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Solutions of M3-4A16 Assessed Problems # 3

[#1] Exercises in exterior calculus operations

Vector notation for differential basis elements:
One denotes differential basis elements dxi and dSi = 1

2
εijkdx

j ∧ dxk, for i, j, k = 1, 2, 3, in vector
notation as

dx := (dx1, dx2, dx3) ,

dS = (dS1, dS2, dS3)

:= (dx2 ∧ dx3, dx3 ∧ dx1, dx1 ∧ dx2) ,

dSi :=
1

2
εijkdx

j ∧ dxk ,

d 3x = dVol := dx1 ∧ dx2 ∧ dx3 .

(1a) Vector algebra operations

(i) Show that contraction with the vector field X = Xj∂j =: X · ∇ recovers the following
familiar operations among vectors

X dx = X ,

X dS = X× dx ,
(or, X dSi = εijkX

jdxk)

Y X dS = X×Y ,

X d 3x = X · dS = XkdSk ,

Y X d 3x = X×Y · dx = εijkX
iY jdxk ,

Z Y X d 3x = X×Y · Z .

(ii) Show that these are consistent with

X (α ∧ β) = (X α) ∧ β + (−1)kα ∧ (X β) ,

for a k-form α.

(iii) Use (ii) to compute Y X (α ∧ β) and Z Y X (α ∧ β).

(1b) Exterior derivative examples in vector notation
Show that the exterior derivative and wedge product satisfy the following relations in compo-
nents and in three-dimensional vector notation

df = f,j dx
j =: ∇f · dx

0 = d2f = f,jk dx
k ∧ dxj

df ∧ dg = f,j dx
j ∧ g,k dx

k =: (∇f ×∇g) · dS
df ∧ dg ∧ dh = f,j dx

j ∧ g,k dx
k ∧ h,l dx

l =: (∇f · ∇g ×∇h) d 3x

Likewise, show that

d(v · dx) = (curl v) · dS
d(A · dS) = (div A) d 3x .
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Verify the compatibility condition d2 = 0 for these forms as

0 = d2f = d(∇f · dx) = (curl grad f) · dS ,
0 = d2(v · dx) = d

(
(curl v) · dS

)
= (div curl v) d 3x .

Verify the exterior derivatives of these contraction formulas for X = X · ∇

(i) d(X v · dx) = d(X · v) = ∇(X · v) · dx
(ii) d(X ω · dS) = d(ω ×X · dx) = curl (ω ×X) · dS
(iii) d(X f d 3x) = d(fX · dS) = div (fX) d 3x

(1c) Use Cartan’s formula,
£Xα = X dα + d(X α)

for a k−form α, k = 0, 1, 2, 3 in R3 to verify the Lie derivative formulas:

(i) £Xf = X df = X · ∇f
(ii) £X (v · dx) =

(
− X× curl v +∇(X · v)

)
· dx

(iii) £X(ω · dS) =
(
curl (ω ×X) + X div ω

)
· dS

=
(
− ω · ∇X + X · ∇ω + ω div X

)
· dS

(iv) £X(f d 3x) = (div fX) d 3x

(v) Derive these formulas from the dynamical definition of Lie derivative.

(1d) Verify the following Lie derivative identities both by using Cartan’s formula and by using the
dynamical definition of Lie derivative:

(i) £fXα = f£Xα + df ∧ (X α)

(ii) £Xdα = d
(
£Xα

)
(iii) £X(X α) = X £Xα

(iv) £X(Y α) = (£XY ) α + Y (£Xα)

(v) £X(α ∧ β) = (£Xα) ∧ β + α ∧£Xβ

[#1] Exercises in exterior calculus operations

Answer

Problems (1a)-(1c) are easily verified by direct computation, as are parts (i-iii) in
problem (1d).

However, the linked parts (iv & v) in problem (1d) require a bit more thought, al-
though both of them are easy from the dynamical viewpoint, by differentiating the
properties of the pull-back φ∗t , which commutes with exterior derivative, wedge product
and contraction. That is, for m ∈M ,

d(φ∗tα) = φ∗tdα ,

φ∗t (α ∧ β) = φ∗tα ∧ φ∗tβ ,
φ∗t (X(m) α) = X(φt(m)) φ∗tα .
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Setting the dynamical definition of Lie derivative equal to its geometrical definition by
Cartan’s formula yields

£Xα =
d

dt

∣∣∣∣
t=0

(φ∗tα)

= X dα + d(X α) ,

where α is a k-form on a manifold M and X is a smooth vector field with flow φt on
M . Informed by these identities and this equality, one may now derive

(1d) The general form of the relation required in part (iv) follows immediately from
the product rule for the dynamical definition of the Lie derivative. Since pull-back
commutes with contraction, insertion of a vector field into a k-form transforms
under the flow φt of a smooth vector field Y as

φ∗t (Y (m) α) = Y (φt(m)) φ∗tα .

A direct computation using the dynamical definition of the Lie derivative above

£Y α =
d

dt

∣∣∣∣
t=0

(φ∗tα) ,

then yields

d

dt

∣∣∣
t=0
φ∗t
(
Y α

)
=

( d
dt

∣∣∣
t=0
Y (φt(m))

)
α

+ Y
( d
dt

∣∣∣
t=0
φ∗tα

)
.

Hence, we recognise that the desired formula in part (iv) is the product rule:

£X(Y α) = (£XY ) α + Y (£Xα) .

Part (v) in problem (1d) is again simply a product rule, proved the same way.

N

[#2] Operations among vector fields

The Lie derivative of one vector field by another is called the Jacobi-Lie bracket, defined as

£XY := [X , Y ] := ∇Y ·X −∇X · Y = −£YX

In components, the Jacobi-Lie bracket is

[X , Y ] =
[
Xk ∂

∂xk
, Y l ∂

∂xl

]
=

(
Xk ∂Y

l

∂xk
− Y k ∂X

l

∂xk

)
∂

∂xl

The Jacobi-Lie bracket among vector fields satisfies the Jacobi identity,

[X , [Y , Z] ] + [Y , [Z , X] ] + [Z , [X , Y ] ] = 0

Verify the following formulas
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(2a) X (Y α) = −Y (X α)

(2b) [X , Y ] α = £X(Y α)− Y (£Xα), for zero-forms (functions) and one-forms.

(2c) £[X , Y ]α = £X£Y α−£Y £Xα, as a result of (b). Use 2(c) to verify the Jacobi identity.

(2d) Verify formula 2(b) for arbitrary k−forms.

[#2] Operations among vector fields

Answer

(2a) By direct substitution

X (Y α) = X lY mαmli3...ikdx
i3 ∧ · · · ∧ dxik

= −X lY mαlmi3...ikdx
i3 ∧ · · · ∧ dxik

= −Y (X α) ,

by antisymmetry of αmli3...ik in its first two indices.

(2b)

For zero-forms (functions) all terms in the formula vanish identically. So that’s
easy enough.

For a 1-form α = v · dx the formula

[X , Y ] α = £X(Y α)− Y (£Xα) ,

is seen to hold by comparing

[X , Y ] α = (XkY l
,k − Y kX l

,k)vl ,

with

£X(Y α)− Y (£Xα)

= Xk∂k(Y lvl)− Y l(Xkvl,k + vjX
j
,l) ,

(2c) Given [X , Y ] α = £X(Y α)− Y (£Xα) as verified in part 2(b) for zero-
forms (functions) and one-forms we use Cartan’s formula to compute

£[X , Y ]α = d([X , Y ] α) + [X , Y ] dα

= d
(
£X(Y α)− Y (£Xα)

)
+ £X(Y dα)− Y (£Xdα)

= £Xd(Y α)− d(Y (£Xα)

+ £X(Y dα)− Y d(£Xα)

= £X(£Y α)−£Y (£Xα) ,

as required. Thus, the product rule for Lie derivative of a contraction obtained in
answering problem 2(b) provides the key to solving 2(c).
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Consequently,

£[ Z , [X , Y ] ]α = £Z£X£Y α−£Z£Y £Xα

− £X£Y £Zα + £Y £X£Zα ,

and summing over cyclic permutations immediately verifies that

£[ Z , [X , Y ] ] α + £[ X , [Y , Z] ] α + £[ Y , [Z , X] ] α = 0 .

This is the Jacobi identity for the Lie derivative.

(2d) Part (iv) of problem (1d) has already solved this part.

N

[#3] A steady Euler fluid flow

A steady Euler fluid flow in a rotating frame satisfies

£u(v · dx) = − d(p+ 1
2
|u|2 − u · v) ,

where £u is Lie derivative with respect to the divergenceless vector field u = u · ∇, with ∇ · u = 0,
and v = u + R, with Coriolis parameter curl R = 2Ω.

(3a) Write out this Lie-derivative relation in Cartesian coordinates.

(3b) By taking the exterior derivative, show that this relation implies that the exact two-form

curlv d 3x = curlv · ∇ d 3x = curlv · dS = d(v · dx) =: dΞ ∧ dΠ

is invariant under the flow of the divergenceless vector field u.

(3c) Show that Cartan’s formula for the Lie derivative in the steady Euler flow condition implies
that

u
(

curlv d 3x
)

= dH(Ξ,Π)

and identify the function H.

(3d) Use the result of (3c) to write £uΞ = u · ∇Ξ and £uΠ = u · ∇Ξ in terms of the partial
derivatives of H.

(3e) What do the results of (3d) mean geometrically? Hint: Is a symplectic form involved?

[#3] A steady Euler fluid flow

Answer

(3a) With π := p+ 1
2
|u|2 − u · v, the steady flow satisfies

0 = £u(v · dx) + dπ

=
(
u · ∇v + (∇u)T · v +∇π

)
· dx

=
(
−u× curl v︸ ︷︷ ︸
Lamb vector

+ ∇
(
p+ 1

2
|u|2
)︸ ︷︷ ︸

Pressure head

)
· dx
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upon
(1) expanding the Lie derivative and
(2) using a vector identity & the definition of π.

(3b) Taking the exterior derivative of this relation using d 2f = 0 for any smooth
function f yields

0 = d£u(v · dx) + d 2(p+ 1
2
|u|2 − u · v)

setting d2 = 0 & commuting d and £u = £ud(v · dx)

expanding the exterior derivative = £u(curl v · dS)

inserting the definition of dS = £u

(
(curl v · ∇) d 3x

)
inserting the definition of curlv = £u

(
curlv d 3x

)
where dS = ∗dx = ∇ d 3x.

The relation £u(curlv d 3x) = 0 is the condition for the 2-form curlv d 3x to be
invariant under the flow of the vector field u.

If we now substitute the Clebsch relation v · dx = ΞdΠ + dΨ we find

0 = d£u(v · dx)

= £u(dΞ ∧ dΠ)

so the exact 2-form dΞ∧ dΠ is invariant under the flow of the divergenceless vector
field u. (This should remind us of Poincaré’s theorem.)

(3c) Cartan’s formula for the Lie derivative

£u(v · dx) = u d(v · dx) + d(u v · dx) ,

when inserted into the steady Euler flow condition yields

0 = £u(v · dx) + d(p+ 1
2
|u|2 − u · v)

by Cartan’s formula = u
(

curlv d 3x
)

+ d(p+ 1
2
|u|2) .

Hence, H = − (p+ 1
2
|u|2), up to a constant. That is,

u curlv d 3x = dH = − d(p+ 1
2
|u|2) .

(3d) Since the 2-form curlv d 3x = d(v · dx) is exact, it may be written as

curlv · dS = curlv d 3x = dΞ ∧ dΠ

The result of 3(c) then implies

dH(Ξ, Π) = u (curlv · dS)

= u (dΞ ∧ dΠ)

= (u · ∇Ξ) dΠ− (u · ∇Π) dΞ

=
∂H

∂Π
dΠ +

∂H

∂Ξ
dΞ .
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Upon identifying corresponding terms, the steady flow of the fluid velocity u is
found to imply the canonical Hamiltonian equations,

(u · ∇Ξ) = £uΞ =
∂H

∂Π
,

(u · ∇Π) = £uΠ = − ∂H
∂Ξ

.

(3e) The results of 3(d) may be written as

(u · ∇Ξ) =
{

Ξ, H
}
,

(u · ∇Π) =
{

Π, H
}
,

where { · , · } is the canonical Poisson bracket for the symplectic form dΞ ∧ dΠ.

This means geometrically that the steady Euler flow is symplectic on level sets of
H(Ξ,Π).

N

[#4] Maxwell form of Euler’s fluid equations

Euler’s equations for the incompressible motion of an ideal flow of a fluid of unit density and velocity
u satisfying divu = 0 in a rotating frame with tme-independent Coriolis parameter curlR(x) = 2Ω
are given in the form of Newton’s Law of Force by

∂t u + u · ∇u︸ ︷︷ ︸
Acceleration

= u× 2Ω︸ ︷︷ ︸
Coriolis

− ∇p︸︷︷︸
Pressure

. (1)

(4a) Show that this Newton’s Law equation for Euler fluid motion in a rotating frame may be
expressed as,

∂t v − u× ω +∇
(
p+ 1

2
|u|2
)

= 0 , with ∇ · u = 0 , (2)

where we denote,
v ≡ u + R , ω = curlv = curlu + 2Ω .

(4b) [Kelvin’s circulation theorem]

Show that the Euler equations (2) preserve the circulation integral I(t) defined by

I(t) =

∮
c(u)

v · dx ,

where c(u) is a closed circuit moving with the fluid at velocity u.

(4c) [Stokes theorem for vorticity of a rotating fluid]

Show that the Euler equations (2) satisfy

d

dt

∫∫
S(u)

curlv · dS = 0 ,

where the surface S(u) is bounded by an arbitrary circuit ∂S = c(u) moving with the fluid.



D. D. Holm Solutions to M3-4A16 Assessed Problems # 3 15 Dec 2010 8

(4d) The Lamb vector,
` := −u× ω ,

represents the nonlinearity in Euler’s fluid equation (2).

Show that by making the following identifications

B = ω + curl A0

E = ` +∇
(
p+ 1

2
|u|2
)

+
(
∇φ− ∂tA0

)
D = ` (3)

H = ∇ψ ,

the Euler fluid equations (2) imply the Maxwell form

∂tB = − curl E

∂tD = curl H + J

div B = 0

div E = 0 (4)

div D = ρ = −∆
(
p+ 1

2
|u|2
)

J = E×B + (curl−1E)× curl B ,

provided the (smooth) gauge functions φ and A0 satisfy ∆φ−∂tdivA0 = 0 with ∂nφ = n̂ ·∂tA0

at the boundary and ψ may be arbitrary, because H plays no further role.

(4e) Show that Euler’s fluid equations (2) imply the following two elegant relations,

dF = 0 and dG = J ,

where the 2-forms F , G and the 3-form J are given as

F = ` · dx ∧ dt+ ω · dS,
G = ` · dS,
J = J · dS ∧ dt+ ρ d3x,

and ρ and J are defined as in equations (4).

[#4] Maxwell form of Euler’s fluid equations

Answer

(4a) We begin by comparing the dynamical and Cartan forms of the Lie derivative
of the following 1-form

£u(v · dx) =
(
u · ∇v + vj∇uj

)
· dx

= u d(v · dx) + d(u v · dx)

= u d(curl v · dS) + d(u · v)

=
(
− u× curl v +∇(u · v)

)
· dx .
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This proves the fundamental vector identity of fluid mechanics,

u · ∇u = −u× curl u + 1
2
∇|u|2 ,

and tells us that equation (2) results from (1), since ∂tR = 0.

(4b) The dynamical definition of Lie derivative yields the following for the time rate
of change of this circulation integral,

d

dt
I(t) =

d

dt

∮
c(u)

v · dx =

∮
c(u)

(
∂

∂t
+ £u

)
(v · dx)

=

∮
c(u)

(
∂v

∂t
+
∂v

∂xj
uj + vj

∂uj

∂x

)
· dx

= −
∮

c(u)

∇
(
p+

1

2
|u|2 − u · v

)
· dx

= −
∮

c(u)

d
(
p+

1

2
|u|2 − u · v

)
= 0 . (5)

(4c) By Stokes theorem

I(t) =

∮
c(u)

v · dx =

∫∫
S(u)

curlv · dS

where the surface S(u) is bounded by an arbitrary circuit ∂S = c(u) moving with
the fluid. Consequently, since the Euler equations (2) imply dI/dt = 0, we also
have

d

dt

∫∫
S(u)

curlv · dS = 0 .

(4d) The formulas in (4) result from manipulating (2) to make the desired variables
appear and imposing the gauge constraints.

(4e) For dF = 0 it helps to notice that

F = d
(
v · dx− (p+ 1

2
u2)dt

)
,

and keep in mind that the exterior derivative involves both space and time on an
equal footing (x, t) ∈ R4 for these differential forms.

The equation dG = J follows simply from G := ` · dS and

dG = ∂t` · dS ∧ dt+ div ` d3x

after identifying corresponding terms from equations (3) and (4).

N


