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Please budget your time: Some of the more interesting problems may become time consuming. So
work steadily through them, don’t wait until the last minute. Do four of these five problems.

Exercise 1.1 Nahm’s equation for su(3)

Consider the dynamical system for the su(3) Nahm equation

dTi
dt

=
1

2
εijk
[
Tj , Tk

]
,

with 3× 3 skew-Hermitian matrices Tk = −T k ∈ su(3), k = 1, 2, 3, given by

T1 =

0 0 0
0 0 −u1
0 u1 0

 , T2 =

 0 0 u2
0 0 0
−u2 0 0

 , T3 =

 0 −u3 0
u3 0 0
0 0 0

 ,
where u1, u2, u3 ∈ C3 and overline in uk denotes the complex conjugate of uk.

Problem statement:

(a) Write the corresponding equations for the variables u1, u2, u3 ∈ C3.

(b) Show that these equations may also be written in Lax form

dL

dt
= [L,M ]

with

L(ζ) =
3∑

k=1

ωk Tk − ζJ2
0

M(ζ) = − 1

ω(ω − 1)

(
3∑

k=1

Tk + ζJ0

)

where ω = e2iπ/3 is the cube-root of unity and J0 = diag(ω, ω2, 1).

(c) Show that the real and imaginary parts of the characteristic polynomial (CP) of L(ζ),

detL(ζ) = − ζ3 − ζ(ω|u1|2 + ω2|u2|2 + |u3|2 ) + (u1u2u3 − u1u2u3),

are constants of motion. Explain why the CP of L(ζ) implies their preservation.

(d) From among these constants of motion, identify the Hamiltonian for the system and explain why
the other constants of motion generate symmetries of this Hamiltonian.

(e) Is this system completely integrable? That is, are there enough constants of motion in involution
to either reduce it to a Hamiltonian system on the plane, or put it into action angle form?

Hint: Transform variables to

u1 = ze−i(φ+θ) , u2 = |u2|eiφ , u3 = |u3|eiθ , with z = |z|eiζ ∈ C.

(f) Will the analysis here generalise to n degrees of freedom? Is the corresponding system on Cn
completely integrable? Write this system explicitly and justify your answer.
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Exercise 1.2 Poisson bracket relations for n :m resonance

(a) Using the canonical Poisson bracket relations,

{aj , a∗k} = − 2iδjk for j, k = 1, 2 ,

explicitly compute expressions for the following

(i)
{
|a1|2 , am1

}
(ii)

{
|a1|2 , a∗m1

}
(iii) {a∗m1 , an1}
(iv) Compute ȧ1 = {a1, H} and ȧ2 = {a2, H} for the Hamiltonian

H =
n

2
|a1|2 −

m

2
|a2|2 + Im (am1 a

∗n
2 )

(b) Show that the transformation

a1 = |a1|einφ, a2 = zemiφ, z = |z|eiζ

is canonical. Write the transformed equations in the new canonical variables and explain how to
solve them by quadratures.

(c) Show that the following variables are invariant under the S1 transformation for n :m resonance,
(a1, a2)→ (a1e

inφ, a2e
imφ)

R =
n

2
|a1|2 +

m

2
|a2|2 ,

Z =
n

2
|a1|2 −

m

2
|a2|2 ,

X − iY = 2am1 a
∗n
2 .

(d) Compute the Hamiltonian vector fields for R,Z,X, Y under the canonical Poisson bracket above,
and determine the transformations of (a1, a2) that are generated under their Hamiltonian flows.

(e) Determine whether the quantities R,Z,X, Y are functionally independent.

(f) Compute the Poisson bracket relations among the quantities R,Z,X, Y and make a table of your
results.

(g) Use the Poisson brackets in to write the Poisson bracket between two functions F and H of
(X,Y, Z) as the triple vector product of gradients

{F, H} = −∇C · ∇F ×∇H , so that {X, Y } = − ∂C/∂Z , etc.

Hint: use C(X,Y, Z,R) = 0.

(h) Prove that the brackets among the n :m invariants satisfy the Jacobi identity.

(i) Explain the geometric meaning of the equation of motion for this Poisson bracket. In particular,
what is the orbit in (X,Y, Z) ∈ R3 when the Hamiltonian is chosen to be H = Z−Y/2 for a given
value of R?
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Exercise 1.3 The C. Neumann problem (1859)

For the origin of this problem see [Ne1859] and for some recent progress on it see [De1978, Ra1980].

(a) Derive the equations of motion

ẍ = −Ax + (Ax · x− ‖ẋ‖2)x

of a particle of unit mass moving on the sphere Sn−1 under the influence of a quadratic potential

V (x) = 1
2Ax · x = 1

2a1x
2
1 + 1

2a2x
2
2 + · · ·+ 1

2anx
2
n ,

for x ∈ Rn, where A = diag(a1, a2, . . . , an) is a fixed n×n diagonal matrix. Here V (x) is a harmonic
oscillator with spring constants that are taken to be fully anisotropic, with a1 < a2 < · · · < an.

Hint: These are the Euler–Lagrange equations obtained when a Lagrange multiplier µ is used to
restrict the motion to a sphere by adding a term,

L(x, ẋ) = 1
2‖ẋ‖

2 − 1
2Ax · x− µ(1− ‖x‖2) ,

on the tangent bundle

TSn−1 = {(x, ẋ) ∈ Rn × Rn| ‖x‖2 = 1, x · ẋ = 0}.

(b) Form the matrices
Q = (xixj) and L = (xiẋj − xj ẋi) ,

and show that the Euler–Lagrange equations for the Lagrangian in (a) are equivalent to

Q̇ = [L,Q] and L̇ = [Q,A] .

Show further that for a constant parameter λ these Euler–Lagrange equations imply

d

dt
(−Q+ Lλ+Aλ2) = [−Q+ Lλ+Aλ2,−L−Aλ] .

Explain why this formula is important from the viewpoint of conservation laws.

(c) Verify that the energy

E(Q,L) = − 1

4
trace(L2) +

1

2
trace(AQ)

is conserved for this system.

(d) Prove that the following (n− 1) quantities for j = 1, 2, . . . , n− 1 are also conserved:

Φj = ẋ2j +
1

2

∑
i 6=j

(xiẋj − xj ẋi)2

aj − ai
,

where (x, ẋ) = (x1, x2, . . . , xn, ẋ1, ẋ2, . . . , ẋn) ∈ TSn−1 and the aj are the eigenvalues of the
diagonal matrix A.
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Exercise 1.4 Peakon dynamics

Consider the Clebsch Lagrangian L(u, {q}, {q̇}) : TDiff(R)× (TR)N → R

L(u, {q}, {q̇}) := `(u) +

N∑
a=1

pa(t)
(
q̇a(t)− u(qa(t), t)

)
where `(u) =

∫ ∞
−∞

1

2
(u2 + u2x) dx .

The variables are positions qa ∈ RN , Lagrange multipliers pa ∈ RN and flow velocity u(x, t) ∈
TDiff(R) ∼= X with asymptotic behaviour lim|x|→∞ u(x) = 0, so that u and its spatial derivative
ux = ∂u/∂x both vanish sufficiently rapidly at infinity and are smooth enough for the integral to
exist.

Use Hamilton’s principle to address the following tasks.

(a) Derive Hamilton’s canonical equations for the parameters pa(t) and qa(t). Namely,

q̇a(t) =
∂HN

∂pa
and ṗa(t) = − ∂HN

∂qa
, (1)

for a = 1, 2, . . . , N , with Hamiltonian given by,

HN ({p}, {q}) =
1

4

N∑
a,b=1

pa pb e−|qa−qb| . (2)

Approach the problem by generalising the Clebsch treatment in class of the rigid body on T ∗SO(3) ∼=
so(3)∗ to the case of T ∗Diff(R) ∼= X∗(R).

Hint: Verify that the kernel K(x) = 1
2e
−|x| is the Green’s function for the Helmholtz operator

(1− ∂2x) on the real line.

(b) Solve these Hamilton’s equations for N = 2 and discuss the solution behaviour as a type of
scattering of particles.

(c) Show that equations (1) and (2) imply that the quantity m(x, t) = δ`/δu satisfies the partial
differential equation

mt + (mu)x +mux = 0 . (3)

(d) What type of function is m? In particular, what is its support?

(e) Describe how the solutions of (3) for u(x, t) would develop in time t from an initially smooth
confined positive distribution of velocity u0 = u(x, 0) > 0 in x, say, a Gaussian profile? In
particular, describe the solution for the velocity distribution that emerges asymptotically in time
by answering the following questions.

(i) Would the total area
∫∞
−∞ u dx be preserved by the evolution under EPDiff-eqn? Prove it.

(ii) Would the form of the time-asymptotic velocity distribution depend on the height and width
of its initial Gaussian profile? Prove it.

(iii) Would the slope ux remain everywhere finite for an initially Gaussian profile in u0 = u(x, 0)?
Prove it by considering the evolution under (3) of the slope at an inflection point.

(f) What is the geometric meaning of the partial differential equation in (3)? Hint: On what space is
the flow defined and does it preserve a norm?


