Solutions to Assessed Homework 2

Darryl Holm

Problems 1(a-c) are verified easily from Cartan's formula $\left.£_{X} \alpha=X\right\lrcorner d \alpha+$ $d(X\lrcorner \alpha)$ for $\alpha \in \Lambda^{k}$. Problems 1.d(i-iv) are answered as follows:

1d Lie derivative identities by using Cartan's formula

1.d(i) By its linearity, contraction satisfies $d(f X\lrcorner \alpha)=f d(X\lrcorner \alpha)+d f \wedge(X\lrcorner \alpha)$ Hence,

$$
\begin{aligned}
£_{f X} \alpha & =f X\lrcorner d \alpha+d(f X\lrcorner \alpha) \\
& =f X\lrcorner d \alpha+f d(X\lrcorner \alpha)+d f \wedge(X\lrcorner \alpha) \\
& \left.=f £_{X} \alpha+d f \wedge(X\lrcorner \alpha\right)
\end{aligned}
$$

1.d(ii) Cartan's formula implies $£_{X} d \alpha=d\left(£_{X} \alpha\right)$ by comparing the definitions:

$$
\begin{aligned}
£_{X} d \alpha & \left.=X\lrcorner d^{2} \alpha+d(X\lrcorner d \alpha\right) \\
d\left(£_{X} \alpha\right) & \left.=d(X\lrcorner d \alpha)+d^{2}(X\lrcorner \alpha\right)
\end{aligned}
$$

By $d^{2}=0$, these are both equal to $\left.d(X\lrcorner d \alpha\right)$ and the result follows.
1.d(iii) One also proves $\left.\left.£_{X}(X\lrcorner \alpha\right)=X\right\lrcorner £_{X} \alpha$ by comparing the definitions:

$$
\begin{aligned}
\left.£_{X}(X\lrcorner \alpha\right) & =X\lrcorner d(X\lrcorner \alpha)+d(X\lrcorner(X\lrcorner \alpha)) \\
X\lrcorner £_{X} \alpha & =X\lrcorner d(X\lrcorner \alpha)+X\lrcorner(X\lrcorner d \alpha)
\end{aligned}
$$

By $X\lrcorner(X\lrcorner \alpha)=0$, these are both equal to $X\lrcorner d(X\lrcorner \alpha)$ and the result follows.
1.d(iv) $£_{X}(\alpha \wedge \beta)=\left(£_{X} \alpha\right) \wedge \beta+\alpha \wedge £_{X} \beta$

This important identity (product rule for the Lie derivative) follows when the two defining properties

$$
\left.X\lrcorner(\alpha \wedge \beta)=(X\lrcorner \alpha) \wedge \beta+(-1)^{k} \alpha \wedge(X\lrcorner \beta\right),
$$

and

$$
d(\alpha \wedge \beta)=(d \alpha) \wedge \beta+(-1)^{k} \alpha \wedge d \beta
$$

are combined with Cartan's formula.
(The corresponding underlined terms cancel below.)

$$
\begin{aligned}
£_{X}(\alpha \wedge \beta)= & (X\lrcorner d \alpha) \wedge \beta+\underline{\left.\left[(-1)^{k+1} d \alpha \wedge(X\lrcorner \beta\right)\right]}+\underline{\underline{\left.\left[(-1)^{k}(X\lrcorner \alpha\right) \wedge d \beta\right]}} \\
& \left.\left.+(-1)^{2 k} \alpha \wedge(X\lrcorner d \beta\right)+d(X\lrcorner \alpha\right) \wedge \beta+\underline{\left.\left[(-1)^{k-1}(X\lrcorner \alpha\right) \wedge d \beta\right]} \\
& \left.\left.+\left[(-1)^{k} d \alpha \wedge(X\lrcorner \beta\right)\right]+(-1)^{2 k} \alpha \wedge d(X\lrcorner \beta\right) \\
= & \left.\left.(X\lrcorner d \alpha+d(X\lrcorner \alpha)) \wedge \beta+(-1)^{2 k} \alpha \wedge(X\lrcorner d \beta+d(X\lrcorner \beta\right)\right) \\
= & \left(£_{X} \alpha\right) \wedge \beta+\alpha \wedge £_{X} \beta
\end{aligned}
$$

2 Verifying the formulas for operations among vector fields

2(a) By direct substitution

$$
\begin{aligned}
X\lrcorner(Y\lrcorner \alpha) & =X^{l} Y^{m} \alpha_{m l i_{3} \ldots i_{k}} d x^{i_{3}} \wedge \cdots \wedge d x^{i_{k}} \\
& =-X^{l} Y^{m} \alpha_{l m i_{3} \ldots i_{k}} d x^{i_{3}} \wedge \cdots \wedge d x^{i_{k}} \\
& =-Y\lrcorner(X\lrcorner \alpha), \quad \text { by antisymmetry of } \alpha_{m l i_{3} \ldots i_{k}}
\end{aligned}
$$

2(b) For zero-forms (functions) all terms in the formula vanish identically. The formula $\left.\left.[X, Y]\lrcorner \alpha=£_{X}(Y\lrcorner \alpha\right)-Y\right\lrcorner\left(£_{X} \alpha\right)$ is seen to hold for a one-form $\alpha=\mathbf{v} \cdot d \mathbf{x}$ by comparing

$$
\begin{aligned}
{[X, Y]\lrcorner \alpha } & =\left(X^{k} Y_{, k}^{l}-Y^{k} X_{,, k}^{l}\right) v_{l} \\
\text { with } \left.\left.£_{X}(Y\lrcorner \alpha\right)-Y\right\lrcorner\left(£_{X} \alpha\right) & =X^{k} \partial_{k}\left(Y^{l} v_{l}\right)-Y^{l}\left(X^{k} v_{l, k}+v_{j} X_{, l}^{j}\right)
\end{aligned}
$$

to see that it holds in an explicit calculation.
(By a general theorem Abraham and Marsden [1978], verification for zeroforms and one-forms is sufficient to imply the result for all k-forms. Notice that exercise $1 . \operatorname{iv}(\mathrm{c})$ is an example for 3 -forms. Try writing the formula in vector notation for 2 -forms!)
Remark. One may remember this formula by writing it as a product rule:

$$
\left.\left.\left.£_{X}(Y\lrcorner \alpha\right)=\left(£_{X} Y\right)\right\lrcorner \alpha+Y\right\lrcorner\left(£_{X} \alpha\right) .
$$

2(c) Given $\left.\left.[X, Y]\lrcorner \alpha=£_{X}(Y\lrcorner \alpha\right)-Y\right\lrcorner\left(£_{X} \alpha\right)$ as verified in part $\mathbf{2 (b)}$ we use Cartan's formula to compute

$$
\begin{aligned}
£_{[X, Y]} \alpha & =d([X, Y]\lrcorner \alpha)+[X, Y]\lrcorner d \alpha \\
& \left.\left.\left.\left.=d\left(£_{X}(Y\lrcorner \alpha\right)-Y\right\lrcorner\left(£_{X} \alpha\right)\right)+£_{X}(Y\lrcorner d \alpha\right)-Y\right\lrcorner\left(£_{X} d \alpha\right) \\
& \left.\left.\left.=£_{X} d(Y\lrcorner \alpha\right)-d(Y\lrcorner\left(£_{X} \alpha\right)+£_{X}(Y\lrcorner d \alpha\right)-Y\right\lrcorner d\left(£_{X} \alpha\right) \\
& =£_{X}\left(£_{Y} \alpha\right)-£_{Y}\left(£_{X} \alpha\right),
\end{aligned}
$$

as required. Thus, answering problem $2(b)$ provides the key to solving $2(\mathbf{c})$.

Consequently, $£_{[Z,[X, Y]]} \alpha=£_{Z} £_{X} £_{Y} \alpha-£_{Z} £_{Y} £_{X} \alpha-£_{X} £_{Y} £_{Z} \alpha+£_{Y} £_{X} £_{Z} \alpha$, and summing over cyclic permutations immediately verifies that

$$
£_{[Z,[X, Y]]} \alpha+£_{[X,[Y, Z]]} \alpha+£_{[Y,[Z, X]]} \alpha=0 .
$$

This is the Jacobi identity for the Lie derivative.

