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M3/4A16 Assessed Coursework 2 Darryl Holm
Due in class Thursday November 27, 2008

Ask in class to clarify the exact meaning of a question if you’re unsure.
No conferring or copying: it will be more obvious than you think.

#1 Quadratic Casimirs

A Hamiltonian flow in R3 is defined by the system of ordinary differential equations

ẋ1 = x2 , ẋ2 = x1x3 , ẋ3 = −x1x2 . (1)

#1a Express this system in three-dimensional vector notation as flow on the inter-
sections of level sets for a family of circular cylinders with a family of parabolic
cylinders. That is, express (1) in three-dimensional vector notation as

ẋ = ∇H1 ×∇H2 ,

where H1 and H2 are two conserved functions corresponding to these level sets.

Write two different Poisson matrices and Lie-Poisson brackets for system (1).
(Be sure to check that these Poisson brackets both satisfy the Jacobi identity.)

The system (1) may be written in two equivalent forms. The first is

d

dt

x1

x2

x3

 = det

 1̂ 2̂ 3̂
0 x2 x3

x1 0 1

 = ∇1
2
(x2

2 + x2
3)×∇(1

2
x2

1 + x3)

So, H1 = 1
2
(x2

2 + x2
3) and H2 = 1

2
x2

1 + x3. The second form of (1) uses the
hat map

d

dt

x1

x2

x3

 =

 0 −x3 x2

x3 0 0
−x2 0 0

x1

0
1

 = B1∇H2

=

 0 1 0
−1 0 x1

0 −x1 0

 0
x2

x3

 = B2∇H1

Namely, (B1)ij = −εijk∂H1/∂xk and (B2)ij = +εijk∂H2/∂xk. The Hamil-
tonian matrices B1 and B2 define the following Poisson brackets

{F, G}1 = (∇F )TB1∇G and {F, G}2 = (∇F )TB2∇G

The entries of the Hamiltonian matrices each define the structure constants
of a Lie algebra by identifying Bij = [xi, xj] = ckijxk. Therefore, the 3 × 3
skew-symmetric matrices B1 and B2 each produce Lie-Poisson brackets that
satisfy the Jacobi identity by being dual to a Lie algebra. Moreover, the
two Hamiltonian matrices are compatible. That is, for the same reason
as before (linearity), the sum B1 + B2 also defines a valid Poisson bracket.
This is no surprise because B1 and B2 also produce R3 brackets.
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For the remainder of the solution of this problem, see Section 6.2 of the text.

#1b Reduce system (1) to canonical dynamics on a level set of H1.

#1c Reduce system (1) to canonical dynamics on a level set of H2.

#1d Fourth year students Find the conditions on the four real constants {α, β, µ, ν}
for the system (1) to be expressed as flow on the intersections of the level sets
of two families of quadric surfaces,

2H

α
+
β2

α2
=

β

α
x2

1 + x2
2 +

(
x3 +

β

α

)2

2C

µ
+
ν2

µ2
=

ν

µ
x2

1 + x2
2 +

(
x3 +

ν

µ

)2

That is, find the conditions on constants {α, β, µ, ν} that allow (1) to be written
in three-dimensional vector notation as

ẋ = ∇H ×∇C ,

where H and C are the two conserved functions defined above.

The single condition for this is

αν − βµ = 1

#2 Hamilton’s principle for geodesic flow on the symplectic group Sp(2)
Let the set of 2 × 2 matrices Mi with i = 1, 2, 3 satisfy the defining relation for the
symplectic Lie group Sp(2),

MiJM
T
i = J with J =

(
0 −1
1 0

)
,

so that corresponding elements of its Lie algebra mi = ṀiM
−1
i ∈ sp(2) satisfy

(Jmi)
T = Jmi for each i = 1, 2, 3. Thus, Xi = Jmi satisfying XTi = Xi is a set

of three symmetric 2× 2 matrices. For definiteness, we may choose a basis given by

X1 = Jm1 =

(
2 0
0 0

)
, X2 = Jm2 =

(
0 0
0 2

)
, X3 = Jm3 =

(
0 1
1 0

)
This basis corresponds to the vector of momentum maps given by quadratic phase-
space functions X = (|q|2, |p|2,q · p)T used in class for geometric optics. One sees
this by using the symmetric matrices X1,X2,X3 above to compute the following three
quadratic forms defined using z = (q,p)T

1
2
zTX1z = |q|2 = X1,

1
2
zTX2z = |p|2 = X2,

1
2
zTX3z = q · p = X3 .
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#2a For X = Jm, Y = Jn ∈ sym(2) with m,n ∈ sp(2), prove the middle equality
in

[X,Y]J := XJY − YJX = −J(mn− nm) = −J [m,n]

Use this equality to show that the J-bracket [X,Y]J satisfies the Jacobi identity.

The first part is a straightforward calculation using J2 = −Id2×2 with the
definitions of X and Y. The second part follows from the Jacobi identity for
the symplectic Lie algebra and linearity in the definitions of X,Y ∈ sym(2)
in terms of m,n ∈ sp(2).

#2b If X = JṀM−1 for derivative Ṁ = ∂M(s, σ)/∂s|σ=0 and Y = JM ′M−1 for
variational derivative δM = M ′ = ∂M(s, σ)/∂σ|σ=0, show that equality of cross
derivatives in s and σ implies the relation

δX = X′ = Ẏ + [X,Y]J

This is an important standard calculation in geometric mechanics. It begins
by computing the time derivative of MM−1 = Id along the curve M(s)
yields (MM−1) ˙ = 0, so that

(M−1) ˙ = −M−1ṀM−1 .

Next, one defines m = ṀM−1 and n = M ′M−1. Then the previous relation
yields

m′ = Ṁ ′M−1 − ṀM−1M ′M−1

ṅ = Ṁ ′M−1 −M ′M−1ṀM−1

so that subtraction yields the relation

m′ − ṅ = nm−mn =: −[m,n]

Hence, upon substituting the definitions of X and Y, one finds

X′ = Jm′ = Jṅ− J [m,n]

= Ẏ + [X,Y]J = Ẏ + 2sym(XJY)

#2c Use the previous relation to compute the Euler-Poincaré equation for evolution
resulting from Hamilton’s principle

0 = δS = δ

∫
`(X(s)) ds =

∫
tr

(
∂`

∂X
δX

)
ds



4

Integrating by parts and rearranging as follows,

0 = δS =

∫
tr

(
∂`

∂X
X′
)
ds

=

∫
tr

(
∂`

∂X
(Ẏ − YJX + XJY)

)
ds

=

∫
tr

((
− d

ds

∂`

∂X
− JX

∂`

∂X
+
∂`

∂X
XJ
)
Y

)
ds

=

∫
tr

((
− d

ds

∂`

∂X
− 2sym

(
JX

∂`

∂X

))
Y

)
ds

results in the Euler-Poincaré equation,

d

ds

∂`

∂X
= −2sym

(
JX

∂`

∂X

)
= +2sym

( ∂`
∂X

XJ
)

(2)

Specialise this evolution equation to the case that `(X) = 1
2
tr(X2), where tr

denotes trace of a matrix. (This is geodesic motion on the matrix Lie group
Sp(2) with respect to the trace norm of matrices.)

When `(X) = 1
2
tr(X2) we have ∂`/∂X = X, so the Euler-Poincaré equation

(2) becomes

Ẋ = −2sym
(
JX2

)
= X2J − JX2 = [X2, J ] (3)

This is called the Bloch-Iserles equation.

#2d Fourth year students Write the Hamiltonian form of the Euler-Poincaré

equation and identify the associated Lie-Poisson bracket. Write the Hamiltonian
form of the corresponding geodesic equation when `(X) = 1

2
tr(X2).

The Hamiltonian form of the Euler-Poincaré equation (2) is found from the
Legendre transform via the dual relations

µ =
∂`

∂X
and X =

∂h

∂µ
with h(µ) = tr(µX)− `(X)

Thus,

µ̇ = −2sym
(
J
∂h

∂µ
µ
)

= −J ∂h
∂µ
µ+ µ

∂h

∂µ
J
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The Lie-Poisson bracket is obtained from

d

ds
f(µ) = tr

(
∂f

∂µ

dµ

ds

)
= − 2tr

(
µ sym

(∂f
∂µ
J
∂h

∂µ

))
= − tr

(
µ
[∂f
∂µ

,
∂h

∂µ

]
J

)
=:

{
f , h

}
J

It’s Jacobi identity follows from that of the J-bracket discussed earlier.

For the geodesic equation h = 1
2
µ2 and equation (3) keeps its form with

X→ µ.

#3 Structure equations from Fermat’s principle

Review
Fermat’s (or Hamilton’s) principle for geometric optics is

0 = δ

∫ B

A

(
dri

ds
gij(r(s))

drj

ds

)1/2

ds .

For ray paths r(s) in an isotropic medium in 3D the Riemannian metric appearing
in Fermat’s principle is gij = n2(r(s))δij, where n(r) is the refractive index of the
medium and δij is the Kronecker delta symbol. In terms of this metric, the length
element ds = ndl is defined by ds2 = n2dl2 = gij(r)dridrj, summing over i, j =
1, 2, 3. As we know, the eikonal equation may be expressed as a geodesic equation,

r̈ c + Γcbe(r(s))ṙbṙe = 0 with ṙb =
drb

ds
and b, c, e ∈ {1, 2, 3} .

The quantities Γcbe(r) are symmetric in (b, e), as reflected in their definition

Γcbe(r) =
1

2
gca
[
∂gae(r)

∂rb
+
∂gab(r)

∂re
− ∂gbe(r)

∂ra

]
,

and gca is the inverse gcagab = δcb. [Details appear in Chapter 2 of the class text.]
The corresponding curvature tensor Ra

bcd may be expressed in terms of the Christoffel
symbols Γabc by

Ra
bcd =

∂Γabc
∂rd
− ∂Γabd

∂rc
+ ΓebcΓ

a
de − ΓebdΓ

a
ce ,

and Rabcd = gaeR
e
bcd possesses the expected symmetries

Rabcd = −Rbacd = −Rabdc = Rcdab

Although these equations may look formidable, it turns out that they may be derived
easily by using the language of differential forms.
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Differential forms Define a basis of 1-forms ea = eai dr
i with a = 1, 2, 3, in terms

of the Cartesian basis dri with i = 1, 2, 3. The corresponding dual basis is defined by
eb = ejb∂/∂r

j with ejbe
b
i = δji and it satisfies the contraction relation

eb ea := eaje
j
b = δab for ∂/∂rj dri = δij .

The induced metric defined by ηab = gije
j
ae
i
b then satisfies ηabe

a
je
b
i = gij which implies

ds2 = drigijdr
j = ηabe

a
i dr

iebjdr
j = ηabe

aeb .

For example, the path length in Fermat’s principle for an isotropic medium may be
expressed as,

ds2 = n2(dx2 + dy2 + dz2) = (e1)2 + (e2)2 + (e3)2 = δabe
aeb ,

with ηab = δab and ea = n(r)dra, that is,

e1 = ndx, e2 = ndy, e3 = ndz .

The 1-forms ea with a = 1, 2, 3 are called Cartan frames. They satisfy Cartan’s
structure equations, namely

dea + ωab ∧ eb = 0 ,

dωab + ωac ∧ ωcb = − 1
2
Ra
b ,

where d denotes the exterior differential operator and ωab = ηacω
c
b = −ωba. The first

of these structure equations defines the Christoffel symbols. The second defines the
curvature tensor. In the Cartan frame basis, the coefficients in Cartan’s structure
equations are given in terms of Γabc and Ra

bcd by

ωab = Γabce
c and Ra

b = Ra
bcde

c ∧ ed ,

so that Ra
bdc = −Ra

bcd (as expected from its definition) now follows from antisymmetry
of the wedge product, ec ∧ ed = −ed ∧ ec. For example, in spherical coordinates,
er = dr, eθ = rdθ, eφ = r sin θdφ. A direct calculation then yields structure equations

der = 0 , deθ − 1

r
er ∧ eθ = 0 , deφ − 1

r
er ∧ eφ − cot θ

r
eθ ∧ eφ = 0 ,

whose coefficients are the well-known Christoffel symbols for spherical coordinates.

Problem statement (Solution only requires properties of d and ∧!)

#3a Compute ωab and give an example of computing Ra
b when ea = n(r)dra, ηab = δab

and ds2 = e(r) · e(r).
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By using the definition of ωab in dea+ωab ∧eb = 0 and the relations ea = ndra,
we find by direct computation that

ω1
2 = −ω2

1 = n−1(nydx− nxdy) ,

ω1
3 = −ω3

1 = n−1(nzdx− nxdz) ,

ω2
3 = −ω3

2 = n−1(nzdy − nydz) .

This calculation proceeds as follows. Expanding de1 + ω1
2 ∧ e2 + ω1

3 ∧ e3 = 0
yields

nydy ∧ dx+ nzdz ∧ dx+ ω1
2 ∧ ndy + ω1

3 ∧ ndz = 0 .

Likewise, expanding de2 + ω2
1 ∧ e1 + ω2

3 ∧ e3 = 0 yields

nxdx ∧ dy + nzdz ∧ dy + ω2
1 ∧ ndx+ ω2

3 ∧ ndz = 0 .

Hence,

ω1
2 = n−1(nydx+ S1

2dy) , ω1
3 = n−1(nzdx+ S1

3dz) ,

ω2
1 = n−1(nxdy + S2

1dx) , ω2
3 = n−1(nzdy + S2

3dz) ,

where functions S1
2 , S

1
3 , S

2
1 , S

2
3 are sought by expanding de2 and de3. For

ηab = δab, one has ω21 = ω2
1 = −ω1

2 = −ω12 and this skew symmetry yields
S1

2 = −nx and S2
1 = −ny. The other ωab may be obtained by cyclically

permuting indices.

Substituting the results for ωab into Cartan’s second structure equation and
identifying terms as in the previous computation leads to the following ex-
pressions for the curvature two-form

− 1

2
R1

2 = dω1
2 + ω1

c ∧ ωc2 = −n−1
(
nxx + nyy −

1

n
(n2

x + n2
y − n2

z)
)
dx ∧ dy

+ n−1(nyzdz ∧ dx+ nyydy ∧ dz) ,

− 1

2
R1

3 = dω1
3 + ω1

c ∧ ωc3 = . . .

− 1

2
R2

3 = dω2
3 + ω2

c ∧ ωc3 = . . .

#3b Solve for Γ1
21, Γ1

22 and Γ1
23 using Cartan’s first structure equation.

By definition,

ωab = Γabce
c

ω1
2 = Γ1

21e
1 + Γ1

22e
2 + Γ1

23e
3

= n−2
(
nye

1 − nxe2
)
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Therefore, by identifying coefficients,

Γ1
21 = n−2ny, Γ1

22 = −n−2nx, Γ1
23 = 0, etc.

#3c Give an example of computing Ra
bcd in terms of n(r) and its spatial derivatives

using Cartan’s second structure equation.

Mimicking the calculation of the Γ’s from the ωs yields

R1
212 = n−3(nxx + nyy)− n−4(n2

x + n2
y − n2

z) ,

R1
313 = n−3(nxx + nzz)− n−4(n2

x + n2
z − n2

y) ,

R2
323 = n−3(nyy + nzz)− n−4(n2

y + n2
z − n2

x) .

#3d Fourth year students Use the metric gae = n2δae for Fermat’s principle

to lower the first index to Rabcd = gaeR
e
bcd and express the scalar curvature

R = Rabab in terms of n(r) and its spatial derivatives. How does this formula
simplify when the index of refraction is taken as n(r) = 1/(1 ± r2)? (The +
case is called the Maxwell fish-eye lens. What geometrical observation can be
made about the difference in scalar curvature for these two cases? )

Lowering the first index by using gab = n2δab yields

R1212 = n−1(nxx + nyy)− n−2(n2
x + n2

y − n2
z) ,

R1313 = n−1(nxx + nzz)− n−2(n2
x + n2

z − n2
y) ,

R2323 = n−1(nyy + nzz)− n−2(n2
y + n2

z − n2
x) .

which possesses symmetries

Rabcd = −Rbacd = −Rabdc = Rcdab

and vanishes when two indices match in either the first pair or the second
pair.

The scalar curvature is calculated using these symmetries as

R = Rabab = 2(R1212 +R1313 +R2323) =
4

n

[
∆n− 1

2n
|∇n|2

]
When n(r) = 1/(1± r2), this becomes

R =
8(∓2r2 − 1)

(1± r2)2
.

Thus, for the fish-eye n(r) = 1/(1 + r2), the scalar curvature is always
negative. This means the rays diverge away from the center.
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Axisymmetric translation invariant media in 3D These computa-

tions in general terms may look a bit daunting. Let’s look at a simpler case,
but still in 3D. The index of refraction in axisymmetric media is n(r) and
one may formulate the problem for geodesic ray paths in full 3D cylindri-
cal coordinates (r, φ, z). The metric for optics in cylindrical coordinates
is given by ds2 = n2(r)(dr2 + r2dφ2 + dz2). This metric is diagonal with
grr = n2(r), gφφ = r2n2(r), gzz = n2(r), or, in matrix form,

gij = n2(r)

1 0 0
0 r2 0
0 0 1


In this case, ηab = δab and ds2 = e(r) · e(r), with

er = n(r)dr, eφ = n(r)rdφ, ez = n(r)dz .

One calculates the ωab as before from Cartan’s first structure equation.
Hence, ωab = Γabce

c yields the nonzero Christoffel symbols. In the (dr, dφ, dz)
basis, these take a slightly simpler form,

Γrrr =
1

n

dn

dr
, Γrφφ = −

(1

r
+

1

n

dn

dr

)
r2 , Γrzz = − 1

n

dn

dr
,

Γφrφ = Γφφr =
1

r
+

1

n

dn

dr
,

Γzrz = Γzzr =
1

n

dn

dr
.

These nonzero Christoffel symbols also arise from their Levi-Civita defini-
tion in terms of derivatives of the metric. The Γ’s produce the geodesic
equations

r̈ +
1

n

dn

dr

(
ṙ2 − ż2

)
−

(1

r
+

1

n

dn

dr

)
r2φ̇2 = 0 ,

φ̈ + 2
(1

r
+

1

n

dn

dr

)
ṙφ̇ = 0 ,

z̈ +
2

n

dn

dr
ṙż = 0 .

The same geodesic equations of motion arise from the stationary principle,

0 = δS = δ

∫
L(r, ṙ, φ̇, ż)ds = δ

∫
1

2
n2(r)

(
ṙ2 + r2φ̇2 + ż2

)
ds

=

∫ [(
− d

ds

(
n2(r)ṙ

)
+ rφ̇2n2(r) + n

dn

dr

(
ṙ2 + r2φ̇2 + ż2

))
δr

− d

ds

(
n2(r)r2φ̇

)
δφ− d

ds

(
n2(r)ż

)
δz

]
ds
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Invariance of L(r, ṙ, φ̇, ż) in Hamilton’s principle under translations in the
coordinates φ and z yields conservation of the two corresponding canonical
momenta,

pφ =
∂L

∂φ̇
= n2(r)r2φ̇ and pz =

∂L

∂ż
= n2(r)ż .

Legendre transforming yields the Hamiltonian

H = prṙ + pφφ̇+ pz ż − L(r, ṙ, φ̇, ż)

=
1

2n2(r)

(
p2
r +

p2
φ

r2
+ p2

z

)
whose canonical equations are

ṙ =
∂H

∂pr
=

pr
n2(r)

, ṗr = − ∂H
∂r

=
2H

n

dn

dr
+

1

n2(r)

p2
φ

r3
,

φ̇ =
∂H

∂pφ
=

pφ
r2n2(r)

, ṗφ = − ∂H
∂φ

= 0 ,

ż =
∂H

∂pz
=

pz
n2(r)

, ṗz = − ∂H
∂z

= 0 .

Notice that the (z, pz) equations completely decouple from the rest of the
system. This justifies the approach taken in class of transforming the in-
dependent variable from ray-path coordinates s to axial coordinates z for
paraxial optics. In class, we neglected the possibility that the ray would turn
back into the opposite axial direction. Now we see that this neglect was jus-
tified, because the (z, pz) equations imply that axial ray reversal is impossible
for cylindrically symmetric materials. That is, the z-velocity keeps its sign.

The level-set contours of H in the (r, pr) reduced phase plane at constant
(pφ, pz) for this system may be obtained by solving for pr(r) from the defi-
nition of the Hamiltonian. Namely, the level-sets of H in the (r, pr) phase
plane obey

p2
r(r) = 2Hn2(r)−

p2
φ

r2
− p2

z

for constant values of (H, pφ, pz). These level sets in the phase plane at
constant pz have turning points whenever

1

2

dp2
r

dr

∣∣∣∣
H,pφ

= −pr
2

∂H/∂r

∂H/∂pr
= H

dn2

dr
+
p2
φ

r3
= 0 .

If a level set of H crosses though pr = 0, the radial direction of the ray
reverses; so periodic motion in the radial coordinate is possible. However,
as mentioned above, periodic motion in the other coordinates φ and z is
not possible. Those coordinates must increase or decrease monotonically
along the ray path, as dictated by the initial signs of the conserved canonical
momenta pφ and pz.
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Directionally dependent index of refraction Consider light rays in

a crystal whose index of refraction depends on direction as

ds2 = gijdr
idrj = (n1dr

1)2 + (n2dr
2)2 + (n3dr

3)2 ,

where the metric

g(r(s)) = diag(n2
1, n

2
2, n

3
3) =: D−1

is a 3× 3 diagonal matrix whose positive-definite entries depend on position
along the ray path parameterized as r(τ).

Write Hamilton’s canonical equations for rays in this medium, assuming the
dynamical equations follow from Fermat’s principle in the form

0 = δS = δ

∫
L(r, ṙ)dτ with L(r, ṙ) =

1

2
ṙTD−1(r)ṙ

where ṙ = dr/dτ and DT = D is a symmetric matrix. The fiber derivative
of this Lagrangian is the canonical momentum

p =
∂L

∂ṙ
= D−1(r)ṙ

consistent with the wave-front velocity relation

ṙ = D(r)∇S

and its Euler-Lagrange equations are

d

dt

(
D−1
lm (r)ṙm

)
= ṙi

∂D−1
ij

∂rl
ṙj

These are just the usual geodesic equations for the case of a diagonal metric
D−1.

The corresponding Hamiltonian is calculated from the Legendre transforma-
tion as

H(r,p) = p · ṙ− L(r, ṙ) =
1

2
p ·D(r)p

Hamilton’s canonical equations for this problem are then

ṙ =
∂H

∂p
= D(r)p

ṗ = − ∂H
∂r

= − 1

2
pi

(
∂Dij

∂ r

)
pj

which of course recovers the Euler-Lagrange equations.
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Snell’s Law
The wave-front velocity relation ṙ = D(r)∇S consistent with Hamilton’s
equation implies ∮

C

p · dr =

∮
C

∂S

∂r
· dr =

∮
C

dS = 0

for any closed contour C. If the contour C encloses an interface between two
media, shrinking the contour implies continuity of the tangential components
of the momentum. Hence, Snell’s Law becomes

(p− p′)× n̂ = 0

where n̂ is the unit vector normal to the surface and the prime distinguishes
media on its two sides. Thus, the ray directions ṙ and ṙ′ at a point on an
interface satisfy, (

(D−1ṙ)−
(
D′
−1

ṙ′
))
× n̂ = 0

So that in its usual form Snell’s Law at that point becomes

|D−1ṙ| sin θ = |D′ −1
ṙ′| sin θ′

Consequently, the direction of the ray at the interface will bend into the faster
medium, but the sense of “faster” depends on the anisotropy parameters.
Roughly speaking though, the wave speeds up when it enters a region of
higher conductance D, since ṙ = D∇S. For example, if we specify D−1 in
diagonal form for a planar anisotropic medium as

D−1 =

(
n2

1(r) 0
0 n2

2(r)

)
,

then in Snell’s Law one has

|D−1ṙ|2 = (n2
1ṙ1)

2 + (n2
2ṙ2)

2

In this example, the quadratic conserved Hamiltonian H : T ∗R2 → R above
is given by the following function defined on 4D phase space,

2H =
p2

1

n2
1(r)

+
p2

2

n2
2(r)

For the choice 2H = 1 we may define an angle θ from the center of an
ellipse by

p1 = n1(r) cos θ and p2 = n2(r) sin θ

The corresponding eikonal equation is

‖∇S‖2 = |∇S ·D(r) · ∇S|2 =
(S,1)

2

n2
1(r)

+
(S,2)

2

n2
2(r)

= 1

The forward problem (IVP) is to find the find the wave-front evolution
from a specified initial condition. This evolution provides a model of the
isochronal surfaces. The inverse problem (data assimilation for tomography
of the heart) would use these solutions to infer the spatial distribution of
conductance.
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Study sheet for the eikonal equation November 12, 2008

a Write Fermat’s principle for ray paths in 3D and derive the eikonal equation as its
Euler-Lagrange equation.

b Write the 3D eikonal equation in Snell’s Law form, as a double cross product of vectors.

c Show that the 3D eikonal equation in Snell’s Law form may be written as a geodesic
equation and identify its dependent and independent variables.

d Write the 3D eikonal equation as Cartan’s first structure equation for a certain Rie-
mannian manifold. Identify the Riemannian metric and its Christoffel symbols.

e Legendre transform the Lagrangian formulation of the 3D eikonal equation into canon-
ical Hamiltonian form.

f Write the canonical Hamiltonian form of the eikonal equation for a material that is
invariant under translations and rotations about an optical axis, by using the axis
coordinate as an independent variable.

g Show that the flows of the Hamiltonian vector fields arising from the three rotation-
ally invariant quadratic phase space functions may be written as symplectic matrix
transformations of the phase space coordinates.

h Compute the matrices tangent to these three symplectic transformations at the identity
and write a 3× 3 skew-symmetric table of their commutation relations. Explain why
it is skew-symmetric.

i Compute the canonical Poisson brackets ({X1, X2}, etc.) among the three rotationally
invariant quadratic phase space functions

(X1, X2, X3) = (|q|2, |p|2,q · p)

Show that these Poisson brackets may be expressed as a closed system {Xi, Xj} =
ckijXk, i, j, k = 1, 2, 3, in terms of these invariants.

j Write the Poisson brackets among these invariants as a 3× 3 skew-symmetric table and
compare it with the table in h.

k Write the Poisson brackets for functions of these three invariants (X1, X2, X3) as a
vector cross product of gradients of functions of X ∈ R3.

l Relate the result of k to the Poisson bracket for the geodesic flow in problem 2. Are
these Poisson brackets equivalent, or not? Prove it.


