M3-4A16 Assessed Problems # 3 Do all four problems

[#1] Exercises in exterior calculus operations

Vector notation for differential basis elements:

One denotes differential basis elements dx^i and $dS_i = \frac{1}{2}\epsilon_{ijk}dx^j \wedge dx^k$, for i, j, k = 1, 2, 3, in vector notation as

$$d\mathbf{x} := (dx^1, dx^2, dx^3),$$

$$d\mathbf{S} = (dS_1, dS_2, dS_3)$$

$$:= (dx^2 \wedge dx^3, dx^3 \wedge dx^1, dx^1 \wedge dx^2),$$

$$dS_i := \frac{1}{2} \epsilon_{ijk} dx^j \wedge dx^k,$$

$$d^3x = d\text{Vol} := dx^1 \wedge dx^2 \wedge dx^3.$$

(1a) Vector algebra operations

(i) Show that contraction with the vector field $X = X^j \partial_j =: \mathbf{X} \cdot \nabla$ recovers the following familiar operations among vectors

$$\begin{array}{rcl} X \,\sqcup\, d\mathbf{x} &=& \mathbf{X} \,, \\ X \,\sqcup\, d\mathbf{S} &=& \mathbf{X} \times d\mathbf{x} \,, \\ (or, & X \,\sqcup\, dS_i &=& \epsilon_{ijk} X^j dx^k) \\ Y \,\sqcup\, X \,\sqcup\, d\mathbf{S} &=& \mathbf{X} \times \mathbf{Y} \,, \\ X \,\sqcup\, d^3 x &=& \mathbf{X} \cdot d\mathbf{S} = X^k dS_k \,, \\ Y \,\sqcup\, X \,\sqcup\, d^3 x &=& \mathbf{X} \times \mathbf{Y} \cdot d\mathbf{x} = \epsilon_{ijk} X^i Y^j dx^k \,, \\ Z \,\sqcup\, Y \,\sqcup\, X \,\sqcup\, d^3 x &=& \mathbf{X} \times \mathbf{Y} \cdot \mathbf{Z} \,. \end{array}$$

(ii) Show that these are consistent with

$$X \sqcup (\alpha \land \beta) = (X \sqcup \alpha) \land \beta + (-1)^k \alpha \land (X \sqcup \beta),$$

for a k-form α .

(iii) Use (ii) to compute $Y \sqcup X \sqcup (\alpha \land \beta)$ and $Z \sqcup Y \sqcup X \sqcup (\alpha \land \beta)$.

(1b) Exterior derivative examples in vector notation

Show that the exterior derivative and wedge product satisfy the following relations in components and in three-dimensional vector notation

$$\begin{aligned} df &= f_{,j} \, dx^j =: \nabla f \cdot d\mathbf{x} \\ 0 &= d^2 f &= f_{,jk} \, dx^k \wedge dx^j \\ df \wedge dg &= f_{,j} \, dx^j \wedge g_{,k} \, dx^k =: (\nabla f \times \nabla g) \cdot d\mathbf{S} \\ df \wedge dg \wedge dh &= f_{,j} \, dx^j \wedge g_{,k} \, dx^k \wedge h_{,l} \, dx^l =: (\nabla f \cdot \nabla g \times \nabla h) \, d^3x \end{aligned}$$

Likewise, show that

$$d(\mathbf{v} \cdot d\mathbf{x}) = (\operatorname{curl} \mathbf{v}) \cdot d\mathbf{S}$$

$$d(\mathbf{A} \cdot d\mathbf{S}) = (\operatorname{div} \mathbf{A}) d^{3}x.$$

Verify the compatibility condition $d^2 = 0$ for these forms as

$$0 = d^2 f = d(\nabla f \cdot d\mathbf{x}) = (\operatorname{curl}\operatorname{grad} f) \cdot d\mathbf{S},$$

$$0 = d^2(\mathbf{v} \cdot d\mathbf{x}) = d((\operatorname{curl} \mathbf{v}) \cdot d\mathbf{S}) = (\operatorname{div}\operatorname{curl} \mathbf{v}) d^3 x.$$

Verify the exterior derivatives of these contraction formulas for $X = \mathbf{X} \cdot \nabla$

(i) $d(X \sqcup \mathbf{v} \cdot d\mathbf{x}) = d(\mathbf{X} \cdot \mathbf{v}) = \nabla(\mathbf{X} \cdot \mathbf{v}) \cdot d\mathbf{x}$ (ii) $d(X \sqcup \boldsymbol{\omega} \cdot d\mathbf{S}) = d(\boldsymbol{\omega} \times \mathbf{X} \cdot d\mathbf{x}) = \operatorname{curl}(\boldsymbol{\omega} \times \mathbf{X}) \cdot d\mathbf{S}$ (iii) $d(X \sqcup f d^{3}x) = d(f\mathbf{X} \cdot d\mathbf{S}) = \operatorname{div}(f\mathbf{X}) d^{3}x$

(1c) Use Cartan's formula,

$$\pounds_X \alpha = X \, \sqcup \, d\alpha + d(X \, \sqcup \, \alpha)$$

for a k-form α , k = 0, 1, 2, 3 in \mathbb{R}^3 to verify the Lie derivative formulas:

(i) $\pounds_X f = X \, \sqcup \, df = \mathbf{X} \cdot \nabla f$ (ii) $\pounds_X (\mathbf{v} \cdot d\mathbf{x}) = (-\mathbf{X} \times \operatorname{curl} \mathbf{v} + \nabla(\mathbf{X} \cdot \mathbf{v})) \cdot d\mathbf{x}$ (iii) $\pounds_X (\boldsymbol{\omega} \cdot d\mathbf{S}) = (\operatorname{curl} (\boldsymbol{\omega} \times \mathbf{X}) + \mathbf{X} \operatorname{div} \boldsymbol{\omega}) \cdot d\mathbf{S}$ $= (-\boldsymbol{\omega} \cdot \nabla \mathbf{X} + \mathbf{X} \cdot \nabla \boldsymbol{\omega} + \boldsymbol{\omega} \operatorname{div} \mathbf{X}) \cdot d\mathbf{S}$ (iv) $\pounds_X (f \, d^3 x) = (\operatorname{div} f \mathbf{X}) \, d^3 x$

- (v) Derive these formulas from the dynamical definition of Lie derivative.
- (1d) Verify the following Lie derivative identities both by using Cartan's formula and by using the dynamical definition of Lie derivative:
 - (i) $\pounds_{fX}\alpha = f\pounds_X\alpha + df \wedge (X \sqcup \alpha)$ (ii) $\pounds_X d\alpha = d(\pounds_X\alpha)$ (iii) $\pounds_X(X \sqcup \alpha) = X \sqcup \pounds_X\alpha$ (iv) $\pounds_X(Y \sqcup \alpha) = (\pounds_X Y) \sqcup \alpha + Y \sqcup (\pounds_X\alpha)$ (v) $\pounds_X(\alpha \wedge \beta) = (\pounds_X\alpha) \wedge \beta + \alpha \wedge \pounds_X\beta$

[#2] Operations among vector fields

The Lie derivative of one vector field by another is called the **Jacobi-Lie bracket**, defined as

$$\pounds_X Y := [X, Y] := \nabla Y \cdot X - \nabla X \cdot Y = -\pounds_Y X$$

In components, the Jacobi-Lie bracket is

$$[X, Y] = \left[X^k \frac{\partial}{\partial x^k}, Y^l \frac{\partial}{\partial x^l}\right] = \left(X^k \frac{\partial Y^l}{\partial x^k} - Y^k \frac{\partial X^l}{\partial x^k}\right) \frac{\partial}{\partial x^l}$$

The Jacobi-Lie bracket among vector fields satisfies the Jacobi identity,

[X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0

Verify the following formulas

(2a) $X \sqcup (Y \sqcup \alpha) = -Y \sqcup (X \sqcup \alpha)$

(2b)
$$[X, Y] \sqcup \alpha = \pounds_X(Y \sqcup \alpha) - Y \sqcup (\pounds_X \alpha)$$
, for zero-forms (functions) and one-forms

- (2c) $\pounds_{[X,Y]}\alpha = \pounds_X \pounds_Y \alpha \pounds_Y \pounds_X \alpha$, as a result of (b). Use 2(c) to verify the Jacobi identity.
- (2d) Verify formula 2(b) for k-forms using the dynamical definition of the Lie derivative.

|#3| A steady Euler fluid flow

A steady Euler fluid flow in a rotating frame satisfies

$$\pounds_u(\mathbf{v} \cdot d\mathbf{x}) = -d(p + \frac{1}{2}|\mathbf{u}|^2 - \mathbf{u} \cdot \mathbf{v}),$$

where \pounds_u is Lie derivative with respect to the divergenceless vector field $u = \mathbf{u} \cdot \nabla$, with $\nabla \cdot \mathbf{u} = 0$, and $\mathbf{v} = \mathbf{u} + \mathbf{R}$, with Coriolis parameter curl $\mathbf{R} = 2\mathbf{\Omega}$.

- (3a) Write out this Lie-derivative relation in Cartesian coordinates.
- (3b) By taking the exterior derivative, show that this relation implies that the exact two-form

$$\operatorname{curl} v \, \sqcup \, d^3 x = \operatorname{curl} \mathbf{v} \cdot \nabla \, \sqcup \, d^3 x = \operatorname{curl} \mathbf{v} \cdot d\mathbf{S} = d(\mathbf{v} \cdot d\mathbf{x}) =: d\Xi \wedge d\Pi$$

is invariant under the flow of the divergenceless vector field u.

(3c) Show that Cartan's formula for the Lie derivative in the steady Euler flow condition implies that

$$u \sqcup \left(\operatorname{curl} v \sqcup d^{3}x \right) = dH(\Xi, \Pi)$$

and identify the function H.

- (3d) Use the result of (3c) to write $\pounds_u \Xi = \mathbf{u} \cdot \nabla \Xi$ and $\pounds_u \Pi = \mathbf{u} \cdot \nabla \Xi$ in terms of the partial derivatives of H.
- (3e) What do the results of (3d) mean geometrically? Hint: Is a symplectic form involved?

[#4] Ertel's theorem for stratified fluids

The Euler-Boussinesq equations for the incompressible motion of an ideal flow of a stratified fluid and velocity \mathbf{u} satisfying div $\mathbf{u} = 0$ in a rotating frame with Coriolis parameter curl $\mathbf{R} = 2\mathbf{\Omega}$ are given by

$$\underbrace{\partial_t \mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u}}_{acceleration} = \underbrace{-gb\nabla z}_{buoyancy} + \underbrace{\mathbf{u} \times 2\Omega}_{Coriolis} - \underbrace{\nabla p}_{pressure}$$
(1)

where $-g\nabla z$ is the constant downward acceleration of gravity and b is the buoyancy, which satisfies the **advection relation**,

$$\partial_t b + \mathbf{u} \cdot \nabla b = 0. \tag{2}$$

- (4a) Explain why the divergence-free condition on the fluid velocity, $\nabla \cdot \mathbf{u} = 0$, preserves volume
- (4b) Derive the Poisson equation for pressure p by requiring that the fluid velocity remain divergencefree (volume-preserving, $\nabla \cdot \mathbf{u} = 0$), and identify the boundary condition on the pressure.
- (4c) Rearrange the Newton's law form of the Euler-Boussinesq equations in (1) as

$$\partial_t \mathbf{v} - \mathbf{u} \times \operatorname{curl} \mathbf{v} + gb\nabla z + \nabla \left(p + \frac{1}{2} |\mathbf{u}|^2 \right) = 0,$$
 (3)

where $\mathbf{v} \equiv \mathbf{u} + \mathbf{R}$ and $\nabla \cdot \mathbf{u} = 0$. Verify that equations (2), (3) and the divergence-free condition $\nabla \cdot \mathbf{u} = 0$ may be written geometrically, as

$$(\partial_t + \mathcal{L}_u)b = 0, \qquad (\partial_t + \mathcal{L}_u)v + gbdz + d\varpi = 0, \quad and \quad \mathcal{L}_u d^3x = 0, \qquad (4)$$

and identify the quantities v and ϖ .

(4d) Denote the fluid velocity vector field as $u = \mathbf{u} \cdot \nabla$ and the circulation one-form as $v = \mathbf{v} \cdot d\mathbf{x}$. Write the exterior derivatives of the two equations in (4) and determine from the product rule for Lie derivatives and the antisymmetry of the wedge product that

$$(\partial_t + \mathcal{L}_u)(dv \wedge db) = 0 \quad or \quad \partial_t q + \mathbf{u} \cdot \nabla q = 0,$$
(5)

in which the quantity q is defined by the projection

$$q = \nabla b \cdot \operatorname{curl} \mathbf{v} \tag{6}$$

is conserved on fluid particles.

(4e) Ertel theorem for the vorticity vector field Write the vorticity vector field $\omega = \boldsymbol{\omega} \cdot \nabla$ and show that

$$\left(\partial_t + \pounds_u\right)\omega = \partial_t\omega + [u,\,\omega] = -g\nabla b \times \nabla z \cdot \nabla \tag{7}$$

Use this expression to show that conservation of the potential vorticity may be proved by the product rule for Lie derivatives.

(4f) Conservation laws

Show that the constancy of the scalar quantities b and q on fluid parcels implies conservation of the spatially integrated quantity,

$$C_{\Phi} = \int_D \Phi(b,q) \, d^3x \,,$$

for any smooth function Φ for which the integral exists.

Show that in addition to C_{Φ} the Euler-Boussinesq fluid equations (3) also conserve the total energy

$$E = \int_D \frac{1}{2} |\mathbf{u}|^2 + gbz \ d^3x \,,$$

which is the sum of the kinetic and potential energies.