M3/4A16 Assessed Coursework 2 Darryl Holm
Due in class Thursday November 27, 2008

Ask in class to clarify the exact meaning of a question if you’re unsure.
No conferring or copying: it will be more obvious than you think.

#1 Quadratic Casimars
A Hamiltonian flow in R3 is defined by the system of ordinary differential equations

Ty = Ta2, To = T1T3, r3 = —T1X2. (1)

#1a Ezpress this system in three-dimensional vector notation as flow on the inter-
sections of level sets for a family of circular cylinders with a family of parabolic
cylinders. That is, express (1) in three-dimensional vector notation as

).(ZVH1XVH2,

where Hy and Hs are two conserved functions corresponding to these level sets.

Write two different Poisson matrices and Lie-Poisson brackets for system (1).
(Be sure to check that these Poisson brackets both satisfy the Jacobi identity.)

The system (1) may be written in two equivalent forms. The first is

d T i 2 :3)
i Rl det [ 0 =z 3| =Vi(a3+23) x V(iz] + x3)
ZIs3 xTq 0 1

So, Hy = 3(23 + x3) and Hy = 321 + x3. The second form of (1) uses the

hat map
a (7 0 —z3 29 Ty
d_ ) = xT3 0 0 0 = B1VH2
¢ xT3 —X2 0 0 1

0 1 0 0
= —1 0 T i) = BQVHl
0 —X1 0 T3

Namely, (Bl)ij = —eijkaHl/&ck and (Bg)ij = +€ijaH2/al'k The Hamil-
tonian matrices By and By define the following Poisson brackets

{F, G}l = (VF)T81VG and {F, G}2 = (VF)TBQVG

The entries of the Hamiltonian matrices each define the structure constants
of a Lie algebra by identifying By = [z, x;] = cf]xk Therefore, the 3 x 3
skew-symmetric matrices By and By each produce Lie-Poisson brackets that
satisfy the Jacobi identity by being dual to a Lie algebra. Moreover, the
two Hamiltonian matrices are compatible. That is, for the same reason
as before (linearity), the sum By + Bs also defines a valid Poisson bracket.
This is no surprise because By and By also produce R?® brackets.




For the remainder of the solution of this problem, see Section 6.2 of the text.

#1b Reduce system (1) to canonical dynamics on a level set of H;.

#1c Reduce system (1) to canonical dynamics on a level set of Hs.

#1d ’ Fourth year students‘ Find the conditions on the four real constants {«, 3, j1, v}

for the system (1) to be expressed as flow on the intersections of the level sets
of two families of quadric surfaces,

2H 2 2
[0 (6%

a | a?

2C V2 V o9 V2
—t— = —x1+x2+<x3+—>
Ho R H H

That is, find the conditions on constants {c, 3, u, v} that allow (1) to be written
in three-dimensional vector notation as

x =VH x VC,

where H and C are the two conserved functions defined above.

The single condition for this is

av — Bu =1

#2 Hamilton’s principle for geodesic flow on the symplectic group Sp(2)
Let the set of 2 x 2 matrices M; with 1 = 1,2,3 satisfy the defining relation for the
symplectic Lie group Sp(2),

M;JM}P =J with J= ((1) _01)

so that corresponding elements of its Lie algebra m; = ]\'41-]\4[1 € sp(2) satisfy
(Jm)T = Jm; for each i = 1,2,3. Thus, X; = Jm; satisfying XI' = X; is a set
of three symmetric 2 X 2 matrices. For definiteness, we may choose a basis given by

2 0 0 0 01
X1:Jm1:(0 O), XQIJWLQ:(O 2), X3:Jm3:(1 O)

This basis corresponds to the vector of momentum maps given by quadratic phase-
space functions X = (|q)?% |p|?,q - p)T used in class for geometric optics. One sees
this by using the symmetric matrices Xy, Xo, X3 above to compute the following three
quadratic forms defined using z = (q, p)’

32 Xiz = |qf* = X1, 32" Xoz. = |p|* = Xo, 52 Xsz=q-p=X3.



#2a For X = Jm, Y = Jn € sym(2) with m,n € sp(2), prove the middle equality

m

X, Y]y :=XJY = YJX = —=J(mn —nm) = —J[m,n]
Use this equality to show that the J-bracket [X,Y]; satisfies the Jacobi identity.

The first part is a straightforward calculation using J*> = —Idays with the

definitions of X and Y. The second part follows from the Jacobi identity for
the symplectic Lie algebra and linearity in the definitions of X,Y € sym(2)

in terms of m,n € sp(2).

#2b If X = JMM™" for derivative M = OM(s,0)/ds|y—0 and Y = JM'M~" for
variational derivative SM = M' = OM (s,0)/00|,=0, show that equality of cross
derivatives in s and o implies the relation

X=X =Y +[X,Y],

This 1s an important standard calculation in geometric mechanics. It begins
by computing the time derivative of MM~ = Id along the curve M(s)

yields (MM~')" =0, so that

(MY =—=M*MM™*.
Next, one defines m = MM~ andn = M'M~". Then the previous relation
yields

m' = MM~ MM MM
o= MM'—MM*MM™?
so that subtraction yields the relation
m' —n =nm—mn =: —[m,n]
Hence, upon substituting the definitions of X and Y, one finds

X'=Jm' = Jn— Jm,n]
= Y+[X,Y]; =Y + 2sym(XJY)

#2c Use the previous relation to compute the Euler-Poincaré equation for evolution
resulting from Hamilton’s principle

0=48 = 5/€(X(s))ds _ /tr (g—f( 5x> ds



Integrating by parts and rearranging as follows,

ol _,
= /t (%(Y YJX+XJY) ) d
= r ax S
d ol or ol
= /tr(<_£a_x_‘]xa_x a—xXJ>Y)d
d ol 86

results in the Euler-Poincaré equation,

%%:—25}7( gﬁ) +28ym<gf<XJ> (2)

Specialise this evolution equation to the case that ((X) = 1tr(X?), where tr
denotes trace of a matriz. (This is geodesic motion on the matriz Lie group
Sp(2) with respect to the trace norm of matrices.)

When €(X) = 3tr(X?) we have 0l/0X = X, so the Euler-Poincaré equation
(2) becomes

X = —2sym (JX?) = X2J — JX? = [X%, J] (3)

This 1s called the Bloch-Iserles equation.

#2d ’Fourth year students‘ Write the Hamiltonian form of the Euler-Poincaré
equation and identify the associated Lie-Poisson bracket. Write the Hamiltonian
form of the corresponding geodesic equation when £(X) = %tr(XQ).

The Hamiltonian form of the Euler-Poincaré equation (2) is found from the
Legendre transform via the dual relations

ol oh
I=ox and o with  h(p) = tr(puX) — £(X)

Thus,

oh oh oh
L= —2sym<JaMu) = —Jauu —|—u8 J




The Lie-Poisson bracket is obtained from

d B of du
Ef(#) = tr (3_/1%)

= —2tr <usym<g—£Jg—Z>)
- ve(elal)

- {ra),

It’s Jacobi identity follows from that of the J-bracket discussed earlier.

For the geodesic equation h = %/ﬂ and equation (3) keeps its form with
X — u.

#3 Structure equations from Fermat’s principle

Review

Fermat’s (or Hamilton’s) principle for geometric optics is

B/ dr dri\ M?

For ray paths r(s) in an isotropic medium in 3D the Riemannian metric appearing
in Fermat’s principle is g;; = n*(r(s))d;;, where n(r) is the refractive index of the
medium and d;; is the Kronecker delta symbol. In terms of this metric, the length
element ds = ndl is defined by ds* = n2dl* = g;;(v)drdr?, summing over i,j =
1,2,3. As we know, the eikonal equation may be expressed as a geodesic equation,

b

d
PO+ TS (r(s))i =0 with = di and b, c, e € {1,2,3},
S

The quantities IS, (r) are symmetric in (b, e), as reflected in their definition

c o 1 ca agae(r) agab<r) agbe<r)
Fb€<r) - 2g 87“17 + a,r,e a,ra )

and g°* is the inverse g°gq. = 05. [Details appear in Chapter 2 of the class text.]
The corresponding curvature tensor R}, may be expressed in terms of the Christoffel
symbols I't. by
a argc 8F§d
bed ™ 9rd  Qre

and Raped = Gae iy possesses the expected symmetries

e Ta e Ta
+ Fbc de — derce )
Rabcd = _Rbacd = _Rabdc = Rcdab

Although these equations may look formidable, it turns out that they may be derived
easily by using the language of differential forms.



’Diﬁe’r’ential forms‘ Define a basis of 1-forms e* = etdr* with a = 1,2, 3, in terms

of the Cartesian basis dr' with i = 1,2,3. The corresponding dual basis is defined by
ey = €,0/0r with ele? = 67 and it satisfies the contraction relation

ep e = e?e‘g =0y for 0/Or! ddr' =6,
The induced metric defined by nu, = gijelel then satisfies nabe?ef = gij which implies

ds® = dr' gijdr! = nabe?drle?drj = nabe“eb .

For example, the path length in Fermat’s principle for an isotropic medium may be
expressed as,

ds? = n*(da® + dy® + dz*) = (e')* + (€*)? + (€*)* = S 4e”e’,
with Ney = 0qp and e* = n(r)dr®, that is,
1

el =ndr, € =ndy, € =ndz.

The 1-forms e* with a = 1,2,3 are called Cartan frames. They satisfy Cartan’s
structure equations, namely

de +wiNe’ = 0,
dwp + Wi ANwy = — 3Ry,
where d denotes the exterior differential operator and way = Nacwy = —whe. The first

of these structure equations defines the Christoffel symbols. The second defines the
curvature tensor. In the Cartan frame basis, the coefficients in Cartan’s structure
equations are given in terms of I't. and Ri.; by

a_ 1Ta .c a a c d
wy =1 and Ry = Ry.ze° Ne”,

so that RY,. = — Ry, (as expected from its definition) now follows from antisymmetry
of the wedge product, e¢ A e? = —e? A e¢. For example, in spherical coordinates,
e =dr, e’ =rdf, e? =rsinfdg. A direct calculation then yields structure equations

1 1 cot
de" =0, de ——e"Ne? =0, de® ——e"Ne®? — —eP ne? =0,
r r r

whose coefficients are the well-known Christoffel symbols for spherical coordinates.

Problem statement (Solution only requires properties of d and N!)

#3a Compute wi and give an example of computing R when e* = n(r)dr®, N = Oap

and ds* = e(r) - e(r).



By using the definition of W in de®+wi Ae® = 0 and the relations e* = ndr®,
we find by direct computation that

wy =—wi = n '(n,dz —n.dy),
wy =—w; = n Y n.dx —n.dz),
Wi = —ws n~(n,dy — n,dz).

This calculation proceeds as follows. Expanding de* + wi AN e? +wi Ae® =0
yields

nydy A dr + n.dz A dz + wy Andy + wi Andz = 0.
Likewise, expanding de? + w? A e' + w2 A e® = 0 yields
ngdr A dy +n.dz A dy + wi Andr +wi Andz =0.

Hence,

wy = n'(nydr+ Sydy), wy=n""(n.dx+ S3dz),
wi = n Y (n.dy + Sidz), wi=n"t(n.dy+ Sidz),

where functions S5, 5%, 8%, 5% are sought by expanding de* and de. For
Nap = Oap, ON€ has wy = wW? = —ws = —wyy and this skew symmetry yields
Sy = —n, and S} = —n,. The other w§ may be obtained by cyclically
permuting indices.

Substituting the results for wy into Cartan’s second structure equation and
identifying terms as in the previous computation leads to the following ex-
pressions for the curvature two-form

1 . . 1
—§R§:dw§—|—wi/\w2 = —n 1(nm+nyy—ﬁ(ni—l—n;—nz))dx/\dy
+ n (nydz A dr + ny,dy Adz),

1
—§R§:dw§+wé/\w§ =

1 C
—§R§:dw§+wg/\w3 =

#3b Solve for T}, T3, and T35 using Cartan’s first structure equation.

By definition,

a a ¢
W = L€
1 1 1 1 .2 1 .3

-2 1 2
=n (nye —nxe>




Therefore, by identifying coefficients,

Iy, =n>n,, Iy=-n?n, T3 =0 et

#3c Give an example of computing R, in terms of n(r) and its spatial derivatives
using Cartan’s second structure equation.

Mimicking the calculation of the I'’s from the ws yields

Ryp = 17 (naw + nyy) = 0" (ng +my = n),
2
4

n-
Rzlnza = nfg(nm +n..) — n*4(ni +n; — nz) )
n-

R§23 = 3(”yy +n,.) — n_4(n§ +n?— ni) :

#3d ’Fourth year students‘ Use the metric g,e = n?04e for Fermat’s principle
to lower the first index to Raped = GaeRi.y and express the scalar curvature
R = Rupapy in terms of n(r) and its spatial derivatives. How does this formula
simplify when the index of refraction is taken as n(r) = 1/(1 £r%)? (The +
case is called the Maxwell fish-eye lens. What geometrical observation can be
made about the difference in scalar curvature for these two cases? )

Lowering the first index by using g, = n?04 yields

Rigis = n '(ng, + Nyy) — n=*(n2 + n; —n?),
R1313 = n_l(nx:v + nzz) - 7’L—2(TL§ + ng - n?;) )
R2323 = n_l(nyy + nzz) — n_z(nz + nZ — ni) .

which possesses symmetries
Rabcd = _Rbacd = _Rabdc = Rcdab

and vanishes when two indices match in either the first pair or the second
Pair.
The scalar curvature is calculated using these symmetries as

4 1
R = Rupap = 2(Ri212 + Riz13 + Rogas) = - [An — %|V”‘z]

When n(r) = 1/(1 4 r?), this becomes

8(F2r? — 1)

R=—a1

Thus, for the fish-eye n(r) = 1/(1 4+ r?), the scalar curvature is always
negative. This means the rays diverge away from the center.




’Awisymmetric translation invariant media in 3D‘ These computa-
tions in general terms may look a bit daunting. Let’s look at a simpler case,
but still in 3D. The index of refraction in axisymmetric media is n(r) and
one may formulate the problem for geodesic ray paths in full 3D cylindri-
cal coordinates (r,¢,z). The metric for optics in cylindrical coordinates
is giwen by ds* = n*(r)(dr? + r2d¢* + dz*). This metric is diagonal with
Grr = 12(1r), gos = r’n?(r), g.. = n*(r), or, in matriz form,

0
gij=n*(r) [0 1

o O =
_— o O

0
In this case, Na = 0ap and ds* = e(r) - e(r), with

e" =n(r)dr, e®=n(r)rd, e =n(r)dz.
One calculates the wy as before from Cartan’s first structure equation.

Hence, wi = I'? e¢ yields the nonzero Christoffel symbols. In the (dr,d¢, dz)
basis, these take a slightly simpler form,

1dn 1 1dn 1dn
ro_ - Fr _ _(_ __) 2 FT _ -
" ndr’ ¢ r ndr T 2z ndr’
1 1dn
' =r% = -—4-—
r$ ¢r r+ndr’
1dn
7, =T7 = -=°.
rz A ndr

These nonzero Christoffel symbols also arise from their Levi-Civita defini-

tion in terms of derivatives of the metric. The I'’s produce the geodesic
equations

iy 1d_n(7;z -2) - (1 n ld_n>rz¢z _

n dr r ndr ’
1 1dn
o= + 228 =
¢ (r ndr>r¢ 0,
2dn .
Z 4+ ——=7rz=0
n dr

The same geodesic equations of motion arise from the stationary principle,
) 1 )
0=05 = (5/L(r, i, ¢, 2)ds = 5/ 5n?(r) (rz +r?¢? + 22> ds

— / K - %(n%)f) +réPn3(r) + nj—: (72 + 262+ 22))&

_dii <n2(r)r2¢) 5 — d% <n2(r)z) 54 ds
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Invariance of L(r, 7, b, 2) in Hamilton’s principle under translations in the
coordinates ¢ and z yields conservation of the two corresponding canonical
momenta,

= g—; =n?(r)r’¢ and p, = oL =n*(r)z.

0z
Legendre transforming yields the Hamiltonian

H = p7+psd+p.i—L(r,7, ¢, %)
1y P
B 2n2(r)<pr+r_2+pz>

whose canonical equations are

Do

L 0H_ . _oH a1 R
 Ope n2(r)’ Pr= or  nodr  n2(r)r3’
= = =——=0

P o ) T g

;- 9H _ p. L oH_

T Op. n2(r)’ b=, =

Notice that the (z,p,) equations completely decouple from the rest of the
system. This justifies the approach taken in class of transforming the in-
dependent variable from ray-path coordinates s to axial coordinates z for
paraxial optics. In class, we neglected the possibility that the ray would turn
back into the opposite axial direction. Now we see that this neglect was jus-
tified, because the (z,p.) equations imply that azial ray reversal is impossible
for cylindrically symmetric materials. That is, the z-velocity keeps its sign.

The level-set contours of H in the (r,p,) reduced phase plane at constant
(g, p2) for this system may be obtained by solving for p,(r) from the defi-
nition of the Hamiltonian. Namely, the level-sets of H in the (r,p.) phase

plane obey
2

p
pir) = 280 () = U5 — 2
for constant values of (H,py,p.). These level sets in the phase plane at
constant p, have turning points whenever
ldpz _ pr OH/Or  _dn® v,

2drly,,  2oHfop ar T

If a level set of H crosses though p, = 0, the radial direction of the ray
reverses; so periodic motion in the radial coordinate is possible. However,
as mentioned above, periodic motion in the other coordinates ¢ and z is
not possible. Those coordinates must increase or decrease monotonically
along the ray path, as dictated by the initial signs of the conserved canonical
momenta py and p..
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Directionally dependent index of refraction‘ Consider light rays in
a crystal whose index of refraction depends on direction as

ds® = gijdr'dr’ = (nydr')® 4 (nodr?)? + (nzdr®)?,
where the metric
g(r(s)) = diag(nf, n3, n3) = D'

is a 3 X 3 diagonal matriz whose positive-definite entries depend on position
along the ray path parameterized as r(T).

Write Hamilton’s canonical equations for rays in this medium, assuming the
dynamical equations follow from Fermat’s principle in the form

0=105= 5/L(r,f)d7 with  L(r,t) = %i“TD_l(r)I'“

where ¥ = dr/dr and DT = D is a symmetric matriz. The fiber derivative
of this Lagrangian is the canonical momentum

_ 9L _
- =

consistent with the wave-front velocity relation

p D™ (r)r

I =D(r)VS

and its Fuler-Lagrange equations are
d 0D .
(D) = it

These are just the usual geodesic equations for the case of a diagonal metric
DL

The corresponding Hamiltonian is calculated from the Legendre transforma-
tion as

H(r.p)=p i~ L(r.}) = 5p- D)o

Hamilton’s canonical equations for this problem are then

r o= ((;—I;:D(r)p
oo _oH _ 1 (ODYN
p= or 2p1 or bi

which of course recovers the Euler-Lagrange equations.
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Snell’s Law
The wave-front wvelocity relation & = D(r)VS consistent with Hamilton’s

equation implies
j[p-dr: ﬁ-dr:j{dS:O
c ¢ Or c

for any closed contour C. If the contour C encloses an interface between two
media, shrinking the contour implies continuity of the tangential components
of the momentum. Hence, Snell’s Law becomes

(p—p)xn=0
where N is the unit vector normal to the surface and the prime distinguishes

media on its two sides. Thus, the ray directions © and ©' at a point on an
interface satisfy,

((D7%) = (D' 1)) x5 =0
So that in its usual form Snell’s Law at that point becomes
|D~'F|sinf = | D' ~'r|sin @’
Consequently, the direction of the ray at the interface will bend into the faster
medium, but the sense of “faster” depends on the anisotropy parameters.
Roughly speaking though, the wave speeds up when it enters a region of

higher conductance D, since t = DV S. For example, if we specify D™ in
diagonal form for a planar anisotropic medium as

o= (" i)

then in Snell’s Law one has
|D7'E[? = (ni71)? + (n3r2)?
In this example, the quadratic conserved Hamiltonian H : T*R?> — R above
s given by the following function defined on 4D phase space,
PP
ni(r) = n3(r)

For the choice 2H = 1 we may define an angle 6 from the center of an
ellipse by

2H =

p1 =ni(r)cosf and py = ny(r)sind
The corresponding eikonal equation s
(S1)? | (52)°
ni(r) = nj(r)
The forward problem (IVP) is to find the find the wave-front evolution
from a specified initial condition. This evolution provides a model of the
isochronal surfaces. The inverse problem (data assimilation for tomography

of the heart) would use these solutions to infer the spatial distribution of
conductance.

IVS|2 = |VS - D(r) - VS|? = —1




13

Study sheet for the eikonal equation November 12, 2008

a Write Fermat’s principle for ray paths in 3D and deriwe the eikonal equation as its
FEuler-Lagrange equation.

b Write the 3D eikonal equation in Snell’s Law form, as a double cross product of vectors.

c Show that the 3D eikonal equation in Snell’s Law form may be written as a geodesic
equation and identify its dependent and independent variables.

d Write the 3D eikonal equation as Cartan’s first structure equation for a certain Rie-
mannian manifold. Identify the Riemannian metric and its Christoffel symbols.

e Legendre transform the Lagrangian formulation of the 3D eikonal equation into canon-
tcal Hamiltonian form.

f Write the canonical Hamiltonian form of the eikonal equation for a material that is
mvariant under translations and rotations about an optical axis, by using the axis
coordinate as an independent variable.

g Show that the flows of the Hamiltonian vector fields arising from the three rotation-
ally invariant quadratic phase space functions may be written as symplectic matrizc
transformations of the phase space coordinates.

h Compute the matrices tangent to these three symplectic transformations at the identity
and write a 3 X 3 skew-symmetric table of their commutation relations. Ezrplain why
it 1s skew-symmetric.

i Compute the canonical Poisson brackets ({Xi, X2}, etc.) among the three rotationally
invariant quadratic phase space functions

(X17X27X3) = (’(]|2, ‘p‘27 q- p)

Show that these Poisson brackets may be expressed as a closed system {X;, X;} =
cijk, 1,7,k =1,2,3, in terms of these invariants.

j Write the Poisson brackets among these invariants as a 3 X 3 skew-symmetric table and
compare it with the table in h.

k Write the Poisson brackets for functions of these three invariants (X, X, X3) as a
vector cross product of gradients of functions of X € R3.

1 Relate the result of k to the Poisson bracket for the geodesic flow in problem 2. Are
these Poisson brackets equivalent, or not? Prove it.



