Sur une forme nouvelle des équations de la méchanique *

H. Poincaré

C.R. Acad. Sci. 132 (1901) 369-371

Having had the opportunity to work on the rotational motion of hollow solid bodies filled with liquid, I have been led to cast the equations of mechanics into a new form that could be interesting to know. Assume there are n degrees of freedom and let $\left\{x^{1}, \ldots, x^{n}\right\}$ be the variables describing the state of the system. Let T and U be the kinetic and potential energy of the system.
Consider any continuous, transitive group (that is, its action covers the entire manifold). Let $X_{i}(f)$ be any infinitesimal transformation of this group such that ${ }^{1}$

$$
X_{i}(f)=\sum_{\mu=1}^{n} X_{i}\left(x^{\mu}\right) \frac{\partial f}{\partial x^{\mu}}=X_{i}^{1} \frac{\partial f}{\partial x^{1}}+X_{i}^{2} \frac{\partial f}{\partial x^{2}}+\ldots+X_{i}^{n} \frac{\partial f}{\partial x^{n}} .
$$

Since these transformations form a group, we must have

$$
X_{i} X_{k}-X_{k} X_{i}=\sum_{s=1}^{r} c_{i k}^{s} X_{s} .
$$

Since the group is transitive we can write

$$
\dot{x}^{\mu}(t)=\frac{d x^{\mu}}{d t}=\sum_{i=1}^{r} \eta^{i}(t) X_{i}\left(x^{\mu}\right)=\eta^{1}(t) X_{1}^{\mu}+\eta^{2}(t) X_{2}^{\mu}+\ldots+\eta^{r}(t) X_{r}^{\mu},
$$

in such a way that we can go from the state $\left(x^{1}, \ldots, x^{n}\right)$ of the system to a state $\left(x^{1}+\dot{x}^{1} \mathrm{~d} t, \ldots, x^{n}+\dot{x}^{n} \mathrm{~d} t\right)$ by using the infinitesimal transformation of the group, $\sum_{i=1}^{r} \eta^{i} X_{i}(f)$.
T instead of being expressed as a function of the x and \dot{x} can be written as a function of the η and x. If we increase the η and x by virtual displacements $\delta \eta$ and δx, respectively, there will be resulting increases in T and U

$$
\delta T=\sum \frac{\delta T}{\delta \eta} \delta \eta+\sum \frac{\delta T}{\delta x} \delta x \quad \text { and } \quad \delta U=\sum \frac{\delta U}{\delta x} \delta x .
$$

Since the group is transitive I will be able to write

$$
\delta x^{\mu}=\xi^{1} X_{1}^{\mu}+\xi^{2} X_{2}^{\mu}+\ldots+\xi^{r} X_{r}^{\mu}
$$

in such a way that we can go from the state x^{μ} of the system to the state $x^{\mu}+\delta x^{\mu}$ by using the infinitesimal transformation of the group $\delta x^{\mu}=\sum_{i=1}^{r} \xi^{i} X_{i}\left(x^{\mu}\right)$. I will then write ${ }^{2}$

$$
\delta T-\delta U=\sum_{i=1}^{r} \frac{\delta T}{\delta \eta^{i}} \delta \eta^{i}+\sum_{\mu=1}^{n}\left(\frac{\delta T}{\delta x^{\mu}}-\frac{\delta U}{\delta x^{\mu}}\right) \delta x^{\mu}=\sum_{i=1}^{r} \frac{\delta T}{\delta \eta^{i}} \delta \eta^{i}+\sum_{i=1}^{r} \Xi_{i} \xi^{i} .
$$

[^0]Next, let the Hamilton integral be

$$
J=\int(T-U) \mathrm{d} t
$$

so we will have

$$
\delta J=\int\left(\sum \frac{\delta T}{\delta \eta^{i}} \delta \eta^{i}+\sum \Xi_{i} \xi^{i}\right) \mathrm{d} t
$$

and can easily find

$$
\delta \eta^{i}=\frac{d \xi^{i}}{d t}+\sum_{s, k=1}^{r} c_{s k}{ }^{i} \eta^{k} \xi^{s} .
$$

The principle of stationary action then gives

$$
\frac{d}{d t} \frac{\delta T}{\delta \eta^{s}}=\sum c_{s k}{ }^{i} \frac{\delta T}{\delta \eta^{\eta}} \eta^{k}+\Xi_{s} .
$$

These equations encompass some particular cases:

1. The Lagrange equations, when the group is reduced to the transformations, all commuting amongst each other, which each shift one of the variables x by an infinitesimally small constant.
2. Also, Euler's equations for solid body rotations emerge, in which the role of the η_{i} is played by the components p, q, r of the rotations and the role of Ξ by the coupled external forces.

These equations will be of special interest where the potential U is zero and the kinetic energy T only depends on the η in which case Ξ vanishes.

[^0]: *Translated into English by D. D. Holm and J. Kirsten
 ${ }^{1}$ For the finite dimensional case considered here, the $\left\{X_{i}\right\}$ may be regarded as a set of r constant $n \times n$ matrices that act linearly on the set of states $\{x\}$. Then, for example, $X_{i}\left(x^{\mu}\right)=\sum_{\nu=1}^{n}\left[X_{i}\right]_{\nu}^{\mu} x^{\nu}$. In the case of the action of rotations in $S O(3)$ on vectors $x \in \mathbb{R}^{3}$, for example, this would mean $X_{i}\left(x^{\mu}\right)=\sum_{\nu=1}^{3} \varepsilon_{i \nu}{ }^{\mu} x^{\nu}$, so that $\left[X_{i}\right]_{\nu}^{\mu}=\varepsilon_{i \nu}{ }^{\mu}$. (Translator's note)
 ${ }^{2}$ Here Poincaré's formula reveals that $\Xi_{i}=\sum_{\mu, \nu=1}^{n} \frac{\delta L}{\delta x^{\mu}}\left[X_{i}\right]_{\nu}^{\mu} x^{\nu}$ with $L=T-U$, or equivalently $\Xi=\frac{\partial L}{\partial x} \diamond x$ in the notation of Chapter ??. In the case of the Lie algebra action of infinitesimal rotations $\mathfrak{s o}(3)$ on vectors $\mathbf{x} \in \mathbb{R}^{3}$, for example, this means $\Xi_{i}=\sum_{\mu, \nu=1}^{3} \frac{\delta L}{\delta x^{\mu}} \varepsilon_{i \nu}^{\mu} x^{\nu}$, or in vector notation, $\boldsymbol{\Xi}=\frac{\delta L}{\delta \mathbf{x}} \times \mathbf{x}$. (Translator's note)

