M3/4A16 Assessed Coursework 1 Due in class Thursday November 6, 2008

Darryl Holm

#1 Eikonal equation from Fermat's principle

#1a Prove that the 3D eikonal equation

$$\frac{d}{ds}\left(n(\mathbf{r})\frac{d\mathbf{r}}{ds}\right) = |\dot{\mathbf{r}}|^2 \frac{\partial n}{\partial \mathbf{r}} \tag{1}$$

preserves $|\dot{\mathbf{r}}| = 1$, where $\dot{\mathbf{r}} = d\mathbf{r}/ds$.

Expanding the 3D eikonal equation yields

$$\left(\frac{\partial n}{\partial \mathbf{r}} \cdot \dot{\mathbf{r}}\right) \dot{\mathbf{r}} + n(\mathbf{r}) \ddot{\mathbf{r}} = |\dot{\mathbf{r}}|^2 \frac{\partial n}{\partial \mathbf{r}}$$

Rearranging yields

$$\ddot{\mathbf{r}} = -\dot{\mathbf{r}} \times \left(\dot{\mathbf{r}} \times \frac{1}{n} \frac{\partial n}{\partial \mathbf{r}}\right)$$

Consequently, $\dot{\mathbf{r}} \cdot \ddot{\mathbf{r}} = 0$ and the magnitude $|\dot{\mathbf{r}}|$ is preserved.

Evolution under the eikonal equation tends to align $\dot{\mathbf{r}}$ with $\partial n/\partial \mathbf{r}$. This is the continuum material version of Snell's Law.

#1b Compute the Euler-Lagrange equations when Hamilton's principle is written in the form

$$0 = \delta \int_{A}^{B} ds = \delta \int_{A}^{B} \left(\frac{dr^{i}}{ds} g_{ij}(\mathbf{r}(s)) \frac{dr^{j}}{ds} \right)^{1/2} ds$$

with $ds^2 = dr^i g_{ij} dr^j$ for the Riemannian metric $g_{ij}(\mathbf{r}(s))$ in 3D with arclength parameter s. Show that these equations may be expressed as,

$$\ddot{r}^{c} + \Gamma_{be}^{c}(\mathbf{r}(s))\dot{r}^{b}\dot{r}^{e} = 0 \quad with \quad \dot{r}^{b} = \frac{dr^{b}}{ds} \quad b, \, c, \, e \in \{1, 2, 3\},$$
 (2)

in which the quantities $\Gamma^c_{be}(\mathbf{r})$ are defined by

$$\Gamma_{be}^{c}(\mathbf{r}) = \frac{1}{2}g^{ca} \left[\frac{\partial g_{ae}(\mathbf{r})}{\partial r^{b}} + \frac{\partial g_{ab}(\mathbf{r})}{\partial r^{e}} - \frac{\partial g_{be}(\mathbf{r})}{\partial r^{a}} \right]$$

and g^{ca} is the inverse of the metric, so that $g^{ca}g_{ab} = \delta_b^c$. Does the eikonal equation emerge when $g_{ab} = n^2(\mathbf{r})\delta_{ab}$? Prove it.

$$\begin{aligned} 0 &= \delta \int_{A}^{B} \left(\frac{dr^{i}}{ds} g_{ij}(\mathbf{r}(s)) \frac{dr^{j}}{ds} \right)^{1/2} ds =: \delta \int_{A}^{B} \left(\|\dot{\mathbf{r}}\|^{2} \right)^{1/2} ds \\ &= \int_{A}^{B} \frac{1}{2 \|\dot{\mathbf{r}}\|} \delta \left(\frac{dr^{i}}{ds} g_{ij}(\mathbf{r}(s)) \frac{dr^{j}}{ds} \right) ds \\ &= \int_{A}^{B} \frac{1}{\|\dot{\mathbf{r}}\|} \left(\frac{1}{2} \frac{\partial g_{ij}}{\partial r^{k}} \dot{r}^{i} \dot{r}^{j} - \frac{d}{ds} \left(g_{kj} \dot{r}^{j} \right) \right) \delta r^{k} ds \\ &= \int_{A}^{B} \frac{1}{\|\dot{\mathbf{r}}\|} \left(\frac{1}{2} \frac{\partial g_{ij}}{\partial r^{k}} \dot{r}^{i} \dot{r}^{j} - \left(g_{kl} \ddot{r}^{l} + \frac{\partial g_{kl}}{\partial r^{m}} \dot{r}^{l} \dot{r}^{m} \right) \right) \delta r^{k} ds , \end{aligned}$$

from which equation (2) emerges after rearranging.

However, inspection shows that this is **not** the eikonal equation (1) when $g_{ab} = n^2(\mathbf{r})\delta_{ab}$.

#1c Prove that equation (2) preserves $\|\dot{\mathbf{r}}\|^2 = \dot{r}^i g_{ij}(\mathbf{r})\dot{r}^j$. What does this tell us about the last part of question #1b?

Take the s-derivative of $\|\dot{\mathbf{r}}\|^2$ and follow the path of the variational derivation of the equation.

$$\frac{1}{2}\frac{d}{ds}\|\dot{\mathbf{r}}\|^2 = \frac{1}{2}g_{ij,k}\dot{r}^k\dot{r}^i\dot{r}^j + \dot{r}^i g_{ij}\ddot{r}^j$$

Now substitute from above

$$\dot{r}^{k}g_{kl}\ddot{r}^{l} = \frac{1}{2}\,\dot{r}^{k}g_{lm,k}\dot{r}^{l}\dot{r}^{m} - \dot{r}^{k}g_{kl,m}\dot{r}^{l}\dot{r}^{m}$$

and rearrange to prove the point that $\|\dot{\mathbf{r}}\|^2 = \dot{r}^i g_{ij}(\mathbf{r})\dot{r}^j$ is preserved. This tells us that substituting $g_{ab} = n^2(\mathbf{r})\delta_{ab}$ into the geodesic equation (2) will **not** recover the eikonal equation (1). Equations (1) and (2) are different. This is clear, for example, because their conservation laws differ. The eikonal equation (1) preserves the Euclidean condition $|\dot{\mathbf{r}}| = 1$, not $\|\dot{\mathbf{r}}\| = 1$, which is preserved by (2).

#1d | Fourth year students

(i) Compute the quantities $\Gamma_{be}^{c}(\mathbf{r})$ for $g_{ij} = n^{2}(\mathbf{r})\delta_{ij}$ when n = n(r) with $r^{2} := r^{a}\delta_{ab}r^{b}$.

(ii) Write the eikonal equation (1) when the index of refraction n(r) de-

pends only on r.

(iii) Show that the eikonal equation conserves the vector $\mathbf{L} = \mathbf{r} \times n(r)\dot{\mathbf{r}}$ when index of refraction n depends only on the spherical radius $r = |\mathbf{r}|$.

(i) For $g_{ij}(r) = \delta_{ij}n^2(r)$ with $r^2 := r^a \delta_{ab}r^b$, the geodesic equation (2) becomes

$$\begin{aligned} \ddot{r}^{c} &= -\Gamma_{be}^{c}(\mathbf{r}(s))\dot{r}^{b}\dot{r}^{e} \\ &= -\frac{1}{2}g^{ca}\left[\frac{\partial g_{ae}(r)}{\partial r^{b}} + \frac{\partial g_{ab}(r)}{\partial r^{e}} - \frac{\partial g_{be}(r)}{\partial r^{a}}\right]\dot{r}^{b}\dot{r}^{e} \\ &= -\frac{1}{nr}\frac{\partial n}{\partial r}\left[\delta_{e}^{c}\delta_{ab}r^{a} + \delta_{b}^{c}\delta_{ed}r^{d} - r_{a}\delta^{ac}\delta_{eb}\right]\dot{r}^{e}\dot{r}^{b} \end{aligned}$$

or, equivalently, in Euclidean vector form

$$\ddot{\mathbf{r}} = -\frac{1}{nr}\frac{\partial n}{\partial r} \left[\underbrace{\dot{\mathbf{r}} \times \left(\dot{\mathbf{r}} \times \mathbf{r}\right)}_{Eikonal} + \underbrace{\left(\mathbf{r} \cdot \dot{\mathbf{r}}\right)\dot{\mathbf{r}}}_{Extra}\right]$$

(ii) In contrast the eikonal equation (1) may be written as

$$n(\mathbf{r})\ddot{\mathbf{r}} = -\dot{\mathbf{r}} \times \left(\dot{\mathbf{r}} \times \frac{\partial n}{\partial \mathbf{r}}\right) = -\dot{\mathbf{r}}\left(\dot{\mathbf{r}} \cdot \frac{\partial n}{\partial \mathbf{r}}\right) + |\dot{\mathbf{r}}|^2 \frac{\partial n}{\partial \mathbf{r}}$$

which implies for n(r) that

$$\left(n(\mathbf{r})\dot{\mathbf{r}}\right)^{\cdot} = |\dot{\mathbf{r}}|^2 \frac{\partial n}{\partial \mathbf{r}} \quad with \quad \frac{\partial n}{\partial \mathbf{r}} = \frac{dn}{dr} \frac{\mathbf{r}}{r}$$

(iii) Consequently

$$\dot{\mathbf{L}} = \left(\mathbf{r} \times n(\mathbf{r})\dot{\mathbf{r}}\right)^{\cdot} = |\dot{\mathbf{r}}|^2 \, \mathbf{r} \times \frac{\partial n}{\partial \mathbf{r}}$$

The RHS vanishes when n = n(r) by the previous equation.

#2 Hamiltonian formulations

According to the text the eikonal equation also follows from Fermat's principle in the form

$$0 = \delta S = \delta \int_{A}^{B} \frac{1}{2} n^{2}(\mathbf{r}(\tau)) \frac{d\mathbf{r}}{d\tau} \cdot \frac{d\mathbf{r}}{d\tau} d\tau = \delta \int_{A}^{B} L(\mathbf{r}, \dot{\mathbf{r}}) d\tau , \qquad (3)$$

with new arclength parameter $d\tau = nds$. (You may retain the dot notation for $d/d\tau$.) Use this version of Fermat's principle to write the Hamiltonian formulations of the solutions of question #1. (As usual, 3rd year students do parts a,b,c, while 4th year and MSc students do parts a,b,c,d.)

#2a The fibre derivative of the Lagrangian in (3) above is

$$\mathbf{p} = \frac{\partial L}{\partial (d\mathbf{r}/d\tau)} = n^2(\mathbf{r})\frac{d\mathbf{r}}{d\tau}$$
(4)

This defines the canonical momentum and yields the Legendre transformation for the Hamiltonian

$$H(\mathbf{r}, \mathbf{p}) = \mathbf{p} \cdot \frac{d\mathbf{r}}{d\tau} - L(\mathbf{r}, d\mathbf{r}/d\tau) = \frac{|\mathbf{p}|^2}{2n^2(\mathbf{r})}$$

The canonical Hamilton equations are

$$\frac{d\mathbf{r}}{d\tau} = \frac{\partial H}{\partial \mathbf{p}} = \frac{1}{n^2} \mathbf{p} \quad and \quad \frac{d\mathbf{p}}{d\tau} = -\frac{\partial H}{\partial \mathbf{r}} = \frac{|\mathbf{p}|^2}{n^3} \frac{\partial n}{\partial \mathbf{r}}$$

Substituting the momentum-velocity relation (4) into the momentum equation yields

$$\frac{d}{d\tau} \left(n^2 \frac{d\mathbf{r}}{d\tau} \right) = n^2 \left| \frac{d\mathbf{r}}{d\tau} \right|^2 \frac{\partial n}{\partial \mathbf{r}}$$
(5)

Hence, using $d\tau = n(\mathbf{r})ds$ so that $d/ds = n(\mathbf{r})d/d\tau$ one finds

$$\frac{d}{ds} \left(\frac{d\mathbf{r}}{ds} \right) = n^2 \frac{d^2 \mathbf{r}}{d\tau^2} + \left(\frac{\partial n}{\partial \mathbf{r}} \cdot \frac{d\mathbf{r}}{d\tau} \right) \frac{d\mathbf{r}}{d\tau}$$

By equation (5) = $-n \frac{d\mathbf{r}}{d\tau} \times \left(\frac{d\mathbf{r}}{d\tau} \times \frac{\partial n}{\partial \mathbf{r}} \right)$
= $-\frac{1}{n} \frac{d\mathbf{r}}{ds} \times \left(\frac{d\mathbf{r}}{ds} \times \frac{\partial n}{\partial \mathbf{r}} \right)$

This shows that the geodesic Euler-Lagrange equation for the Lagrangian (3) does recover the eikonal equation in canonical Hamiltonian form.

#2b The eikonal equation does emerge when $g_{ab} = n^2(\mathbf{r})\delta_{ab}$ for this Lagrangian.

#2c Preservation of the Hamiltonian ensures preservation of $n^2 |d\mathbf{r}/d\tau|^2 = |d\mathbf{r}/ds|^2$, just as for the eikonal equation, since $d\tau = n(\mathbf{r})ds$.

This conservation law bodes well for these equations to recover the eikonal equation.

#2d Fourth year students

Once we have recovered the eikonal equation, parts (i) and (ii) follow as before, except now we must change the independent variable by using $d\tau = nds$.

For (iii), it remains to compute the Hamiltonian vector field for $\mathbf{L} = \mathbf{r} \times \mathbf{p}$

$$\Big\{\,\cdot\,,\,\mathbf{L}\Big\}=\mathbf{r}\times\frac{\partial}{\partial\mathbf{r}}+\mathbf{p}\times\frac{\partial}{\partial\mathbf{p}}$$

Consequently

$$\dot{\mathbf{L}} = \left\{ \mathbf{L}, H \right\} = \left(\frac{|\mathbf{p}|^2}{n^3(\mathbf{r})} \right) \mathbf{r} \times \frac{\partial n}{\partial \mathbf{r}}$$

and the RHS vanishes when n = n(r).

$\#3 \,\, \mathbb{R}^3-reduction$ for axisymmetric, translation invariant optical media

#3a Compute by chain rule that

$$\frac{dF}{dt} = \{F, H\} = \nabla F \cdot \nabla S^2 \times \nabla H = \frac{\partial F}{\partial X_k} \epsilon_{klm} \frac{\partial S^2}{\partial X_l} \frac{\partial H}{\partial X_m},$$

for

$$X_1 = |\mathbf{q}|^2 \ge 0$$
, $X_2 = |\mathbf{p}|^2 \ge 0$, $X_3 = \mathbf{p} \cdot \mathbf{q}$.

Done in notes. That $S^2 = \mathbf{p} \times \mathbf{q} \ge 0$ is evident.

#3b Show that the Poisson bracket $\{F, H\} = \nabla F \cdot \nabla S^2 \times \nabla H$, with definition $S^2 = X_1 X_2 - X_3^2$ satisfies the Jacobi identity.

This Poisson bracket may be written equivalently as

$$\{F,H\} = X_k c_{ij}^k \frac{\partial F}{\partial X_i} \frac{\partial H}{\partial X_j}$$

From the table

$$\{X_i, X_j\} = \begin{bmatrix} \{\cdot, \cdot\} & X_1 & X_2 & X_3 \\ X_1 & 0 & 4X_3 & 2X_1 \\ X_2 & -4X_3 & 0 & -2X_2 \\ X_3 & -2X_1 & 2X_2 & 0 \end{bmatrix}$$

one identifies c_{ij}^k

$$\{X_i, X_j\} = c_{ij}^k X_k.$$

We also have

$$\{X_l, \{X_i, X_j\}\} = c_{ij}^k \{X_l, X_k\} = c_{ij}^k c_{lk}^m X_m.$$

Hence, the Jacobi identity is satisfied as a consequence of

$$\{X_l, \{X_i, X_j\}\} + \{X_i, \{X_j, X_l\}\} + \{X_j, \{X_l, X_i\}\}$$

= $c_{ij}^k \{X_l, X_k\} + c_{jl}^k \{X_i, X_k\} + c_{li}^k \{X_j, X_k\}$
= $(c_{ij}^k c_{lk}^m + c_{jl}^k c_{ik}^m + c_{li}^k c_{jk}^m) X_m = 0,$

This is the condition required for the Jacobi identity to hold in terms of the structure constants.

Remark. This calculation provides an independent proof of the Jacobi identity for the \mathbb{R}^3 bracket in the case of quadratic distinguished functions.

#3c Consider the Hamiltonian

$$H = aY_1 + bY_2 + cY_3 (6)$$

with the linear combinations

$$Y_1 = \frac{1}{2}(X_1 + X_2), \quad Y_2 = \frac{1}{2}(X_2 - X_1), \quad Y_3 = X_3,$$

and constant values of (a, b, c). Compute the canonical dynamics generated by Hamiltonian (6) on level sets of $S^2 > 0$ and $S^2 = 0$.

This amounts to computing the intersections of the planes

 $H = aY_1 + bY_2 + cY_3 = constant$

with the hyperboloids of revolution about the Y_1 -axis,

$$S^2 = Y_1^2 - Y_2^2 - Y_3^2 = constant$$

One may solve this problem graphically, algebraically by choosing special cases for the orientations of the family of planes, or most generally by restricting the equations to a level set of either $S^2 = constant$, or H = constant.

Restricting to $S^2 = constant$ hyperboloids of revolution. Each of the family of hyperboloids of revolution $S^2 = constant$ com-

prises a layer in the "hyperbolic onion" preserved by axisymmetric ray optics. We use hyperbolic polar coordinates on these layers in analogy to spherical coordinates,

 $Y_1 = S \cosh u$, $Y_2 = S \sinh u \cos \psi$, $Y_3 = S \sinh u \sin \psi$.

The \mathbb{R}^3 -bracket thereby transforms into hyperbolic coordinates as

$$\{F, H\} dY_1 \wedge dY_2 \wedge dY_3 = -\{F, H\}_{hyperb} S^2 dS \wedge d\psi \wedge d \cosh u.$$

Note that the oriented quantity

 $S^2 d \cosh u \wedge d\psi = -S^2 d\psi \wedge d \cosh u \,,$

is the **area element on the hyperboloid** corresponding to the constant S^2 .

On a constant level surface of S^2 the function $\{F, H\}_{hyperb}$ only depends on $(\cosh u, \psi)$ so the Poisson bracket for optical motion on any particular hyperboloid is then

$$\{F, H\} d^{3}Y = -S^{2}dS \wedge dF \wedge dH = -S^{2}dS \wedge \{F, H\}_{hyperb} d\psi \wedge d \cosh u$$
$$= -S^{2}dS \wedge \left(\frac{\partial F}{\partial \psi} \frac{\partial H}{\partial \cosh u} - \frac{\partial H}{\partial \cosh u} \frac{\partial F}{\partial \psi}\right) d\psi \wedge d \cosh u .$$

Being a constant of the motion, the value of S^2 may be absorbed by a choice of units for any given initial condition and the Poisson bracket for the optical motion thereby becomes **canonical on each** hyperboloid,

$$\frac{d\psi}{dz} = \{\psi, H\}_{hyperb} = \frac{\partial H}{\partial \cosh u}, \qquad \frac{d\cosh u}{dz} = \{\cosh u, H\}_{hyperb} = -\frac{\partial H}{\partial \psi}$$

In the Cartesian variables $(Y_1, Y_2, Y_3) \in \mathbb{R}^3$, one has $\cosh u = Y_1/S$ and $\psi = \tan^{-1}(Y_3/Y_2)$. The Hamiltonian $H = aY_1 + bY_2 + cY_3$ becomes

 $H = aS \cosh u + bS \sinh u \cos \psi + cS \sinh u \sin \psi,$

with

$$\sinh u = \sqrt{\cosh^2 u - 1}$$
 and $\sin \psi = \sqrt{1 - \cos^2 \psi}$

so that

$$\frac{\partial \sinh u}{\partial \cosh u} = \coth u$$

and

$$\frac{1}{S}\frac{d\psi}{dz} = \frac{1}{S}\frac{\partial H}{\partial\cosh u} = a + b\coth u\cos\psi + c\coth u\sin\psi,$$

$$\frac{1}{S}\frac{d\cosh u}{dz} = \frac{1}{S}\frac{\partial H}{\partial\psi} = -b\sinh u\sin\psi + c\sinh u\cos\psi.$$

Restricting to the conical surface $S^2 = 0$

To restrict to the conical surface $S^2=Y_1^2-Y_2^2-Y_3^2=0$ one chooses coordinates

$$Y_1 = Z, \quad Y_2 = Z\cos\psi, \quad Y_3 = Z\sin\psi$$

The Poisson bracket for the optical motion thereby becomes **canon***ical on the cone*,

$$\frac{d\psi}{dz} = \{\psi, H\}_{cone} = \frac{\partial H}{\partial Z}, \qquad \frac{dZ}{dz} = \{Z, H\}_{cone} = -\frac{\partial H}{\partial \psi},$$

and

$$\frac{1}{S}\frac{d\psi}{dz} = \frac{1}{S}\frac{\partial H}{\partial Z} = a + b\cos\psi + c\sin\psi,$$

$$\frac{1}{S}\frac{dZ}{dz} = \frac{1}{S}\frac{\partial H}{\partial \psi} = -bZ\sin\psi + cZ\cos\psi$$

The equations on the hyperboloids and the cone are a bit complicated. It turns out that a very simple solution is possible on the level sets of the Hamiltonian planes.

Restricting to *H* = constant **planes.**

One may also restrict the equations to a planar level set of H = constant. This tactic is very insightful and particularly simple, because only linear equations arise.

The latter approach summons the linear transformation with constant coefficients,

$$\begin{pmatrix} dY_1 \\ dY_2 \\ dY_3 \end{pmatrix} = \begin{bmatrix} A_1 & A_2 & A_3 \\ B_1 & B_2 & B_3 \\ C_1 & C_2 & C_3 \end{bmatrix} \begin{pmatrix} dH \\ dx \\ dy \end{pmatrix}$$

One finds the constant Jacobian from $d^{3}Y = (\mathbf{A} \cdot \mathbf{B} \times \mathbf{C}) dH \wedge dx \wedge dy$. Then one transforms to level sets of H by writing

$$\frac{dF}{dz} = \{F, H\}d^{3}Y = -dC \wedge dF \wedge dH = dH \wedge dF \wedge dC$$
$$= (\mathbf{A} \cdot \mathbf{B} \times \mathbf{C})dH \wedge \{F, C\}_{xy}dx \wedge dy$$

Thus, on one of the planes in the family of level sets of H, one finds

$$\frac{dx}{dz} = \frac{\partial C}{\partial y}$$
$$\frac{dy}{dz} = -\frac{\partial C}{\partial x}$$

Because C is quadratic and the transformation from (Y_1, Y_2, Y_3) to (H, x, y) is linear, these canonical equations on any of the planar level sets of H are linear. That is,

$$\left(\begin{array}{c} dx/dz\\ dy/dz\end{array}\right) = \left[\begin{array}{cc} \alpha & \beta\\ \bar{\alpha} & \bar{\beta}\end{array}\right] \left(\begin{array}{c} x\\ y\end{array}\right) + \left(\begin{array}{c} \gamma\\ \bar{\gamma}\end{array}\right)$$

with constants $(\alpha, \beta, \overline{\alpha}, \overline{\beta}, \gamma, \overline{\gamma})$. These are linear equations.

Direct solution in canonical variables. For the Hamiltonian

$$H = aY_1 + bY_2 + cY_3 = \frac{a-b}{2}|\mathbf{q}|^2 + \frac{a+b}{2}|\mathbf{p}|^2 + c\,\mathbf{p}\cdot\mathbf{q}$$

 $one\ has$

$$\dot{\mathbf{q}} = \frac{\partial H}{\partial \mathbf{p}} = (a+b)\mathbf{p} + c\mathbf{q}$$
$$\dot{\mathbf{p}} = -\frac{\partial H}{\partial \mathbf{q}} = (b-a)\mathbf{q} - c\mathbf{p}$$

or

$$\begin{pmatrix} \dot{\mathbf{q}} \\ \dot{\mathbf{p}} \end{pmatrix} = \begin{pmatrix} c & a+b \\ b-a & -c \end{pmatrix} \begin{pmatrix} \mathbf{q} \\ \mathbf{p} \end{pmatrix}$$

As expected, this is a linear symplectic transformation and the matrix is given by

$$\begin{pmatrix} c & a+b \\ b-a & -c \end{pmatrix} = \frac{a-b}{2}m_1 + \frac{a+b}{2}m_2 + cm_3.$$

#3d | Fourth year students

Derive the formula for reconstructing the angle canonically conjugate to S for the canonical dynamics generated by the planar Hamiltonian (6).

The volume elements corresponding to the Poisson brackets are

$$d^{3}Y =: dY_{1} \wedge dY_{2} \wedge dY_{3} = d\frac{S^{3}}{3} \wedge d\cosh u \wedge d\psi$$

On a level set of $S = p_{\phi}$ this implies canonical variables $(\cosh u, \psi)$ with symplectic form,

 $d\cosh u \wedge d\psi$,

and since $(S = p_{\phi}, \phi)$ are also canonically conjugate, one has

 $dp_j \wedge dq_j = dS \wedge d\phi + d \cosh u \wedge d\psi$.

One recalls Stokes Theorem on phase space

$$\iint_A dp_j \wedge dq_j = \oint_{\partial A} p_j dq_j$$

where the boundary of the phase space area ∂A is taken around a loop on a closed orbit. On an invariant hyperboloid S this loop integral becomes

$$\oint \mathbf{p} \cdot d\mathbf{q} := \oint p_j dq_j = \oint \left(S d\phi + \cosh u \, d\psi \right)$$

Thus we may compute the total phase change around a closed periodic orbit on the level set of hyperboloid S from

$$\oint Sd\phi = S\Delta\phi = \underbrace{-\oint \cosh u \, d\psi}_{Geometric \ \Delta\phi} + \underbrace{\oint \mathbf{p} \cdot d\mathbf{q}}_{Dynamic \ \Delta\phi}$$
(7)

Evidently, one may denote the total change in phase as the sum

$$\Delta \phi = \Delta \phi_{geom} + \Delta \phi_{dyn} \,,$$

by identifying the corresponding terms in the previous formula. By Stokes theorem, one sees that the geometric phase associated with a periodic motion on a particular hyperboloid is given by the hyperbolic solid angle enclosed by the orbit. Thus, the name: **geometric phase**.