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M3/4A16 Assessed Coursework 1 Darryl Holm
Due in class Thursday November 6, 2008

#1 Eikonal equation from Fermat’s principle

#1a Prove that the 3D eikonal equation

() = e )

preserves |t| = 1, where ¥ = dr/ds.

Expanding the 3D eikonal equation yields

on .\. 20n
(E-r)r—l—n( )= || o

F=—-rX Xl@_n
N n or

Consequently, T -¥ = 0 and the magnitude |t| is preserved.

Rearranging yields

FEvolution under the eikonal equation tends to align T with On/Or.
This is the continuum material version of Snell’s Law.

#1b Compute the FEuler-Lagrange equations when Hamilton’s principle is
written in the form

drt dr?
0—5/ 3—5/ ( gi; (T )ds) ds,

with ds* = drig;;dr? for the Riemannian metric g;;(r(s)) in 3D with
arclength parameter s. Show that these equations may be expressed as,

d b
P+ TS (r(s))% e = 0 with 7 = di bcec{l,2,3}, (2
S

in which the quantities I'{, (r) are defined by

FC (I') — 1 ca 8ga€(r) + agab(r) o agbe(r)
be 99 orb ore ore |’
and g° is the inverse of the metric, so that g°*ga, = 0f.
Does the eikonal equation emerge when gu, = nQ(r)éab? Prove it.
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B/ dy dri\ /2 1/2
o= (d—gij(r(é’))%> as=o [ (e
dr’
= [ g (G Y as
1 (10gy ., d/
= / _| (5 a‘zl‘jr 7 — %<gkjrj>>5rkds

_ 1 1891] - g ] agkl l Fm
= /A I (2 oyt = (gui” + I Jorkds

from which equation (2) emerges after rearranging.

However, inspection shows that this is not the eikonal equation (1)
when ga, = n?(r)dap.

#1c Prove that equation (2) preserves ||E||* = 7g;;(r)r?. What does this tell
us about the last part of question #1b?

Take the s-derivative of ||t||* and follow the path of the variational
deriwation of the equation.

H H2 _glj kr 7 7,] + 7 gl TJ

Now substitute from above

1
.k ..l .k Jem .k .l -m
g = ST G k" T — T JmT T

2
and rearrange to prove the point that ||B||* = 7g;;(r)r? is preserved.
This tells us that substituting gu, = n?(r)da into the geodesic equa-
tion (2) will not recover the eikonal equation (1). Equations (1) and
(2) are different. This is clear, for example, because their conser-
vation laws differ. The eikonal equation (1) preserves the FEuclidean
condition |F| =1, not ||F|| = 1, which is preserved by (2).

#1d ’Fourth year students‘

(i) Compute the quantities I's,(r) for gij = n*(r)d;; when n = n(r) with
r2 = r%u,rt.

(ii) Write the eikonal equation (1) when the index of refraction n(r) de-
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pends only on r.
(iii) Show that the eikonal equation conserves the vector L = r x n(r)t
when indez of refraction n depends only on the spherical radius r = |r|.

(i) For gij(r) = 6;m%(r) with r?* := r%.r®, the geodesic equation (2)

becomes
o= TR
_ 1 ca 8ga€(,r) agab<r) agbe<r> .b.e
- oY [ orb + ore o |
- 1> [&féabr“ + 05 0cqr — raéacaeb] o’
nr Or

or, equivalently, in Fuclidean vector form

iﬁ:—ia—n{fx(fxr) +w]

nr Or
FEikonal Extra

(ii) In contrast the eikonal equation (1) may be written as

(r)f = — ¥ x PV WY (Pl +|1'~|2@
o= or )~ or or

r

which implies for n(r) that

on on dnr
<\ a2Y" . o _ et
(n(r)r) = IF] or with Jr drr
(iii) Consequently
. on
o . C 2
L= <r X n(r)r) = |F|°r x i

The RHS vanishes when n = n(r) by the previous equation.

#2 Hamaltonian formulations

According to the text the etkonal equation also follows from Fermat’s principle
in the form

oz(sszafA %rﬂ(r(r))@-@m: /L(r,f)dT, (3)
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with new arclength parameter dr = nds. (You may retain the dot notation
for d/dr.) Use this version of Fermat’s principle to write the Hamiltonian
formulations of the solutions of question #1. (As usual, 3rd year students do
parts a,b,c, while 4th year and MSc students do parts a,b,c,d.)

#2a The fibre derivative of the Lagrangian in (3) above is

oL 5, . dr
pP= W =n (r)% (4)

This defines the canonical momentum and yields the Legendre transfor-
mation for the Hamiltonian

dr 2
Hr.p)=p- o — Lir.de/ir) =

2n2(r)
The canonical Hamilton equations are
de  OH 1 dp OH |p|*0n
dr 0p n? dr or n3 Or

Substituting the momentum-velocity relation (4) into the momentum

equation yields
d [ ,dr\  ,|dr|20n
5(” 5) =17 ar (5)

Hence, using dr = n(r)ds so that d/ds = n(r)d/dr one finds

dfdry _  bdr  (On dr)dr
ds\ds) — a2 \or dar)dr
dr 8n)

B tion (5) = —n— x | = x —
y equation (5) n x(dear

i (i on
a nds ds Or

This shows that the geodesic Fuler-Lagrange equation for the Lagrangian
(8) does recover the eikonal equation in canonical Hamiltonian form.

#2b The eikonal equation does emerge when gu = n*(r)dy, for this
Lagrangian.

#2c Preservation of the Hamiltonian ensures preservation of
n?|dr/dr|* = |dr/ds|?, just as for the eikonal equation, since dr = n(r)ds.
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This conservation law bodes well for these equations to recover the eitkonal
equation.

#2d ’Fourth year students‘

Once we have recovered the eikonal equation, parts (i) and (ii) follow as
before, except mow we must change the independent variable by using

dT = nds.

For (iii), it remains to compute the Hamiltonian vector field for L = r X p

Consequently

i—{v )~ (Ag'j))rxg_j

and the RHS vanishes when n = n(r).

#3 R®—reduction for axisymmetric, translation invariant optical me-
dia
#3a Compute by chain rule that

dF , oF  9S* aH
E—{F,H} = VF-VS§S XVH—aneklmaXl 8Xm7

for
Xi=|q?>0, Xo=|p?>0, X;=p-q.

Done in notes. That S? = p x q > 0 is evident.

#3b Show that the Poisson bracket {F, H} = VF-VS*xV H, with definition
S? =X, X, — Xg satisfies the Jacobi identity.

This Poisson bracket may be written equivalently as

OF OH
A i
U HY = Xec 53 0%,
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From the table

{'7'} Xl X2 X3

o X 0 4X; 2X,
o Xd=1x, | uax, o —2x
Xy | —2X, 2X, 0

one identifies cfj
(X, X;} = Xs,.
We also have

(X0, {Xi, X3} = X0, Xi} = i Xom .
Hence, the Jacobi identity is satisfied as a consequence of

{10, { X, X5 +{X0, {XG, Xt +{XG, {X0, Xab)
= i { Xy, Xi} + G { X, X} + {X;, X}
= <c§§.c§g + c?lc?,z + cﬁ-cﬁ) X,=0,

This is the condition required for the Jacobi identity to hold in terms

of the structure constants.
Remark. This calculation provides an independent proof of the Ja-

cobi identity for the R? bracket in the case of quadratic distinguished

functions. m

#3c Consider the Hamiltonian
H = aY) + bYs + cY3 (6)

with the linear combinations
1

1
Ni=5&+X), h=5-X), Y=X,

and constant values of (a,b,c). Compute the canonical dynamics gener-
ated by Hamiltonian (6) on level sets of S* > 0 and S* = 0.

This amounts to computing the intersections of the planes
H = aY] + bYs + ¢Y5 = constant

with the hyperboloids of revolution about the Y;-axis,

S =Y? Y}~ Y= constant .
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One may solve this problem graphically, algebraically by choosing
special cases for the orientations of the family of planes, or most
generally by restricting the equations to a level set of either S? =
constant, or H = constant.

Restricting to S? = constant hyperboloids of revolution.

Each of the family of hyperboloids of revolution S? = constant com-
prises a layer in the “hyperbolic onion” preserved by azxisymmetric
ray optics. We use hyperbolic polar coordinates on these layers in
analogy to spherical coordinates,

Yy =Scoshu, Y, = Ssinhucosy, Y;= Ssinhusiny.
The R3—bracket thereby transforms into hyperbolic coordinates as
{F, H}dYy NdYa AdYsz = —{F, H}pypery S dS A dip A dcoshu.
Note that the oriented quantity
S%dcoshu A dip = —S%dyp Adcoshu,

15 the area element on the hyperboloid corresponding to the
constant S?.

On a constant level surface of S* the function {F, H }pypers only de-
pends on (coshu, ) so the Poisson bracket for optical motion on any
particular hyperboloid is then

{F, H}d*Y = —S*dSANdFANdH = —S*dS A{F, H}pypers 0 N d
oF O0H OH OF
— 524 il — — ) dip A dcosh
ST A OY Ocoshu  0coshu O ¥ A deos

Being a constant of the motion, the value of S* may be absorbed
by a choice of units for any given initial condition and the Poisson
bracket for the optical motion thereby becomes canonical on each
hyperboloid,
dy OH d cosh u
dz {?/), }hyperb acoshua dz {COS u, }hyperb

In the Cartesian variables (Y1,Ys,Ys3) € R3, one has coshu = Y;/S
and ¢ = tan~Y(Y3/Ys). The Hamiltonian H = aY; + bYs + cYs

becomes

H = aS coshu + bSsinhwcos + ¢Ssinhusin,

cosh u

OH
o
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with
sinhu = Vcosh?u—1 and siny = /1 — cos?1)
so that )
Jdsinhu i
= cothu,
0 coshu
and

1dy 1 0H

S dz S Ocoshu

1 dcosh 1 0H
Lacoshu = —bsinhwusiny + c¢sinhu cos .

S dz S o

= a+bcothucosy + ccothusiny,

Restricting to the conical surface S* =0
To restrict to the conical surface S* = Y2 =Y —Y# = 0 one chooses
coordinates

Yi=2, Yo=Zcosy, Y3;=Zsiny

The Poisson bracket for the optical motion thereby becomes canon-
tcal on the cone,

dip OH dz OH
E_{¢7 H}cone_a_Z7 E_{Z7 H}cone—_%'
and
1dy 10H .
S -%37 = a~+ bcos + csiny,
1dZ 10H .
S-S0 —bZ sinv + cZ cos 1.

The equations on the hyperboloids and the cone are a bit complicated.
It turns out that a very simple solution is possible on the level sets
of the Hamultonian planes.

Restricting to H = constant planes.

One may also restrict the equations to a planar level set of H =
constant. This tactic is very insightful and particularly simple, be-
cause only linear equations arise.
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The latter approach summons the linear transformation with constant

coefficients,
dY; A Ay A dH
dYé = Bl B2 Bg dx
dYs Cr Oy Cs dy

One finds the constant Jacobian from d*Y = (A-BxC)dH AdzAdy.
Then one transforms to level sets of H by writing

dF
— ={F, H}d?Y = —dCAdFANdH =dH NdF AdC

dz

Thus, on one of the planes in the family of level sets of H, one finds

de  0C
dz 0y
dy oC'
dz oz

Because C' is quadratic and the transformation from (Y1,Y2,Ys) to
(H,x,y) is linear, these canonical equations on any of the planar
level sets of H are linear. That is,

Caga ) =[5 5](5)+ (3)
dy/dz a B\ gl
with constants (o, B, @&, 3,7,7). These are linear equations.

Direct solution in canonical variables. For the Hamiltonian

-b +0
H = aY; +bY; + ¥y = =—|d]* + “—[p + cp-q

one has
H
q = (Z—p:(a+b)p+cq
OH
p = —a—qz(b—a)q—cp
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As expected, this is a linear symplectic transformation and the matrix
15 given by

c a-+b a—>b a-+b
(b—a e ): 5 my + 5 mo + cmg .

#3d ’Fourth year students‘
Derve the formula for reconstructing the angle canonically conjugate to
S for the canonical dynamics generated by the planar Hamiltonian (6).

The volume elements corresponding to the Poisson brackets are
3

d¥Y = dYy ANdYy ANdYs = d% A dcoshu A di

On a level set of S = py this implies canonical variables (coshu, 1)
with symplectic form,

dcoshu A di,
and since (S = py, @) are also canonically conjugate, one has

dp; Ndg; = dS Ndp + dcoshu Adi.

One recalls Stokes Theorem on phase space

// dp; N\ dq; = f pidq; ,
A oA

where the boundary of the phase space area OA is taken around a loop
on a closed orbit. On an invariant hyperboloid S this loop integral

becomes
fp ~dq = fpjdqj = 7{ <Sd¢+ coshudzﬂ) :

Thus we may compute the total phase change around a closed periodic
orbit on the level set of hyperboloid S from

J(I{Sdgb = SA¢p= —%coshudw + fpwlq (7)

Geometric A¢p  Dynamic A¢
Euvidently, one may denote the total change in phase as the sum

A¢ = AQzﬁgeom + A(Zﬁdyn )
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by identifying the corresponding terms in the previous formula. By
Stokes theorem, one sees that the geometric phase associated with a
periodic motion on a particular hyperboloid is given by the hyper-
bolic solid angle enclosed by the orbit. Thus, the name: geometric

phase.




