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2 M3-4-5 A16 Assessed Problems # 2 Due 2pm 1 Dec 2011

Please budget your time: Many of these problems are very easy, but some of the more interesting ones
may become time consuming. So work steadily through them, don’t wait until the last minute.

Exercise 2.1 R3-bracket for Maxwell-Bloch equations

The real-valued Maxwell-Bloch system for x = (x1, x2, x3)T ∈ R3 is given by

ẋ1 = kx2 , ẋ2 = x1x3 , ẋ3 = −x1x2 ,

where k is a constant with the same units as that of (x1, x2, x3) and time is dimensionless.

(a) Write this system in three-dimensional vector R3-bracket notation as

ẋ = ∇H1 ×∇H2 ,

where H1 and H2 are two conserved functions, one of whose level sets (let it be H1) may be taken
as circular cylinders oriented along the x1-direction and the other (let it be H2) whose level sets
may be taken as parabolic cylinders oriented along the x2-direction.

Answer

The real-valued Maxwell-Bloch system is expressible in three-dimensional vector nota-
tion as

ẋ = ∇H1 ×∇H2 ,

where H1 and H2 are the two conserved functions

H1 =
1

2
(x2

2 + x2
3) and H2 = kx3 +

1

2
x2

1 .

N

(b) Restrict the equations and their R3 Poisson bracket to a level set of H2. Show that the Poisson
bracket on the parabolic cylinder H2 = const is symplectic.

Answer

A level set of H2 = kx3 + 1
2x

2
1 is a parabolic cylinder oriented along the x2-direction.

On a level set of H2, one has

H1 =
1

2
x2

2 +
1

2k2

(
H2 −

1

2
x2

1

)2

=:
1

2
x2

2 + V (x1) ,

so that
d 3x = dx1 ∧ dx2 ∧ dx3 = dx1 ∧ dx2 ∧ dH2 .

The R3 bracket restricts to such a level set as{
F, H

}
d 3x = dH2 ∧

{
F, H1

}
p−cyldx1 ∧ dx2 ,

where the Poisson bracket on the parabolic cylinder H2 = const is symplectic,{
F, H1

}
p−cyl =

∂F

∂x1

∂H1

∂x2
− ∂H1

∂x1

∂F

∂x2
.

N

(c) Derive the equation of motion on a level set of H2 and express them in the form of Newton’s Law.
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Answer

Hence, the equations of motion on the parabolic cylinder H2 = const are

ẋ1 =
∂H1

∂x2
= x2 ,

ẋ2 = −∂H1

∂x1
= − x1

k2

(
H2 −

1

2
x2

1

)
.

Therefore, an equation of motion for x1 emerges, which may be expressed in the form
of Newton’s Law for the Duffing oscillator,

ẍ1 = −x1

k2

(
H2 −

1

2
x2

1

)
.

N

(d) Identify steady solutions and determine which are unstable (saddle points) and which are stable
(centers).

Answer

The Duffing oscillator has critical points at

(x1, x2) =
(
0, 0

)
and

(
±
√

2H2, 0
)
.

The first of these critical points is unstable (a saddle point) and the other two are stable
(centers).

N

(e) Determine the geometric and dynamic phases of a closed orbit on a level set of H2.

Answer

The geometric phase for any closed orbit on the level set of H2 is the integral

∆φgeom =
1

H2

∫
A
dx1 ∧ dx2 = − 1

H2

∮
∂A
x2dx1 ,

the latter by Stokes theorem. Here A is the area enclosed by the solution orbit ∂A on
a level set of H2. Then

∆φgeom = − 1

H2

∮
∂A
x2ẋ1 dt = − 1

H2

∮
∂A
x2
∂H

∂x2
dt

= = − 1

H2

∮
∂A
x2

2 dt = −2T

H2

(
H −

〈
V
〉)

,

where 〈
V
〉

=
1

T

∮
∂A

1

2k2

(
H2 −

1

2
x2

1

)2

dt

is the average of the potential energy over the orbit.

The dynamic phase is given by the formula,

∆φdyn =
1

H2

∮
∂A

(
x2ẋ1 +H2φ̇

)
dt

=
1

H2

∮
∂A

(
x2
∂H

∂x2
+H2

∂H

∂H2

)
dt

=
1

H2

∮
∂A
x2

2dt+

∮
∂A

1
k2

(H2 − 1
2x

2
1) dt

= −∆φgeom +
T

k

〈√
2V
〉

=
2T

H2

(
H −

〈
V
〉

+
H2

2k

〈√
2V
〉)
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where φ is the angle conjugate to H2 and T is the period of the orbit around which the
integration is performed. Thus, the total phase change around the orbit is

∆φtot = ∆φdyn + ∆φgeom =
T

k

〈√
2V
〉
.

N

Exercise 2.2 The fish: quadratically nonlinear oscillator

Consider the Hamiltonian dynamics on a symplectic manifold of a system comprising two real
degrees of freedom, with real phase space variables (x, y, θ, z), symplectic form

ω = dx ∧ dy + dθ ∧ dz

and Hamiltonian
H = 1

2y
2 + x

(
1
3x

2 − z
)
− 2

3z
3/2

(a) Write the canonical Poisson bracket for this system.

Answer

{F , H} = HyFx −HxFy +HzFθ −HθFz

N

(b) Write Hamilton’s canonical equations for this system. Explain how to keep z ≥ 0, so that H and
θ remain real.

Answer

Hamilton’s canonical equations for this system are

ẋ = {x,H} = Hy = y ,

ẏ = {y,H} = −Hx = −(x2 − z) ,

and

θ̇ = {θ,H} = Hz = −(x+
√
z ) ,

ż = {z,H} = −Hθ = 0 .

For H and θ to remain real, one need only choose the initial value of the constant of
motion z ≥ 0. N

(c) At what values of x, y and H does the system have stationary points in the (x, y) plane?

Answer

The system has (x, y) stationary points when its time derivatives vanish: at y = 0,
x = ±

√
z and H = −4

3z
3/2. N

(d) Propose a strategy for solving these equations. In what order should they be solved?

Answer

Since z is a constant of motion, the equation for its conjugate variable θ(t) decouples
from the others and may be solved as a quadrature after first solving for x(t) and y(t)
on a level set of z. N

(e) Identify the constants of motion of this system and explain why they are conserved.
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Answer

There are two constants of motion:
(i) The Hamiltonian H for the canonical equations is conserved, because the Poisson
bracket in Ḣ = {H,H} is antisymmetric.
(ii) The momentum z conjugate to θ is conserved, because Hθ = 0. N

(f) Compute the associated Hamiltonian vector field XH and show that it satisfies

XH ω = dH

Answer

XH = { · , H} = Hy∂x −Hx∂y +Hz∂θ −Hθ∂z

= y∂x − (x2 − z)∂y − (x+
√
z)∂θ,

so that
XH ω = ydy + (x2 − z)dx− (x+

√
z )dz = dH

N

(g) Write the Poisson bracket that expresses the Hamiltonian vector field XH as a divergenceless
vector field in R3 with coordinates x = (x, y, z) ∈ R3. Explain why this Poisson bracket satisfies
the Jacobi identity.

Answer

Write the evolution equations for x = (x, y, z)T ∈ R3 as

ẋ = {x, H} = ∇H ×∇z = (Hy,−Hx, 0)T

= (y, z − x2, 0)T

= (ẋ, ẏ, ż)T .

Hence, for any smooth function F (x),

{F,H} = ∇z · ∇F ×∇H = FxHy −HxFy .

This is the canonical Poisson bracket for one degree of freedom, which is known to
satisfy the Jacobi identity. N

(h) Identify the Casimir function for this R3 bracket. Show explicitly that it satisfies the definition of
a Casimir function.

Answer

Substituting F = Φ(z) for a smooth function Φ into the bracket expression yields

{Φ(z), H} = ∇z · ∇Φ(z)×∇H = ∇H · ∇z ×∇Φ(z) = 0,

for all H. This proves that F = Φ(z) is a Casimir function for any smooth Φ. N

(i) Sketch a graph of the intersections of the level surfaces in R3 of the Hamiltonian and Casimir
function. Show the directions of flow along these intersections. Identify the locations and types of
any relative equilibria at the tangent points of these surfaces.

Answer

The sketch should show a saddle-node fish shape pointing rightward in the (x, y) plane
with elliptic equilibrium at (x, y) = (

√
z, 0), hyperbolic equilibrium at (x, y) = (−

√
z, 0)

and directions of flow with sign(ẋ)=sign(y). The fish shape is sketched in Figure 1 for
z = 1. N
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Figure 1: Phase plane for the saddle-node fish shape arising from the intersections of the level surfaces in R3 of the
Hamiltonian and Casimir function.

(j) Linearise around the relative equilibria on a level set of the Casimir (z) and compute its eigenval-
ues.

Answer

On a level surface of z the (x, y) coordinates satisfy ẋ = y and ẏ = z − x2. Linearising
around (xe, ye) = (±

√
z, 0) yields with (x, y) = (xe + φ1(t), ye + φ2(t))[

φ̇1

φ̇2

]
=

[
0 1
−2xe 0

] [
φ1

φ2

]
.

Its characteristic equation,

det

[
λ −1

2xe λ

]
= λ2 + 2xe = 0,

yields λ2 = −2xe = ∓2
√
z.

Hence, the eigenvalues are,
λ = ±i

√
2z1/4 at the elliptic equilibrium (xe, ye) = (

√
z, 0), and

λ = ±
√

2z1/4 at the hyperbolic equilibrium (xe, ye) = (−
√
z, 0). N

(k) If you found a hyperbolic equilibrium point in the previous part connected to itself by a homoclinic
orbit, then reduce the equation for the homoclinic orbit to an indefinite integral expression.

Answer

On the homoclinic orbit the Hamiltonian vanishes, so that

H = 1
2y

2 + x
(

1
3x

2 − z
)
− 2

3z
3/2 = 0.

Using y = ẋ, rearranging and integrating implies the indefinite integral expression, or
“quadrature”, ∫

dx√
2z3/2 − x3 + 3zx

=
√

2
3

∫
dt .

After some work this integrates to

x(t) +
√
z

3
√
z

= sech2

(
z1/4t√

2

)
.

From this equation, one may also compute the evolution of θ(t) on the homoclinic orbit
by integrating the θ-equation,

dθ

dt
= −(x(t) +

√
z ).

N
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Exercise 2.3 2D coupled oscillators

Consider the 2D oscillator Hamiltonian H : C2 → R, with complex 2-vector a = (a1, a2) ∈ C2 and
constant frequencies ωj,

H =
1

2

2∑
j=1

ωj |aj |2 =
1

4
(ω1 + ω2)

(
|a1|2 + |a2|2

)
+

1

4
(ω1 − ω2)

(
|a1|2 − |a2|2

)
.

(a) Compute its canonical Hamiltonian dynamics with
{aj , a∗k} = −2iδjk.

Explain why this is the sum of a 1 : 1 resonant oscillator and a 1 : −1 oscillator.

Answer

The flow generated by the Hamiltonian vector field of R = |a1|2 + |a2|2 given by

daj
dr

:= {aj , R} = −2i
∂R

∂a∗j
= −2i aj

whose solution is the 1 : 1 resonant oscillator motion

R : (a1, a2)→ (e−2ira1, e
−2ira2)

Likewise, with Z = |a1|2 − |a2|2 we have

daj
dz

:= {aj , Z} = −2i
∂Z

∂a∗j
,

da1

dz
= −2i a1

da2

dz
= +2i a2

which has the 1 : −1 resonant oscillator solution

Z : (a1, a2)→ (e−2iza1, e
+2iza2)

N

(b) Find the transformations generated by X,Y, Z,R on a1, a2, where

R = |a1|2 + |a2|2 ,
Z = |a1|2 − |a2|2 ,

X − iY = 2a1a
∗
2 .

Express these infinitesimal transformations as matrix operations and identify their corresponding
finite transformations.

Answer See GM1 page 375.

From the definition of the Hamiltonian vector field

{ · , H } = −2i

(
∂H

∂a∗j

∂

∂aj
− ∂H

∂aj

∂

∂a∗j

)

one finds the following linear transformations for the quadratic quantities, X,Y, Z,R,

d

dr

[
a1

a2

]
= −2i

[
1 0
0 1

] [
a1

a2

]
,

d

dz

[
a1

a2

]
= −2i

[
1 0
0 −1

] [
a1

a2

]
and

d

dx

[
a1

a2

]
= −2i

[
0 1
1 0

] [
a1

a2

]
,

d

dy

[
a1

a2

]
= −2i

[
0 −i
i 0

] [
a1

a2

]
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These linear transformations summon the four 2×2 Pauli spin matrices (σR, σX , σY , σZ)
given, respectively, by

σR =

[
1 0
0 1

]
, σX =

[
0 1
1 0

]
,

σY =

[
0 −i
i 0

]
, σZ =

[
1 0
0 −1

]
.

The corresponding finite transformations are found by solving the differential equations
in the previous part,[

a1(r)
a2(r)

]
=

[
e−2ira1(0)
e−2ira2(0)

]
,

[
a1(z)
a2(z)

]
=

[
e−2iza1(0)
e+2iza2(0)

]
[
a1(x)
a2(x)

]
=

[
cos(2x) − sin(2x)
sin(2x) cos(2x)

] [
a1(0)
a2(0)

]
,

[
a1(y)
a2(y)

]
=

[
cos(2y) − sin(2y)
sin(2y) cos(2y)

] [
a1(0)
a2(0)

]
N

(c) For the starting Hamiltonian,

H =
ω1

2
(R+ Z) +

ω2

2
(R− Z)

=
1

2
(ω1 + ω2)R+

1

2
(ω1 − ω2)Z ,

write the equations Ẋ, Ẏ , Ż, Ṙ for the S1 invariants X,Y, Z,R of the 1 : 1 resonance.

Write these equations in vector form, with X = (X,Y, Z)T , and describe this motion in terms of
level sets of the Poincaré sphere and the Hamiltonian H.

Answer See GM1 page 377.

The dynamics is given by the Poisson bracket relation

Ḟ = {F,H} = −∇R
2

2
· ∇F ×∇H(X,Y, Z)

= − 1

2
(ω1 − ω2)∇R

2

2
· ∇F ×∇Z .

Then Ṙ = 0 = Ż and

Ẋ =
1

2
(ω1 − ω2)Y , Ẏ = − 1

2
(ω1 − ω2)X .

In vector form, with X = (X,Y, Z)T , this is

Ẋ =
1

2
(ω1 − ω2)X× Ẑ ,

where Ẑ is the unit vector in the Z-direction (cos θ = 0). This motion is uniform
rotation in the positive direction along a latitude of the Poincaré sphere R = const.
This azimuthal rotation on a latitude at fixed polar angle on the sphere occurs along
the intersections of level sets of the Poincaré sphere R = const and the planes Z = const,
which are level sets of the Hamiltonian for a fixed value of R.

N
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Exercise 2.4 Matrix rigid body equations & cotangent lift momentum maps

(a) Let the Lie group SO(n) act on itself with infinitesimal transformation

ΦΞ(Q) = QΞ for Q ∈ SO(n) and Ξ = −ΞT ∈ so(n)

Compute the cotangent lift (CL) momentum map for this action and its CL infinitesimal action
on T ∗SO(n).

Answer

From the definition of CL momentum map, M(P,Q) : T ∗SO(n)→ so(n)∗, we have

MΞ = 〈M(P,Q) , Ξ〉 = 〈PQ , ΦΞ(Q)〉 = tr
(
P TQΞ

)
= tr

(1

2

(
P TQ−QTP

)
Ξ
)

So

M(P,Q) = − 1

2

(
P TQ−QTP

)
The corresponding infinitesimal action on (Q,P ) ∈ T ∗SO(n) by CL are given by the
canonical equations for MΞ(Q,P ),

Q′ = {Q,MΞ} =
∂MΞ

∂P
= ΦΞ(Q) = QΞ

and

P ′ = {P,MΞ} = − ∂M
Ξ

∂Q
= PΞ

N

(b) Compute the variations in Hamilton’s principle δS = 0 with Clebsch-constrained action integral

S(Ω, Q, P ) =

∫ b

a
l(Ω) + tr

(
P T
(
Q̇−QΩ

))
dt .

Discuss the relation between these variational equations and the equations for the infinitesimal
Lie algebra actions associated with CL momentum maps.

Answer

The variational equations are:

M :=
∂l

∂Ω
=

1

2
(P TQ−QTP )

and
Q̇ = QΩ and Ṗ = PΩ ,

as a result of the constraints.

These take exactly the same form as the equations for the infinitesimal Lie algebra
actions associated with CL momentum maps. N

(c) Show that the Clebsch-constrained Hamilton’s principle implies that M = ∂l/∂Ω satisfies the
Euler-Poincaré equation

dM

dt
= ad∗ΩM = −

[
Ω, M

]
.

Answer

This is a direct calculation that uses the Jacobi identity. It also follows because CL
momentum maps are infinitesimally equivariant, so they satisfy the EP equation. N
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Exercise 2.5 1:2 resonance

The Hamiltonian C2 → R for a certain 1:2 resonance is given by

H = 1
2 |a1|2 − |a2|2 + 1

2 Im(a∗1
2a2) ,

in terms of canonical variables (a1, a
∗
1, a2, a

∗
2) ∈ C2 whose Poisson bracket relation

{aj , a∗k} = −2iδjk, for j, k = 1, 2 ,

is invariant under the 1:2 resonance S1 transformation

a1 → eiφ and a2 → e2iφ.

(a) Write the motion equations in terms of the canonical variables (a1, a
∗
1, a2, a

∗
2) ∈ C2.

Answer

The canonical Poisson bracket relations, {aj , a∗k} = −2iδjk for j, k = 1, 2 imply

ȧ1 = {a1, H} = −2i
∂H

∂a∗1
= − ia1 − a∗1a2 and ȧ2 = {a2, H} = −2i

∂H

∂a∗2
= 2ia2 +

1

2
a2

1

N

(b) Introduce the orbit map C2 → R4

π : (a1, a
∗
1, a2, a

∗
2)→ {X,Y, Z,R)}

and transform the Hamiltonian H on C2 to new variables X,Y, Z,R ∈ R4 given by

R = 1
2 |a1|2 + |a2|2 ,

Z = 1
2 |a1|2 − |a2|2 ,

X − iY = 2a∗1
2a2 ,

that are invariant under the 1:2 resonance S1 transformation.

Answer

Substitution of the definitions of X,Y, Z,R above yields

H = 1
2 |a1|2 − |a2|2 + 1

2 Im(a∗1
2a2) = Z − 1

4Y

N

(c) Show that these variables are functionally dependent, because they satisfy a cubic algebraic relation
C(X,Y, Z,R) = 0.

Answer

One shows that these variables are not independent by verifying that the cubic equation,

C(X,Y, Z,R) = X2 + Y 2 − 2(R− Z)(R+ Z)2 = 0

so that C(X,Y, Z,R) vanishes identically.

N

(d) Use the orbit map π : C2 → R4 to make a table of Poisson brackets among the four quadratic 1:2
resonance S1-invariant variables X,Y, Z,R ∈ R4.
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Answer

We have ∇C = 2
(
X, Y, (R2 − 2ZR− 3Z2)

)
. Denoting (X1, X2, X3) = (X,Y, Z) gives

{Xi, Xj} = − εijk
∂C

∂Xk
and {Xi, R} = 0 so Ẋ = ∇C ×∇H

N

(e) Show that both R and the cubic algebraic relation C(X,Y, Z,R) = 0 are Casimirs for these Poisson
brackets.

Answer

The Poisson brackets {R, a1} = ia1 and {R, a2} = 2ia2, {R, · } show that the quantity
R generates the 1:2 resonance S1 transformation. This implies that

{R,X} = {R, Y } = {R,Z} = 0 .

because X,Y, Z,R are invariant under the 1 : 2 resonance S1 phase shift. Likewise, the
definition of the R3 Nambu bracket

{F,H} = −∇C · ∇F ×∇H

implies that C is its Casimir. That is,

{C,H} = −∇C · ∇C ×∇H = 0

for any Hamiltonian H(X,Y, Z). N

(f) Write the Hamiltonian, Poisson bracket and equations of motion in terms of the remaining vari-
ables X = (X,Y, Z)T ∈ R3.

Answer

Hamiltonian: H = Z − Y/4,

Poisson bracket: {F,H} = −∇C · ∇F ×∇H,

Equations of motion: Ẋ = ∇C ×∇H

Ẋ = {X, H} = −2Y − 1

2
(R2 − 2ZR− 3Z2)

Ẏ = {Y, H} = −2X

Ż = {Z, H} = −X/2

N

(g) Describe this motion in terms of level sets of the Hamiltonian H and the orbit manifold for the
1:2 resonance, given by C(X,Y, Z,R) = 0.

Answer

The motion takes place along intersections of the level sets of C (which are cubic surfaces
of revolution indexed by the value of R) and H (which are X-invariant planes of positive
slope (dZ/dY = 1/4). N

(h) Restrict the dynamics to a level set of the Hamiltonian and show that it reduces there to the
equation of motion for a point particle in a cubic potential. Explain its geometrical meaning.
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Answer

As in Part (f), the equations of motion: Ẋ = ∇C ×∇H in components (X1, X2, X3) =
(X,Y, Z) are

Ẋ = {X, H} = −2Y − 1

2
(R2 − 2ZR− 3Z2)

Ẏ = {Y, H} = −2X

Ż = {Z, H} = −X/2

Inserting Z = H + Y/4, taking a time derivative to obtain Ÿ and eliminating X and Z
yields Newton’s law for Y with a cubic potential,

Ÿ = −V ′(Y ) with V (Y ) = − 1

32
Y 3 +

1

8
(8−R− 3H)Y 2 − 1

2
(3H2 + 2RH −R2)Y

The solution behaviour of this equation depends on the values of R and H. In particular,
it undergoes nonlinear oscillations when the discriminant of the quadratic equilibrium
condition V ′(Y ) = 0 is positive. In this case, the phase plane has a homoclinic orbit in
the shape of a fish heading leftward, i.e., in the opposite sense from Exercise 2.2.

At the hyperbolic point the Hamiltonian plane intersects the reduced orbit manifold
C(X,Y, Z,R) = 0 at its corner singularity. N

(i) Compute the geometric and dynamic phases for any closed orbit on a level set of H.

Answer

On a level set of H the motion is canonical in terms of Y and its canonical momentum
P = Ẏ = −2X with the Hamiltonian

h(P, Y,H,R) =
1

2
P 2 + V (Y,H,R)

Thus,
Hdφ = −PdY + pjdqj

The geometric phase is given by the area of the orbit

H∆φgeom = H

∮
dφ = −

∮
PdY = −

∫∫
dP ∧ dY = 2

∫∫
dX ∧ dY

and the dynamic phase for orbits of period T is given by the sum,

H∆φdyn =

∮
pj q̇jdt =

∫ T

0
(PẎ +Hφ̇) dt =

∫ T

0

(
P
∂h

∂P
+H

∂h

∂H

)
dt

=

∫ T

0

(
2(h− V ) +H

∂V

∂H

)
dt

Since V is not a monomial in H, we as may well leave the expression for H∆φdyn as it
is. The final result may be expressed in terms of time averages as

H∆φdyn = 2Th− T
〈
V −H ∂V

∂H

〉
.

N
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Exercise 2.6 Three-wave equations
The three-wave equations of motion take the symmetric form

iȦ = B∗C , iḂ = CA∗ , iĊ = AB , for (A,B,C) ∈ C× C× C ' C3 . (1)

(a) Write these equations as a Hamiltonian system. How many degrees of freedom does it have?

Answer a

The three-wave interaction equations (1) may be written in canonical form with Hamil-
tonian H = <(ABC∗) and Poisson brackets

{A,A∗} = {B,B∗} = {C,C∗} = −2i .

There are 3 complex-canonical degrees of freedom. N

(b) Find two additional constants of motion for it, besides the Hamiltonian.

Answer b

The three-wave equations conserve the following three quantities:

H =
1

2
(ABC∗ +A∗B∗C) = <(ABC∗) , (2)

J = |A|2 − |B|2 , (3)

N = |A|2 + |B|2 + 2|C|2 . (4)

N

(c) Use the Poisson bracket to identify the symmetries of the Hamiltonian associated with the two
additional constants of motion, by computing their Hamiltonian vector fields and integrating their
characteristic equations.

Answer c

The Hamiltonian vector field XH = { · , H} generates the motion, while XJ = { · , J}
and XN = { · , N} generate S1 symmetries S1 × C3 7→ C3 of the Hamiltonian H. The
S1 symmetries associated to J and N are the following:

J :

 A
B
C

→
 e−2iφA

e2iφB
C

 N :

 A
B
C

→
 e−2iψA

e−2iψB
e−4iψC


The constant of motion J represents the angular momentum about the vertical in the
new variables, while N is the new conserved quantity arising from phase-averaging in
the Lagrangian L to obtain 〈L〉.
The following positive-definite combinations of N and J are physically significant:

N1 ≡
1

2
(N + J) = |A|2 + |C|2 , N2 ≡

1

2
(N − J) = |B|2 + |C|2 .

These combinations are known as the Manley-Rowe invariants in the extensive lit-
erature about three-wave interactions. The quantities H, N1 and N2 provide three
independent constants of the motion. The S1 symmetries associated to N1 and N2 are
the following:

N1 :

 A
B
C

→
 e−2iφ1A

B
e−2iφ1C

 N2 :

 A
B
C

→
 A

e−2iφ2B
e−2iφ2C


N
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(d) Set:

A = |A| exp(iφ1) , B = |B| exp(iφ2) , C = Z exp(i(φ1 + φ2)) .

Determine whether this transformation is canonical.

Answer d

The transformation

A = |A| exp(iφ1) ,

B = |B| exp(iφ2) , (5)

C = Z exp(i(φ1 + φ2)) .

is canonical, since it preserves the symplectic form. Namely, as one may compute
directly,

dA ∧ dA∗ + dB ∧ dB∗ + dC ∧ dC∗ = dZ ∧ dZ∗ − i(dN1 ∧ dφ1 + dN2 ∧ dφ2) .

In these variables, the Hamiltonian is independent of the phases φ1 and φ2,

H =
1

2
(Z + Z∗)

√
N1 − |Z|2

√
N2 − |Z|2 .

The Poisson bracket is {Z,Z∗} = −2i and the canonical equations reduce to

iŻ = i{Z,H} = 2
∂H

∂Z∗
,

Ṅk = − ∂H

∂φk
and φ̇k =

∂H

∂Nk
for k = 1, 2.

As we shall see, these equations eventually provide the dynamics of both the amplitude
and phase of Z = |Z|eiζ .

N

(e) Express the three-wave problem entirely in terms of the variable Z = |Z|eiζ , reduce the motion to
a single equation for |Z| then reconstruct the full solution as,

A = |A| exp(iφ1) , B = |B| exp(iφ2) , C = |Z| exp
(
i(φ1 + φ2 + ζ)

)
.

That is, reduce the motion to a single equation for |Z| then write the various differential equations
for |A|, φ1, |B|, φ2 and φ2.

Answer e In these variables, the Hamiltonian H = |Z| cos(ζ)|A||B| is

H = |Z| cos(ζ)
√
N1 − |Z|2

√
N2 − |Z|2 .

Changing to polar variables Z = |Z|eiζ will allow us to obtain an implicit solution for
Q = |Z|2 as an integral (quadrature). Since

dZ ∧ dZ∗ = −i dQ ∧ dζ = −2i dq ∧ dp for Z = q + ip with {q, p} = 1

we acquire a factor of 1/2 in the Poisson bracket, {Q, ζ} = − 1/2, so that

dQ

dt
= {Q,H} = −1

2

∂H

∂ζ
=

1

2

√
Q sin(ζ)

√
N1 −Q

√
N2 −Q .
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Then (
dQ

dt

)2

=
1

4
Q(1− cos2(ζ))(N1 −Q)(N2 −Q)

=
1

4
Q

(
1− H2

(N1 −Q)(N2 −Q)

)
(N1 −Q)(N2 −Q)

=
1

4
Q
(

(N1 −Q)(N2 −Q)−H2
)

Consequently, the amplitude Q = |Z|2 = |C|2 is obtained in closed form in terms of
Jacobi elliptic functions as the solution of the quadrature,

2d|Z|2√
|Z|2

(
(N1 − |Z|2)(N2 − |Z|2)−H2

) = ± dt .

Once |Z| is known, |A| and |B| follow immediately from the Manley-Rowe relations,

|A| =
√
N1 − |Z|2 , |B| =

√
N2 − |Z|2 .

The phases φ1 and φ2 may now be determined from

φ̇1 = {φ1, H} =
1

2

∂H

∂N1
=

1

4

H

|A|2
,

φ̇2 = {φ2, H} =
1

2

∂H

∂N2
=

1

4

H

|B|2
, ,

so that φ1 and φ2 can be integrated by quadratures once |A|(t) and |B|(t) are known.
Finally, the phase ζ of Z is determined unambiguously by

d|Z|2

dt
= {|Z|2, H} = −∂H

∂ζ
= − 2H tan ζ and H = |A||B||Z| cos ζ . (6)

Hence, we can now reconstruct the full solution as,

A = |A| exp(iφ1) , B = |B| exp(iφ2) , C = |Z| exp
(
i(φ1 + φ2 + ζ)

)
.

N


