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Solutions to Assessed Homework 3 Darryl Holm

(#1) Euler-Lagrange equations for geodesics on SO(3)

#1a The skew symmetry of Ω̂(t) = O−1Ȯ(t) follows by taking the time derivative
of the defining relation for orthogonal matrices.

The time derivative of OT (t)IO(t) = I yields (O−1(t)IO(t)) ˙ = 0. This means

0 =
[
ȮT O−T

]
I + I

[
O−1Ȯ

]
.

Consequently, if Ω̂ = [ȮO−1] and IT = I, the quantity IΩ̂ is skew. That is,

(IΩ̂)T = − IΩ̂ .

When I is the identity, this is the expected condition for the angular velocity.

#1b The variational formula is

δΩ̂ = Ξ̂˙ + Ω̂Ξ̂− Ξ̂Ω̂ , in which Ξ̂ = O−1δO . (1)

This formula follows by subtracting the time derivative Ξ̂ ˙ = (O−1δO) ˙ from

the variational derivative δΩ̂ = δ(O−1Ȯ) in the relations

δΩ̂ = δ(O−1Ȯ) = − (O−1δO)(O−1Ȯ) + δȮ = − Ξ̂Ω̂ + δȮ ,

Ξ̂ ˙ = (O−1δO) ˙ = − (O−1Ȯ)(O−1δO) + (δO) ˙ = − Ω̂Ξ̂ + (δO) ˙ ,

and using equality of cross derivatives δȮ = (δO) ˙ .

#1c Hamilton’s principle for this problem is

L(Ω̂) = −1

2
tr(Ω̂AΩ̂) ,

in which A is a symmetric, positive-definite 3 × 3 matrix. Taking matrix
variations yields

δS =: −1

2

∫ b

a

tr

(
δΩ̂

δL

δΩ̂

)
dt

= −1

2

∫ b

a

tr
(
δΩ̂AΩ̂ + δΩ̂Ω̂A

)
dt

= −1

2

∫ b

a

tr
(
δΩ̂ (AΩ̂ + Ω̂A)

)
dt

= −1

2

∫ b

a

tr
(
δΩ̂ Π̂

)
dt .
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The first step defines the variational derivative of S in terms of the matrix
pairing. The second step applies the variational derivative. After cyclically
permuting the order of matrix multiplication under the trace in the third
step, the fourth step substitutes

Π̂ = AΩ̂ + Ω̂A =
δL

δΩ̂
.

Next, substituting formula (1) for δΩ̂ from part (#1b) into the variation of
the action (2) leads to

δS = −1

2

∫ b

a

tr
(
δΩ̂Π̂

)
dt = −1

2

∫ b

a

tr
(
(Ξ̂ ˙ + Ω̂Ξ̂− Ξ̂Ω̂)Π̂

)
dt .

Permuting cyclically under the trace again yields tr(Ω̂Ξ̂Π̂) = tr(Ξ̂Π̂Ω̂). Inte-
grating by parts (dropping endpoint terms) then yields the equation

δS = − 1

2

∫ b

a

tr
(
Ξ̂ (− Π̂ ˙ + Π̂Ω̂− Ω̂Π̂ )

)
dt .

Finally, invoking stationarity δS = 0 for an arbitrary variation Ξ̂ = O−1δO
yields geodesic dynamics on SO(3) with respect to the metric A in the matrix
commutator form

dΠ̂

dt
= − [ Ω̂ , Π̂ ] with Π̂ = AΩ̂ + Ω̂A =

δL

δΩ̂
= − Π̂T .

#1d Fourth year, MSc and MSci students

Identify vector components Ωk, k = 1, 2, 3, with the components of the skew-

symmetric matrix Ω̂ij, i, j = 1, 2, 3, as

Ω̂ij = − εijkΩk .

This relation implies the Euler-Lagrange equations from (#1c) may be writ-
ten in R3 vector form as

Π̇ = −Ω×Π ,

whose vector components are expressed as

(a2 + a3)Ω̇1 = −(a2 − a3)Ω2Ω3 ,

(a3 + a1)Ω̇2 = −(a3 − a1)Ω3Ω1 ,

(a1 + a2)Ω̇3 = −(a1 − a2)Ω1Ω2 .
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(#2) Modulation equations
The real 3-wave modulation equations on R3 are

Ẋ1 = −X2X3 , Ẋ2 = −X3X1 , Ẋ3 = +X1X2 .

#2a These equations may be written in the R3 bracket form as,

Ẋ = ∇C ×∇H = ∇1

2
(X2

1 + X2
3 )×∇1

2
(X2

2 + X2
3 ) ,

where level sets of C and H are circular cylinders, oriented along the X2 and
X1 axes, respectively.

Characterise the equilibrium points geometrically in terms of the gradients
of C and H. How many are there? Which are stable?

Equilibria occur at points where the cross product of gradients ∇C × ∇H
vanishes. In the orthogonal intersection of two circular cylinders as above,
this may occur at points where the circular cylinders are tangent, and at
points where the axis of one cylinder punctures normally through the surface
of the other. The elliptic cylinders are tangent at one Z2-symmetric pair
of points along the X3 axis, and the elliptic cylinders have normal axial
punctures at two other Z2-symmetric pairs of points along the X1 and X2

axes. There is a total of 6 equilibrium points. 4 are stable and 2 are unstable.

#2b Cylindrical polar coordinates are chosen along the axis of the circular cylin-
der level set of C by writing (X1, X3) = (−r cos θ, r sin θ). Thus,

X2
1 + X2

3 = r2(cos2 θ + sin2 θ) = 2C

Thus,

d 3X = −dX2 ∧ dX1 ∧ dX3 = dX2 ∧ d
r2

2
∧ dθ = dC ∧ dθ ∧ dX2

Restricting the R3 Poisson bracket to a level set of C yields

{F, H}d 3X = dC ∧ {F, H}Cdθ ∧ dX2

where on a level set of C,

{F, H}C =
∂F

∂θ

∂H

∂X2

− ∂H

∂θ

∂F

∂X2

so that {θ, X2}C = 1 .

#2c The Hamiltonian H on a level set of C is given by

H =
1

2
X2

2 + 2C sin2 θ .
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The equations of motion on a level set of C are given by

dθ

dt
=

∂H

∂X2

= X2
dX2

dt
= − ∂H

∂θ
= − 2C sin θ cos θ

These reduce to the pendulum equation,

d2θ

dt2
= −C sin 2θ .

#2d Fourth year, MSc and MSci students

The geometric phase for any closed orbit on the level set of C is the integral

∆φgeom =
1

C

∫
A

dθ ∧ dX2 = − 1

C

∮
∂A

X2dθ ,

by Stokes theorem. Here A is the area enclosed by the solution orbit ∂A on
a level set of C. Then

∆φgeom = − 1

C

∮
∂A

X2 θ̇(t) dt = − 1

C

∮
∂A

X2
∂H

∂X2

dt

= = − 1

C

∮
∂A

2H − 4C sin2 θ dt = −2T

C

(
H − 2C

〈
V

〉)
,

where 〈
V

〉
=

1

T

∮
∂A

2C sin2 θ(t) dt

is the average of the potential energy over the orbit.

The dynamic phase is given by the formula,

∆φdyn =
1

C

∮
∂A

(
X2θ̇ + Cφ̇

)
dt

=
1

C

∮
∂A

(
X2

∂H

∂X2

+ C
∂H

∂C

)
dt

=
1

C

∮
∂A

X2
2 + 2C sin2 θ dt

=
1

C

∮
∂A

2H − 2C sin2 θ dt

=
2T

C

(
H − C

〈
V

〉)
where φ is the angle conjugate to C and T is the period of the orbit around
which the integration is performed. Thus, the total phase change around the
orbit is

∆φtot = ∆φdyn + ∆φgeom = 2T
〈
V

〉
.
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(#3) 2D oscillators
The 2D oscillator Hamiltonian H : C2 → R, with complex 2-vector a =

(a1, a2) ∈ C2 and constant frequencies ωj,

H =
1

2

2∑
j=1

ωj|aj|2 =
1

4
(ω1 + ω2)

(
|a1|2 + |a2|2

)
+

1

4
(ω1 − ω2)

(
|a1|2 − |a2|2

)
.

#3a The canonical Hamiltonian dynamics with {aj, a
∗
k} = −2iδjk is

H =
1

2

2∑
j=1

ωj|aj|2 =
1

4
(ω1+ω2)

(
|a1|2 + |a2|2

)︸ ︷︷ ︸
1 : 1 resonance

+
1

4
(ω1−ω2)

(
|a1|2 − |a2|2

)︸ ︷︷ ︸
1 : −1 resonance

.

This is the linear combination of Hamiltonians for a 1 : 1 resonant oscillator
and a 1 : −1 oscillator.

#3b The infinitesimal transformations generated by X, Y, Z, R on a1, a2, are

XRaj = {aj, R} = − 2i
∂R

∂a∗j
= − 2i aj ,

XZa1 = {a1, Z} = − 2i a1 , XZa2 = {a2, Z} = 2i a2 ,

XXa1 = {a1, X} = − 2i a2 , XXa2 = {a2, X} = − 2i a1 ,

XY a1 = {a1, Y } = −2a2 , XY a2 = {a2, Y } = 2a1 .

These infinitesimal transformations may be expressed as matrix operations,

XZ

[
a1

a2

]
= −2i

(
1 0
0 −1

) [
a1

a2

]
or XZa = − 2i σ3a ,

XX

[
a1

a2

]
= −2i

(
0 1
1 0

) [
a1

a2

]
or XXa = − 2i σ1a ,

XY

[
a1

a2

]
= −2i

(
0 −i
i 0

) (
a1

a2

)
or XY a = − 2i σ2a .

From these expressions, one recognises that the finite transformations, or
flows, of the Hamiltonian vector fields for (X, Y, Z) are rotations about the
(X,Y, Z) axes, respectively.

#3c For the Hamiltonian,

H =
ω1

2
(R + Z) +

ω2

2
(R− Z)

=
1

2
(ω1 + ω2)R +

1

2
(ω1 − ω2)Z ,

(2)
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the equations Ẋ, Ẏ , Ż, Ṙ for the S1 invariants X, Y, Z, R of the 1 : 1 resonance
may be written as

Ḟ = {F, H}
which produces

Ṙ = 0 = Ż , Ẋ =
1

2
(ω1 − ω2)Y and Ẏ = − 1

2
(ω1 − ω2)X .

In vector form, with X = (X, Y, Z)T , this is

Ẋ =
1

2
(ω1 − ω2)X× Ẑ ,

where Ẑ is the unit vector in the Z-direction (cos θ = 0). This motion is
uniform rotation in the positive direction along a latitude of the Poincaré
sphere R = const.

This azimuthal rotation on a latitude at fixed polar angle on the sphere occurs
along the intersections of level sets of the Poincaré sphere R = const and the
planes Z = const, which are level sets of the Hamiltonian for a fixed value of
R.

#3d Fourth year, MSc and MSci students

The following are quadratic 1 : −1 invariants: |a1|2, |a2|2, a1a2, a
∗
1a

∗
2.

Then the following linear combinations of these are also invariant

S = |a1|2 − |a2|2,
Y1 = |a1|2 + |a2|2,

Y2 + iY3 = 2a1a2 .

(3)

Thus,
Y 2

2 + Y 2
3 = 4|a1|2|a2|2 = Y 2

1 − S2 ,

and the level sets of the orbital manifold are the hyperboloids of revolution
around the Y1-axis parameterised by S. That is,

S2 = Y 2
1 − Y 2

2 − Y 2
3 . (4)

We remark that:
S = |a1|2 − |a2|2 = const is an hyperboloid in both C2 and R3.
Y1 = |a1|2 + |a2|2 = const is a sphere S3 ∈ C2, and it is a plane in R3.

One may write the starting Hamiltonian as,

H =
1

2
(ω1 + ω2)Y1 +

1

2
(ω1 − ω2)S ,
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in terms of the 1 : −1 invariants and thereby write the equations of motion
in vector form, with Y = (Y1, Y2, Y3)

T .

For the 1 : −1 resonance Hamiltonian H = Y1, the evolution of S, Y2, Y3 is
described by

Ẏ = ∇S2 × Ŷ1 = 2Ŷ1 ×Y (5)

Ṡ = {S, H} = 0,

Ẏ1 = {Y1, H} = {Y1, Y1} = 0,

Ẏ2 = {Y2, H} = {Y2, Y1} = −2Y3,

Ẏ3 = {Y3, H} = {Y3, Y1} = 2Y2 .

(6)

Thus, Y2 and Y3 rotate clockwise around the Y1-axis in a plane at Y1 = const.

This is the same motion as for the paraxial harmonic guide. Looking more
closely, one sees that the Lie-Poisson bracket for the paraxial rays is identical
to that for the 1 : −1 resonance. This is a coincidence that occurs because
the Lie algebras sp(2, R) and su(1, 1) happen to be identical.


