jacobi identity under commutation. The identification of the R3-bracket
with its Hamiltonian vector fields shows that it satisfies Jacobi. This will be made
clearer below. N

6. How is the R3-bracket related to the canonical Poisson bracket in the plane?

Answer The canonical Poisson bracket in the (x, y)-plane is given by the particular

choice of the R3-bracket
{f, h} = −∇z · ∇f ×∇h

N

7. The Casimirs (or distinguished functions, as Lie called them) of a Poisson bracket satisfy

{c, h}(x) = 0 , for all h(x)

Part 5 verifies that the R3-bracket satisfies the defining properties of a Poisson bracket. What
are the Casimirs for the R3 bracket?

Answer Smooth functions of c are Casimirs for the R3-bracket given by

{f, h} = −∇c · ∇f ×∇h.

N
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8. Write the motion equation for the R3-bracket

ẋ = {x, h}

in vector form using gradients and cross products. Show that the corresponding Hamiltonian
vector field Xh = { · , h} has zero divergence.

Answer

ẋ = {x, h} = ∇c×∇h

The corresponding Hamiltonian vector field Xh = { · , h} has zero divergence because
the vector ∇c×∇h has zero divergence. (It’s a curl.) N

9. Show that under the R3-bracket, the Hamiltonian vector fields Xf = { · , f}, Xh = { · , h} satisfy
the following anti-homomorphism that relates the commutation of vector fields to the R3-bracket
operation between smooth functions on R3,

[Xf , Xh] = −X{f,h}.

Hint: commutation of divergenceless vector fields does satisfy the Jacobi identity.

Answer

Lemma 1.7 The R3-bracket defined on smooth functions (C,F,H) by

{F,H} = −∇C · ∇F ×∇H

may be identified with the divergenceless vector fields by

[XG, XH ] = −X{G,H} , (8)

where [XG, XH ] is the Jacobi-Lie bracket of vector fields XG and XH .

Proof. Equation (8) may be verified by a direct calculation,

[XG, XH ] = XGXH −XHXG

= {G, · }{H, · } − {H, · }{G, · }
= {G, {H, · }} − {H, {G, · }}
= {{G, H}, · } = −X{G,H} .

Remark 1.8 The last step in the proof of Lemma 1.7 uses the Jacobi identity for
the R3-bracket, which follows from the Jacobi identity for divergenceless vector fields,
since

XFXGXH = −{F, {G, {H, · }}}

N

10. Show that the motion equation for the R3-bracket is invariant under a certain linear combination
of the functions c and h. Interpret this invariance geometrically.

Answer

∇(αc+ βh)×∇(γc+ εh) = ∇c×∇h for constants satisfying αε− βγ = 1.

Under such a (volume-preserving) transformation, the level sets change, but their
intersections remain invariant.

N



D. D. Holm Solutions to M3-4A16 Assessed Problems # 1 27 Nov 2010 15

mg

Figure 1: Spherical pendulum: x = R sin θ cosφ, y = R sin θ sin θ, z = −R cos θ.

Exercise 1.9 (Spherical pendulum)
A spherical pendulum of length L swings from a fixed point of support under the constant downward

force of gravity mg.
Use spherical coordinates with azimuthal angle 0 ≤ φ < 2π and polar angle 0 ≤ θ < π measured

from the downward vertical defined in terms of Cartesian coordinates by (note minus sign in z)

1. Find its equations of motion according to the approaches of

(a) Newton,

(b) Lagrange and

(c) Hamilton.

Answer This is the content of Appendix A, Section A.1.2 of the text. The remain-
der of the problem was solved in class, as follows. N

2. Write the constrained Lagrangian for the L(x, ẋ) : TR3 → R as

L(x, ẋ) = 1
2 |ẋ|

2 − gê3 · x− 1
2µ(1− |x|2), (9)

in which the Lagrange multiplier µ constrains the motion to remain on the sphere S2 by enforcing
(1− |x|2) = 0 when it is varied in Hamilton’s principle.

(a) Compute the variations in Hamilton’s principle and write the Euler-Lagrange equations for
the spherical pendulum on TR3.

(b) Solve for the Lagrange multiplier by requiring that TS2 is preserved by this motion on TR3.

Answer

(a) The corresponding Euler-Lagrange equations are

ẍ = −gê3 + µx . (10)

(b) This equation preserves both of the TS2 defining relations 1−|x|2 = 0 and x·ẋ = 0,
provided the Lagrange multiplier is given by

µ = gê3 · x− |ẋ|2 . (11)
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N

3. Find the Hamiltonian and its canonical equations.

Answer The fibre derivative of the constrained Lagrangian L in (9) is

y =
∂L

∂ẋ
= ẋ . (12)

The corresponding Hamiltonian is obtained by the Legendre transformation as,

H(x,y) = 1
2 |y|

2 + gê3 · x + 1
2(gê3 · x− |y|2)(1− |x|2) , (13)

in which the variable y is the momentum canonically conjugate to the radial position
x. The canonical equations on (1− |x|2) = 0, are

ẋ = {x, H} =
∂H

∂y
= y and ẏ = {y, H} = − ∂H

∂x
= −gê3 + (gê3 · x− |y|2)x . (14)

N

4. A convenient choice of basis for the algebra of polynomials in (x,y) that are S1-invariant under
rotations about the 3-axis is given by

σ1 = x3 σ3 = y2
1 + y2

2 + y2
3 σ5 = x1y1 + x2y2

σ2 = y3 σ4 = x2
1 + x2

2, σ6 = x1y2 − x2y1

(a) Find the cubic relation that these S1-invariants satisfy and express the defining relations
for TS2 in terms of them.

(b) Use these relations to eliminate σ4 and σ5 in favour of {σ1, σ2, σ3, σ6} and find the cubic
relation satisfied among {σ1, σ2, σ3, σ6}.

Answer

(a) These six S1-invariants satisfy the cubic algebraic relation

σ2
5 + σ2

6 = σ4(σ3 − σ2
2) . (15)

Hence, they also satisfy the positivity conditions

σ4 ≥ 0, σ3 ≥ σ2
2. (16)

In these variables, the defining relations for TS2 become

σ4 + σ2
1 = 1 and σ5 + σ1σ2 = 0 . (17)

(b) Using the relations in (17) to eliminate σ4 and σ5 from (15) yields the cubic
relation

C(σ1, σ2, σ3, σ6) = σ2
2 + σ2

6 − σ3(1− σ2
1) = 0 (18)

N

5. (a) Find the Poisson bracket relations among the remaining quadratic invariant variables {σ1, σ2, σ3, σ6}
(b) Explain how this Poisson bracket is related to the R3-bracket.

Answer
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(a) The Poisson bracket relations among the remaining quadratic invariant variables
{σ1, σ2, σ3, σ6} may be computed from their definitions in terms of the canonically
conjugate variables (x,y), as

{ · , · } σ1 σ2 σ3 σ6

σ1

σ2

σ3

σ6

0 1− σ2
1 2σ2 0

−1 + σ2
1 0 − 2σ1σ3 0

− 2σ2 2σ1σ3 0 0
0 0 0 0

(b) The Poisson bracket amongst {σ1, σ2, σ3} defines an R3-bracket, given by

{σi, σj} = − εijk
∂C

∂σk
. (19)

N

6. Write their dynamics on TS2 in Hamiltonian form.

Answer In Hamiltonian form the dynamics on TS2 (which is preserved by the
motion) simplifies because the spherical pendulum Hamiltonian in (13) becomes linear
in the S1-invariants

H|TS2 = 1
2σ3 + gσ1 . (20)

Hence the dynamics becomes

σ̇i = {σi, H} = εijk
∂C

∂σj

∂H

∂σk

or explicitly,

σ̇1 = {σ1, H} = −σ2 , σ̇2 = {σ2, H} = σ1σ3 + g(1− σ2
1) , σ̇3 = {σ3, H} = 2gσ2 ,

and σ̇6 = {σ6, H} = 0 because the Poisson bracket with σ6 vanishes with all the other
S1-invariants.

N


