M3-4-5 A34 Handout: What is Geometric Mechanics II?

Professor Darryl D Holm 11 January 2012
Imperial College London d.holm@ic.ac.uk
http://www.ma.ic.ac.uk/~dholm/
Course meets T 11am, W 10am, Th 11am @ Hux 658

Text for the course M3-4-5 A34:

Geometric Mechanics II: Rotating, Translating \mathfrak{E} Rolling, by Darryl D Holm World Scientific: Imperial College Press, Singapore, Second edition (2011). ISBN 978-1-84816-777-3

Geometric Mechanics, Part II

Figure 1: Geometric Mechanics has involved many great mathematicians!

What shall we study?

Hamilton: quaternions, $\mathrm{AD}, \mathrm{Ad}, \mathrm{ad}, \mathrm{Ad}^{*}$, ad* actions, variational principles Lie: Groups of transformations that depend smoothly on parameters

Poincaré: Mechanics on Lie groups, $S O(3), S U(2), S p(2), S E(3) \simeq S O(3) \subseteq \mathbb{R}^{3}$
Noether: Implications of symmetry in variational principles
Cartan: Lie transformations of differential forms and fluid flows

Geometric Mechanics A34 deals with motion on smooth manifolds

The rest of this handout is meant to be a sort of un-alphabetized glossary, a list of words and concepts that will be introduced and studied later in the course, defined and used succinctly here in sentences.

Transformation theory

smooth manifold tangent space
motion equation
vector field
diffeomorphism
flow
fixed point

> equilibrium
linearisation
infinitesimal transformation
pull-back
push-forward
Jacobian matrix
directional derivative
tangent lift commutator differential, d differential k-form wedge product, \wedge Lie derivative, $£_{Q}$ product rule

- Let M be a smooth manifold, $\operatorname{dim} M=n$. That is, M is a smooth space that is locally \mathbb{R}^{n}.
- The tangent space $T M$ contains velocity $v_{q}=\dot{q}(t) \in T_{q} M$, tangent to curve $q(t) \in M$ at point q. The coordinates are $\left(q, v_{q}\right) \in T M$.
Note, $\operatorname{dim} T M=2 n$ and subscript q reminds us that v_{q} is an element of the tangent space at the point q and that on $T M$ we must keep track of base points.
The tangent space $T M:=\cup_{q \in M} T_{q} M$ is also called the tangent bundle of the manifold M.
The curve $\dot{q}(t) \in T M$ is called the tangent lift of the curve $q(t) \in M$.
- A motion is defined as a smooth curve $q(t) \in M$ parameterised by $t \in \mathbb{R}$ that solves the motion equation, which is a system of differential equations

$$
\begin{equation*}
\dot{q}(t)=\frac{d q}{d t}=f(q) \in T M \tag{1}
\end{equation*}
$$

or in components

$$
\begin{equation*}
\dot{q}^{i}(t)=\frac{d q^{i}}{d t}=f^{i}(q) \quad i=1,2, \ldots, n \tag{2}
\end{equation*}
$$

- The map $f: q \in M \rightarrow f(q) \in T_{q} M$ is a vector field.

According to standard theorems about differential equations that are not proven in this course, the solution, or integral curve, $q(t)$ exists, provided f is sufficiently smooth, which will always be assumed to hold.
Vector fields can also be defined as differential operators that act on functions, as

$$
\begin{equation*}
\frac{d}{d t} G(q)=\dot{q}^{i}(t) \frac{\partial G}{\partial q^{i}}=f^{i}(q) \frac{\partial G}{\partial q^{i}} \quad i=1,2, \ldots, n, \quad \text { (sum on repeated indices) } \tag{3}
\end{equation*}
$$

for any smooth function $G(q): M \rightarrow \mathbb{R}$.

- To indicate the dependence of the solution of its initial condition $q(0)=q_{0}$, we write the motion as a smooth transformation

$$
q(t)=\phi_{t}\left(q_{0}\right)
$$

Because the vector field f is independent of time t, for any fixed value of t we may regard ϕ_{t} as mapping from M into itself that satisfies the composition law

$$
\phi_{t} \circ \phi_{s}=\phi_{t+s}
$$

and

$$
\phi_{0}=\mathrm{Id}
$$

Setting $s=-t$ shows that ϕ_{t} has a smooth inverse. A smooth mapping that has a smooth inverse is called a diffeomorphism. Geometric mechanics deals with diffeomorphisms.

- The smooth mapping $\phi_{t}: \mathbb{R} \times M \rightarrow M$ that determines the solution $\phi_{t} \circ q_{0}=q(t) \in M$ of the motion equation (1) with initial condition $q(0)=q_{0}$ is called the flow of the vector field Q.
A point $q_{e} \in M$ at which $f\left(q_{e}\right)=0$ is called a fixed point of the flow ϕ_{t}, or an equilibrium.
Vice versa, the vector field f is called the infinitesimal transformation of the mapping ϕ_{t}, since

$$
\left.\frac{d}{d t}\right|_{t=0}\left(\phi_{t} \circ q_{0}\right)=f(q)
$$

That is, $f(q)$ is the linearisation of the flow map ϕ_{t} at the point $q \in M$.
More generally, the directional derivative of the function h along the vector field f is given by the action of a differential operator, as

$$
\left.\frac{d}{d t}\right|_{t=0} h \circ \phi_{t}=\left[\frac{\partial h}{\partial \phi_{t}} \frac{d}{d t}\left(\phi_{t} \circ q_{0}\right)\right]_{t=0}=\frac{\partial h}{\partial q^{i}} \dot{q}^{i}=\frac{\partial h}{\partial q^{i}} f^{i}(q)=: Q h
$$

- Under a smooth change of variables $q=c(r)$ the vector field Q in the expression $Q h$ transforms as

$$
\begin{equation*}
Q=f^{i}(q) \frac{\partial}{\partial q^{i}} \quad \mapsto \quad R=g^{j}(r) \frac{\partial}{\partial r^{j}} \quad \text { with } \quad g^{j}(r) \frac{\partial c^{i}}{\partial r^{j}}=f^{i}(q(r)) \quad \text { or } \quad g=c_{r}^{-1} f \circ c \tag{4}
\end{equation*}
$$

where c_{r} is the Jacobian matrix of the transformation. That is,

$$
(Q h) \circ c=R(h \circ c)
$$

We express the transformation between the vector fields as $R=c^{*} Q$ and write this relation as

$$
\begin{equation*}
(Q h) \circ c=: c^{*} Q(h \circ c) . \tag{5}
\end{equation*}
$$

The expression $c^{*} Q$ is called the pull-back of the vector field Q by the map c. Two vector fields are equivalent under a map c, if one is the pull-back of the other, and fixed points are mapped into fixed points.

The inverse of the pull-back is called the push-forward. It is the pull-back by the inverse map.

- The commutator

$$
Q R-R Q=:[Q, R]
$$

of two vector fields Q and R defines another vector field. Indeed, if

$$
Q=f^{i}(q) \frac{\partial}{\partial q^{i}} \quad \text { and } \quad R=g^{j}(q) \frac{\partial}{\partial q^{j}}
$$

then

$$
[Q, R]=\left(f^{i}(q) \frac{\partial g^{j}(q)}{\partial q^{i}}-g^{i}(q) \frac{\partial f^{j}(q)}{\partial q^{i}}\right) \frac{\partial}{\partial q^{j}}
$$

because the second-order derivative terms cancel. By the pull-back relation (5)

$$
\begin{equation*}
c^{*}[Q, R]=\left[c^{*} Q, c^{*} R\right] \tag{6}
\end{equation*}
$$

under a change of variables defined by a smooth map, c. This means the definition of the vector field commutator is independent of the choice of coordinates. ${ }^{1}$

- The differential of a smooth function $f: M \rightarrow M$ is defined as

$$
d f=\frac{\partial f}{\partial q^{i}} d q^{i}
$$

in which the set $d q^{i}, i=1,2, \ldots, \operatorname{dim} M$, is called a differential basis set for the manifold M.

- Under a smooth change of variables $s=\phi \circ q=\phi(q)$ the differential of the composition of functions $d(f \circ \phi)$ transforms according to the chain rule as

$$
\begin{equation*}
d f=\frac{\partial f}{\partial q^{i}} d q^{i}, \quad d(f \circ \phi)=\frac{\partial f}{\partial \phi^{j}(q)} \frac{\partial \phi^{j}}{\partial q^{i}} d q^{i}=\frac{\partial f}{\partial s^{j}} d s^{j} \quad \Longrightarrow \quad d(f \circ \phi)=(d f) \circ \phi \tag{7}
\end{equation*}
$$

That is, the differential d commutes with the pull-back ϕ^{*} of a smooth transformation ϕ,

$$
\begin{equation*}
d\left(\phi^{*} f\right)=\phi^{*} d f \tag{8}
\end{equation*}
$$

In a moment, this pull-back formula will give us the rule for transforming differential forms of any order.

- Differential k-forms on an n-dimensional manifold are defined in terms of the differential d and the antisymmetric wedge product (\wedge) satisfying

$$
\begin{equation*}
d q^{i} \wedge d q^{j}=-d q^{j} \wedge d q^{i}, \quad \text { for } \quad i, j=1,2, \ldots, n \tag{9}
\end{equation*}
$$

By using wedge product, any k-form $\alpha \in \Lambda^{k}$ on M may be written locally at a point $q \in M$ in the differential basis $d q^{j}$ as

$$
\begin{equation*}
\alpha_{m}=\alpha_{i_{1} \ldots i_{k}}(m) d q^{i_{1}} \wedge \cdots \wedge d q^{i_{k}} \in \Lambda^{k}, \quad i_{1}<i_{2}<\cdots<i_{k} \tag{10}
\end{equation*}
$$

where the sum over repeated indices is ordered, so that it must be taken over all i_{j} satisfying $i_{1}<i_{2}<\cdots<i_{k}$. Roughly speaking differential forms Λ^{k} are objects that can be integrated. As we shall see, vector fields also act on differential forms in interesting ways.

- Pull-backs of other differential forms may be built up from their basis elements, the $d q^{i_{k}}$. By equation (8),

Theorem 1 (Pull-back of a wedge product). The pull-back of a wedge product of two differential forms is the wedge product of their pull-backs:

$$
\begin{equation*}
\phi_{t}^{*}(\alpha \wedge \beta)=\phi_{t}^{*} \alpha \wedge \phi_{t}^{*} \beta \tag{11}
\end{equation*}
$$

[^0]Definition 1 (Lie derivative of a differential k-form). The Lie derivative of a differential k-form Λ^{k} by a vector field Q is defined by linearising its flow ϕ_{t} around the identity $t=0$,

$$
£_{Q} \Lambda^{k}=\left.\frac{d}{d t}\right|_{t=0} \phi_{t}^{*} \Lambda^{k} \quad \operatorname{maps} \quad £_{Q} \Lambda^{k} \mapsto \Lambda^{k}
$$

Hence, by equation (11), the Lie derivative satisfies the product rule for the wedge product.
Corollary 1 (Product rule for the Lie derivative of a wedge product).

$$
\begin{equation*}
£_{Q}(\alpha \wedge \beta)=£_{Q} \alpha \wedge \beta+\alpha \wedge £_{Q} \beta \tag{12}
\end{equation*}
$$

Proof. Linearise (11) around the identity, $t=0$, using the product rule for the derivative.

Variational principles

kinetic energy
Riemannian metric Lagrangian

Hamilton's principle	momentum
variational derivative	fibre derivative
Legendre transformation	pairing

- Define kinetic energy, $K E: T M \rightarrow \mathbb{R}$, via a Riemannian metric $g_{q}(\cdot, \cdot): T M \times T M \rightarrow \mathbb{R}$.
- Choose Lagrangian $L: T M \rightarrow \mathbb{R}$. (For example, one could choose L to be $K E$.)
- Hamilton's principle is $\delta S=0$ with $S=\int_{a}^{b} L(q, \dot{q}) d t$, where for a family of curves parameterised smoothly by (t, ϵ) the linearisation

$$
\delta S=\left.\frac{d}{d \epsilon}\right|_{\epsilon=0} \int_{a}^{b} L(q(t, \epsilon), \dot{q}(t, \epsilon)) d t
$$

defines the variational derivative δS of S near the identity $\epsilon=0$. The variations in q are assumed to vanish at endpoints in time, so that $q(a, \epsilon)=q(a)$ and $q(b, \epsilon)=q(b)$.

- Legendre transformation $L T:(q, \dot{q}) \in T M \rightarrow(q, p) \in T^{*} M$ defines momentum p as the fibre derivative of L, namely

$$
p:=\frac{\partial L(q, \dot{q})}{\partial \dot{q}} \in T^{*} M
$$

The LT is invertible for $\dot{q}=f(q, p)$, provided Hessian $\partial^{2} L(q, \dot{q}) / \partial \dot{q} \partial \dot{q}$ has nonzero determinant. Note, $\operatorname{dim} T^{*} M=2 n$.
In terms of LT, the Hamiltonian $H: T^{*} M \rightarrow \mathbb{R}$ is defined by

$$
H(q, p)=\langle p, \dot{q}\rangle-L(q, \dot{q})
$$

in which the expression $\langle p, \dot{q}\rangle$ in this calculation identifies a pairing $\langle\cdot, \cdot\rangle: T^{*} M \times T M \rightarrow \mathbb{R}$. Taking the differential of this definition yields

$$
d H=\left\langle H_{p}, d p\right\rangle+\left\langle H_{q}, d q\right\rangle=\langle d p, \dot{q}\rangle+\left\langle p-L_{\dot{q}}, d \dot{q}\right\rangle-\left\langle L_{q}, d q\right\rangle
$$

from which Hamilton's principle $\delta S=0$ for $S=\int_{t_{0}}^{t_{1}}\langle p, \dot{q}\rangle-H(q, p) d t$ produces Hamilton's canonical equations,

$$
H_{p}=\dot{q} \quad \text { and } \quad H_{q}=-L_{q}=-\dot{p}
$$

- Exercise: Show that Hamilton's principle $\delta S=0$ with $S=\int_{a}^{b} L(q, \dot{q}) d t$ implies EulerLagrange (EL) equations:

$$
\dot{p}(q, \dot{q})=\frac{d}{d t} \frac{\partial L(q, \dot{q})}{\partial \dot{q}}=\frac{\partial L(q, \dot{q})}{\partial q}
$$

What are the results for $\delta S=0$ with $S=\int_{a}^{b}\langle p, \dot{q}\rangle-H(q, p) d t$?

- When $L=K E=\frac{1}{2} g_{q}(\dot{q}, \dot{q})=: \frac{1}{2}\|\dot{q}\|^{2}$, the solution $q(t)$ of the EL equations that passes from point $q(a)$ to $q(b)$ is a geodesic with respect to the metric g_{q}.
In mechanics the point $q(b)$ is determined at time $t=b$ from the solution $q(t)$ to the initial value problem for EL equations with q and \dot{q} specified at the initial time, e.g., at $t=a$.

It is also possible to phrase this as a boundary value problem in time, by specifying endpoint positions $q(a)$ and $q(b)$ instead of the initial values of q and \dot{q}.

Geometric Mechanics is exemplified by mechanics on Lie groups

This is a topic invented by H. Poincaré in 1901 [Po1901].

group
Lie group, G
identity element, e
Lie algebra, \mathfrak{g}
tangent vectors
conjugation map Lie algebra bracket, $[\cdot, \cdot]: \mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g}$ Jacobi identity basis vectors, $e_{k} \in \mathfrak{g}$
structure constants
reduced Lagrangian
dual Lie algebra, \mathfrak{g}^{*}
dual basis, $e^{k} \in \mathfrak{g}^{*}$
pairing, $\mathfrak{g}^{*} \times \mathfrak{g} \rightarrow \mathbb{R}$

- A group is a set of elements with an associative binary product that has a unique inverse and identity element.
- A Lie group G is a group that depends smoothly on a set of parameters in $\mathbb{R}^{\operatorname{dim}(G)}$.

A Lie group is also a manifold, so it is an interesting arena for geometric mechanics.

- Choose the manifold M for mechanics as discussed above to be the Lie group G and denote the identity element as the point e. The identity element e satisfies $e g=g=g e$ for all $g \in G$, where the group product denoted by concatenation.
- The Lie algebra \mathfrak{g} of the Lie group G is defined as the space of tangent vectors $\mathfrak{g} \cong T_{e} G$ at the identity e of the group.
The Lie algebra has a bracket operation $[\cdot, \cdot]: \mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g}$, which it inherits from linearisation at the identity e of the conjugation map $h \cdot g=h g h^{-1}$ for $g, h \in G$. For this, one begins with the conjugation map $h(t) \cdot g(s)=h(t) g(s) h(t)^{-1}$ for curves $g(s), h(t) \in G$, with $g(0)=e=h(0)$. One linearises at the identity, first in s to get the operation $\operatorname{Ad}: G \times \mathfrak{g} \rightarrow \mathfrak{g}$ and then in t to get the operation ad : $\mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g}$, which yields the Lie bracket. The bracket operation is antisymmetric $[a, b]=-[b, a]$ and satisfies the Jacobi condition for $a, b, c \in \mathfrak{g}$,

$$
\begin{equation*}
[a,[b, c]]+[b,[c, a]]+[c,[a, b]]=0 \tag{13}
\end{equation*}
$$

The bracket operation among the basis vectors $e_{k} \in \mathfrak{g}$ with $k=1,2, \ldots, \operatorname{dim}(\mathfrak{g})$ defines the Lie algebra by its structure constants $c_{i j}{ }^{k}$ in (summing over repeated indices)

$$
\begin{equation*}
\left[e_{i}, e_{j}\right]=c_{i j}^{k} e_{k} \tag{14}
\end{equation*}
$$

The requirement of skew-symmetry and the Jacobi condition put constraints on the structure constants. These constraints are

- skew-symmetry

$$
\begin{equation*}
c_{j i}^{k}=-c_{i j}^{k} \tag{15}
\end{equation*}
$$

- Jacobi identity

$$
\begin{equation*}
c_{i j}^{k} c_{l k}^{m}+c_{l i}^{k} c_{j k}^{m}+c_{j l}^{k} c_{i k}^{m}=0 . \tag{16}
\end{equation*}
$$

Conversely, any set of constants $c_{i j}^{k}$ that satisfy relations (15)-(16) defines a Lie algebra \mathfrak{g}.
Exercise: Prove that the Jacobi condition requires the relation (16).
Hint: the Jacobi condition involves summing three terms of the form

$$
\left[\mathbf{e}_{l},\left[\mathbf{e}_{i}, \mathbf{e}_{j}\right]\right]=c_{i j}^{k}\left[\mathbf{e}_{l}, \mathbf{e}_{k}\right]=c_{i j}^{k} c_{l k}^{m} \mathbf{e}_{m}
$$

Exercise: Prove that the Jacobi condition (13) arises from the linearisation of (6).

H. Poincaré's contribution [Po1901].

To understand [Po1901], let's begin by endowing the Lie algebra \mathfrak{g} with a constant Riemannian metric $K: \mathfrak{g} \times \mathfrak{g} \rightarrow \mathbb{R}$ and introducing two more definitions.

1. Define a reduced Lagrangian $l: \mathfrak{g} \rightarrow \mathbb{R}$ and an associated variational principle $\delta S=0$ with $S=\int_{a}^{b} l(\xi) d t$ where $\xi=\xi^{k} e_{k} \in \mathfrak{g}$ has components ξ^{k} in the set of basis vectors e_{k}.
2. Define the dual Lie algebra \mathfrak{g}^{*} by using the fibre derivative of the Lagrangian $l: \mathfrak{g} \rightarrow \mathbb{R}$ as

$$
\mu:=\frac{\partial l(\xi)}{\partial \xi} \in \mathfrak{g}^{*}
$$

The relation $d l=\langle\mu, d \xi\rangle$ defines a pairing $\langle\cdot, \cdot\rangle: \mathfrak{g}^{*} \times \mathfrak{g} \rightarrow \mathbb{R}$. A natural dual basis for \mathfrak{g}^{*} would satisfy $\left\langle e^{j}, e_{k}\right\rangle=\delta_{k}^{j}$ in this pairing and an element $\mu \in \mathfrak{g}^{*}$ would have components in this dual basis given by $\mu=\mu_{k} e^{k}$, again with with $k=1,2, \ldots, \operatorname{dim}(\mathfrak{g})$.

- Exercise:

(a) Show that Hamilton's principle $\delta S=0$ with $S=\int_{a}^{b} l(\xi) d t$ implies the Euler-Poincaré (EP) equations:

$$
\frac{d}{d t} \mu_{i}(\xi)=\frac{d}{d t} \frac{\partial l(\xi)}{\partial \xi^{i}}=-c_{i j}^{k} \xi^{j} \mu_{k}(\xi)
$$

for variations given by $\delta \xi=\dot{\eta}+[\xi, \eta]$ with $\xi, \eta \in \mathfrak{g}$.
(b) Show that this variational formulation recovers Poincaré's equations introduced in [Po1901].

- Exercise: The Lie algebra $\mathfrak{s o}(3)$ of the Lie group $S O(3)$ of rotations in three dimensions has structure constants $c_{i j}{ }^{k}=\epsilon_{i j}{ }^{k}$, where $\epsilon_{i j}{ }^{k}$ with $i, j, k \in\{1,2,3\}$ is totally antisymmetric under pairwise permutations of its indices, with $\epsilon_{12}{ }^{3}=1, \epsilon_{21}{ }^{3}=-1$, etc.
(a) Identify the Lie bracket $[a, b]$ of two elements $a=a^{i} e_{i}, b=b^{j} e_{j} \in \mathfrak{s o}(3)$ with the cross product $\mathbf{a} \times \mathbf{b}$ of two vectors $\mathbf{a}, \mathbf{b} \in \mathbb{R}^{3}$ according to
(b) Show that this formula implies the Jacobi identity for the cross product of vectors in \mathbb{R}^{3}.

This is no surprise because, that familiar cross product relation for vectors may be proven by using the antisymmetric tensor $\epsilon_{i j}{ }^{k}$.

$$
[a, b]=\left[a^{i} e_{i}, b^{j} e_{j}\right]=a^{i} b^{j} \epsilon_{i j}{ }^{k} e_{k}=(\mathbf{a} \times \mathbf{b})^{k} e_{k}
$$

(c) Show that for vectors in \mathbb{R}^{3} the EP equation

$$
\dot{\mu}_{i}=-\epsilon_{i j}{ }^{k} \xi^{j} \mu_{k}
$$

is equivalent to the vector equation for $\boldsymbol{\xi}, \boldsymbol{\mu} \in \mathbb{R}^{3}$

$$
\dot{\mu}=-\xi \times \mu
$$

(d) Show that when the Lagrangian is given by the quadratic expression

$$
l(\boldsymbol{\xi})=\frac{1}{2}\|\boldsymbol{\xi}\|_{K}^{2}=\frac{1}{2} \boldsymbol{\xi} \cdot K \boldsymbol{\xi}=\frac{1}{2} \xi^{i} K_{i j} \xi^{j}
$$

for a symmetric constant Riemannian metric $K^{T}=K$, then Euler's equations for a rotating rigid body are recovered.
(d) Identify the functional dependence of $\boldsymbol{\mu}$ on $\boldsymbol{\xi}$ and give the physical meanings of the symbols $\boldsymbol{\xi}, \boldsymbol{\mu}$ and K in Euler's rigid body equations.

References

[AbMa1978] Abraham, R. and Marsden, J. E. [1978]
Foundations of Mechanics,
2nd ed. Reading, MA: Addison-Wesley.
[Ho2005] Holm, D. D. [2005]
The Euler-Poincaré variational framework for modeling fluid dynamics.
In Geometric Mechanics and Symmetry: The Peyresq Lectures, edited by J. Montaldi and T. Ratiu.
London Mathematical Society Lecture Notes Series 306.
Cambridge: Cambridge University Press.
[Ho2011GM1] Holm, D. D. [2011]
Geometric Mechanics I: Dynamics and Symmetry,
Second edition, World Scientific: Imperial College Press, Singapore, .
[Ho2011GM2] Holm, D. D. [2011]
Geometric Mechanics II: Rotating, Translating \& Rolling, Second edition, World Scientific: Imperial College Press, Singapore, .
[Ho2011] Holm, D. D. [2011]
Applications of Poisson geometry to physical problems, Geometry ξ^{3} Topology Monographs 17, 221-384.
[HoSmSt2009] Holm, D. D., Schmah, T. and Stoica, C. [2009]
Geometric Mechanics and Symmetry: From Finite to Infinite Dimensions, Oxford University Press.
[MaRa1994] Marsden, J. E. and Ratiu, T. S. [1994]
Introduction to Mechanics and Symmetry.
Texts in Applied Mathematics, Vol. 75. New York: Springer-Verlag.
[Po1901] H. Poincaré, Sur une forme nouvelle des équations de la méchanique, C.R. Acad. Sci. 132 (1901) 369-371. English translation in [Ho2011GM2], Appendix D.
[RaTuSbSoTe2005] Ratiu, T. S., Tudoran, R., Sbano, L., Sousa Dias, E. and Terra, G. [2005] A crash course in geometric mechanics.
In Geometric Mechanics and Symmetry: The Peyresq Lectures, edited by J. Montaldi and T. Ratiu. London Mathematical Society Lecture Notes Series 306. Cambridge: Cambridge University Press.

[^0]: ${ }^{1}$ Letting the map c depend smoothly on a parameter t as c_{t} and taking the tangent to the relation $c_{t}^{*}[Q, R]=$ $\left[c_{t}^{*} Q, c_{t}^{*} R\right]$ at the identity $t=0$ results in the Jacobi condition for the vector fields to form an algebra. The Jacobi condition is discussed further below.

