1 M3-4-5A16 Assessed Problems \# 1

Exercise 1.1 Do the following exercises from the notes discussed in class.
(a) The matrix representation of the Galilean group is the linear transformation, for $g \in G(3)$,

$$
\left[\begin{array}{ccc}
O & \mathbf{v}_{0} & \mathbf{r}_{0} \\
\mathbf{0} & 1 & t_{0} \\
\mathbf{0} & 0 & 1
\end{array}\right]\left[\begin{array}{c}
\mathbf{r} \\
\tilde{t} \\
1
\end{array}\right]=\left[\begin{array}{c}
O \mathbf{r}+\mathbf{v}_{0} \tilde{t}+\mathbf{r}_{0} \\
\tilde{t}+t_{0} \\
1
\end{array}\right]
$$

Compute the matrix representation of the inverse Galilean group transformation, $g^{-1} \in G(3)$. Assume that the ten parameters of this matrix Lie group depend on time as $g(t) \in G(3)$, along a curve in $G(3)$. Take the time derivative $\dot{g}(t) \in T_{g} G(3)$ at $g(t)$ and compute $\dot{g}(t) g^{-1} \in T_{e} G(3)$.

Answer

$$
\begin{aligned}
g g^{-1}= & {\left[\begin{array}{ccc}
O & \mathbf{v}_{0} & \mathbf{r}_{0} \\
\mathbf{0} & 1 & t_{0} \\
\mathbf{0} & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
O^{-1} & -O^{-1} \mathbf{v}_{0} & -O^{-1}\left(\mathbf{r}_{0}-\mathbf{v}_{0} t_{0}\right) \\
\mathbf{0} & 1 & -t_{0} \\
\mathbf{0} & 0 & 1
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] } \\
\dot{g} g^{-1} & =\left[\begin{array}{ccc}
\dot{O} & \dot{\mathbf{v}}_{0} & \dot{\mathbf{r}}_{0} \\
\mathbf{0} & 0 & \dot{t}_{0} \\
\mathbf{0} & 0 & 0
\end{array}\right]\left[\begin{array}{ccc}
O^{-1} & -O^{-1} \mathbf{v}_{0} & -O^{-1}\left(\mathbf{r}_{0}-\mathbf{v}_{0} t_{0}\right) \\
\mathbf{0} & 1 & -t_{0} \\
\mathbf{0} & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
\dot{O} O^{-1} & \dot{\mathbf{v}}_{0}-\dot{O} O^{-1} \mathbf{v}_{0} & \dot{\mathbf{r}}_{0}-\dot{\mathbf{v}}_{0} t_{0}-\dot{O} O^{-1}\left(\mathbf{r}_{0}-\mathbf{v}_{0} t_{0}\right) \\
\mathbf{0} & 0 & \dot{t}_{0} \\
\mathbf{0} & 0 & 0
\end{array}\right] \\
g^{-1} \dot{g} & =\left[\begin{array}{ccc}
O^{-1} & -O^{-1} \mathbf{v}_{0} & -O^{-1}\left(\mathbf{r}_{0}-\mathbf{v}_{0} t_{0}\right) \\
\mathbf{0} & 1 & -t_{0} \\
\mathbf{0} & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
\dot{O} & \dot{\mathbf{v}}_{0} & \dot{\mathbf{r}}_{0} \\
\mathbf{0} & 0 & \dot{t}_{0} \\
\mathbf{0} & 0 & 0
\end{array}\right] \\
& =\left[\begin{array}{ccc}
O^{-1} \dot{O} & O^{-1} \dot{\mathbf{v}}_{0} & O^{-1}\left(\dot{\mathbf{r}}_{0}-\mathbf{v}_{0} \dot{t}_{0}\right) \\
\mathbf{0} & 0 & \dot{t}_{0} \\
\mathbf{0} & 0 & 0
\end{array}\right]
\end{aligned}
$$

(b) Prove Galilean equivariance of Newton's motion equation

$$
m_{j} \ddot{\mathbf{r}}_{j}=\sum_{k \neq j} \mathbf{F}_{j k}
$$

with inter-particle gravitational forces

$$
\mathbf{F}_{j k}=\frac{\gamma m_{j} m_{k}}{\left|\mathbf{r}_{j k}\right|^{3}} \mathbf{r}_{j k}, \quad \text { where } \quad \mathbf{r}_{j k}=\mathbf{r}_{j}-\mathbf{r}_{k}
$$

Answer. The interparticle forces $\mathbf{F}_{j k}$ are plainly invariant under translations in space and time, and Galilean boosts. They are also equivariant under rotations in space, since

$$
m_{j} O \ddot{\mathbf{r}}_{j}=\sum_{k \neq j} O \mathbf{F}_{j k}=\sum_{k \neq j} \frac{\gamma m_{j} m_{k}}{\left|O \mathbf{r}_{j k}\right|^{3}} O \mathbf{r}_{j k},
$$

for any orthogonal transformation O.
(c) Define the sphere S^{n-1} in \mathbb{R}^{n}. Explicitly determine the dimension of its tangent space $T S^{n-1}$.

Answer.

$$
T S^{n-1}=\left\{\mathbf{x} \in \mathbb{R}^{n}:|\mathbf{x}|^{2}=1, \mathbf{x} \cdot \dot{\mathbf{x}}=0\right\}, \quad \text { so } \quad \operatorname{dim}\left(T S^{n-1}\right)=2 n-2
$$

(d) Consider the following mixed tensor defined on a smooth manifold M with local coordinates q

$$
T(q)=T_{i j k}^{a b c}(q) \frac{\partial}{\partial q^{a}} \otimes \frac{\partial}{\partial q^{b}} \otimes \frac{\partial}{\partial q^{c}} \otimes d q^{i} \otimes d q^{j} \otimes d q^{k}
$$

in which \otimes denotes direct (or, tensor) product. How do the components of the mixed tensor T transform under a change of coordinates $q \rightarrow y=\phi(q)$ where ϕ is a smooth function?
That is, write the components of $T(y)=T(\phi(q))$ in the new basis in terms of the Jacobian matrix for the change of coordinates and the components $T_{i j k}^{a b c}(q)$ of $T(q)$.

Answer. Insert the Jacobian and its inverse as

$$
\frac{\partial}{\partial q^{a}}=\left[\left(\frac{\partial y}{\partial q}\right)^{-1}\right]_{a}^{\alpha} \frac{\partial}{\partial y^{\alpha}}, \quad d q^{i}=\frac{\partial q^{i}}{\partial y^{a}} d y^{a}, \text { etc. }
$$

then regroup terms.

The quantity $\phi^{*} T:=T \circ \phi$ is called the pull back of the tensor T by the smooth mapping ϕ.
(e) Determine the Lie group symmetries of the action principle given by $\delta S=0$ for the following action,

$$
S=\int_{t_{1}}^{t_{2}} L(\dot{\mathbf{q}}(t)) d t
$$

What conservation laws does Noether's theorem imply for these symmetries? Prove them.
Answer. The Lagrangian $L(\dot{\mathbf{q}}(t))$ is invariant under translations, $\mathbf{q} \rightarrow \mathbf{q}+\boldsymbol{\varepsilon}$, so that the Noether quantity is

$$
\frac{\partial L}{\partial \dot{\mathbf{q}}} \cdot \delta \mathbf{q}=\frac{\partial L}{\partial \dot{\mathbf{q}}} \cdot \boldsymbol{\varepsilon} .
$$

Therefore, each component of the linear momentum $\frac{\partial L}{\partial \dot{\mathbf{q}}}$ is conserved. This is borne out by the corresponding Euler-Lagrange equations, too.

Exercise 1.2 Compute the Euler-Lagrange equations and explain any conservation laws that may exist for a 2D harmonic oscillator with Lagrangian

$$
\begin{align*}
L(\mathbf{q}, \dot{\mathbf{q}}) & =\frac{1}{2}\|\dot{\mathbf{q}}\|^{2}-\frac{k}{2}\|\mathbf{q}\|^{2} \tag{1}\\
& =\frac{1}{2} \dot{q}^{b} \mathrm{~g}_{b c}(\mathbf{q}) \dot{q}^{c}-\frac{k}{2} q^{b} \mathrm{~g}_{b c}(\mathbf{q}) q^{c}
\end{align*}
$$

where $\mathbf{q}=\left(q^{1}, q^{2}\right)^{T} \in M$ are coordinates on a smooth 2D Riemannian manifold M with metric $\mathrm{g}_{a b}$, $a, b=1,2$, the quantities $(\mathbf{q}, \dot{\mathbf{q}}) \in T M$, and k is a constant real number.

Answer. The Lagrangian in this case has partial derivatives given by

$$
\frac{\partial L}{\partial \dot{q}^{a}}=g_{a c}(q) \dot{q}^{c} \quad \text { and } \quad \frac{\partial L}{\partial q^{a}}=\frac{1}{2} \frac{\partial g_{b c}(q)}{\partial q^{a}} \dot{q}^{b} \dot{q}^{c}-\frac{k}{2} \frac{\partial}{\partial q^{a}}\left(q^{b} \mathrm{~g}_{b c}(q) q^{c}\right) .
$$

Consequently, its Euler-Lagrange equations are

$$
\begin{align*}
{[L]_{q^{a}} } & :=\frac{d}{d t} \frac{\partial L}{\partial \dot{q}^{a}}-\frac{\partial L}{\partial q^{a}} \\
& =g_{a e}(q) \ddot{q}^{e}+\frac{\partial g_{a e}(q)}{\partial q^{b}} \dot{q}^{b} \dot{q}^{e}-\frac{1}{2} \frac{\partial g_{b e}(q)}{\partial q^{a}} \dot{q}^{b} \dot{q}^{e}+\frac{k}{2} \frac{\partial}{\partial q^{a}}\left(q^{b} \mathrm{~g}_{b e}(q) q^{e}\right)=0 . \tag{2}
\end{align*}
$$

Symmetrising the coefficient of the second term and contracting with co-metric $g^{c a}$ satisfying $g^{c a} g_{a e}=$ δ_{e}^{c} yields

$$
\begin{equation*}
\ddot{q}^{c}+\Gamma_{b e}^{c}(q) \dot{q}^{b} \dot{q}^{e}=-\frac{k}{2} g^{c a} \frac{\partial}{\partial q^{a}}\left(q^{b} \mathrm{~g}_{b e}(q) q^{e}\right), \tag{3}
\end{equation*}
$$

with

$$
\begin{equation*}
\Gamma_{b e}^{c}(q)=\frac{1}{2} g^{c a}\left[\frac{\partial g_{a e}(q)}{\partial q^{b}}+\frac{\partial g_{a b}(q)}{\partial q^{e}}-\frac{\partial g_{b e}(q)}{\partial q^{a}}\right] \tag{4}
\end{equation*}
$$

in which the $\Gamma_{b e}^{c}$ are the Christoffel symbols for the Riemannian metric $g_{a b}$.
Specialise the Lagrangian in (1) to consider the following cases:
(a) Motion in a plane, with $k \mathrm{~g}_{a b}=k_{a b}=$ const, which corresponds to an anisotropic spring constant matrix,

$$
\mathbf{k}=\left(\begin{array}{ll}
k_{11} & k_{12} \\
k_{12} & k_{22}
\end{array}\right)
$$

Answer. The Lagrangian becomes

$$
\begin{equation*}
L(\mathbf{q}, \dot{\mathbf{q}})=\frac{1}{2}\|\dot{\mathbf{q}}\|^{2}-\frac{1}{2} K \mathbf{q} \cdot \mathbf{q} \tag{5}
\end{equation*}
$$

on the tangent bundle

$$
T \mathbb{R}^{2}=\left\{(\mathbf{q}, \dot{\mathbf{q}}) \in \mathbb{R}^{2} \times \mathbb{R}^{2}\right\}
$$

where we can always rotate our coordinate system to diagonalise k to $K=\operatorname{diag}\left(k_{1}, k_{2}\right)$.
Calculating the Euler-Lagrange equation for this Lagrangian yields the following equation of motion,

$$
\ddot{\mathbf{q}}=-K \mathbf{q} .
$$

The conserved energy is

$$
E(\mathbf{q}, \dot{\mathbf{q}})=\frac{1}{2}\|\dot{\mathbf{q}}\|^{2}+\frac{1}{2} K \mathbf{q} \cdot \mathbf{q}
$$

arising from time-translation invariance of the Lagrangian, or simply noticing that this is a closed conservative system.
We will treat the Hamiltonian formulation of this problem later.
(b) Motion on a sphere, with the harmonic oscillator attached to the North pole

Answer. The Euler-Lagrange equations for motion restricted to a sphere may be obtained by modifying the Lagrangian in the previous case by using a Lagrange multiplier μ to enforce the restriction. Namely, for $\mathbf{x} \in \mathbb{R}^{3}$ and harmonic potential $\frac{1}{2} A \mathbf{x} \cdot \mathbf{x}$, with diagonal $A=\operatorname{diag}\left(a_{1}, a_{2}, a_{3}\right)$ in which we choose $0<a_{1}<a_{2}<a_{3}$, the Lagrangian becomes

$$
\begin{equation*}
\mathcal{L}(\mathbf{x}, \dot{\mathbf{x}})=\frac{1}{2}\|\dot{\mathbf{x}}\|^{2}-\frac{1}{2} A \mathbf{x} \cdot \mathbf{x}-\mu\left(1-\|\mathbf{x}\|^{2}\right) \tag{6}
\end{equation*}
$$

on the tangent bundle

$$
T S^{2}=\left\{(\mathbf{x}, \dot{\mathbf{x}}) \in \mathbb{R}^{3} \times \mathbb{R}^{3} \mid\|\mathbf{x}\|^{2}=1, \mathbf{x} \cdot \dot{\mathbf{x}}=0\right\}
$$

Calculating the Euler-Lagrange equations for this Lagrangian and then solving for the Lagrange multiplier μ by enforcing $\frac{d}{d t}(\mathbf{x} \cdot \dot{\mathbf{x}})=0$ yields the equation of motion,

$$
\begin{equation*}
\ddot{\mathbf{x}}=-A \mathbf{x}+\left(A \mathbf{x} \cdot \mathbf{x}-\|\dot{\mathbf{x}}\|^{2}\right) \mathbf{x}=-\|\dot{\mathbf{x}}\|^{2} \mathbf{x}-P_{\perp \mathbf{x}}(A \mathbf{x}) \tag{7}
\end{equation*}
$$

where $P_{\perp \mathbf{x}}(\mathbf{x})=0$. In components, this is

$$
\ddot{x}^{c}+x^{c} \delta_{a b} \dot{x}^{a} \dot{x}^{b}=-\left(\delta^{c b}-\frac{x^{c} x^{b}}{|\mathbf{x}|^{2}}\right)(A x)_{b}
$$

Constants of motion. We form the matrices

$$
Q^{i j}=\left(x^{i} x^{j}\right)=Q^{j i} \quad \text { and } \quad L^{i j}=\left(x^{i} \dot{x}^{j}-x^{j} \dot{x}^{i}\right)=-L^{j i}
$$

and then notice that the Euler-Lagrange equations (7) for the Lagrangian in (6) are equivalent to the matrix commutator equations

$$
\dot{Q}=[Q, L], \quad \dot{L}=[Q, A], \quad\|\mathrm{x}\|^{2}=1 \quad \text { and } \quad \mathbf{x} \cdot \dot{\mathrm{x}}=0 .
$$

These matrix commutator equations may be combined by introducing a constant parameter λ, so that

$$
\frac{d}{d t}\left(-Q+L \lambda+A \lambda^{2}\right)=\left[-Q+L \lambda+A \lambda^{2},-L-A \lambda\right]
$$

This formula yields conservation of traces of powers of the matrix $M=-Q+L \lambda+A \lambda^{2}$, shown directly by computing

$$
\frac{d}{d t} \operatorname{tr}\left(M^{n}\right)=n \operatorname{tr}\left(M^{n-1}[M, L-A \lambda]\right)=n \operatorname{tr}\left[M^{n}, L-A \lambda\right]=0,
$$

since the trace of a commutator always vanishes. For example, the λ^{2}-coefficient of the case $\frac{d}{d t} \operatorname{tr}\left(M^{2}\right)=0$ yields conservation of the energy

$$
E(Q, L)=-\operatorname{tr}\left(L^{2}\right)+2 \operatorname{tr}(A Q)
$$

for this system. The coefficients of the other powers of λ in $\frac{d}{d t} \operatorname{tr}\left(M^{2}\right)=0$ are conserved trivially.

The problem of harmonic oscillator motion on a sphere may also be formulated as motion on $S O(3)$, as follows.

The Lagrangian for this type of motion would be the difference of kinetic minus potential energy for a particle of unit mass,

$$
\begin{equation*}
L(\mathbf{x}, \dot{\mathbf{x}})=\frac{1}{2}|\dot{\mathbf{x}}|^{2}-\frac{1}{2} A \mathbf{x} \cdot \mathbf{x} \quad \text { for } \quad(\mathbf{x}, \dot{\mathbf{x}}) \in T \mathbb{R}^{3} \tag{8}
\end{equation*}
$$

Now, motion on a sphere comprises rotation, which may be written as the action of the rotation group on a vector in \mathbb{R}^{3}, by setting

$$
\begin{equation*}
\mathbf{x}(t)=O(t) \mathbf{x}_{0}, \quad \dot{\mathbf{x}}(t)=\dot{O}(t) \mathbf{x}_{0} \quad \text { for } \quad(O, \dot{O}) \in T S O(3) \tag{9}
\end{equation*}
$$

where $\mathbf{x}_{0}=\mathbf{x}(0)$ is the initial position of the particle. Relations (9) replace motion on the sphere S^{2} by motion on the group $S O(3)$, whose action $S O(3) \times \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ on vectors in \mathbb{R}^{3} leaves their Euclidean lengths invariant and, thus, preserves the sphere,

$$
|\mathbf{x}(t)|^{2}=\operatorname{tr}\left[\left(O(t) \mathbf{x}_{0}\right)^{T}\left(O(t) \mathbf{x}_{0}\right)\right]=\operatorname{tr}\left(\mathbf{x}_{0}^{T} O^{T} O \mathbf{x}_{0}\right)=\left|\mathbf{x}_{0}\right|^{2} \quad \text { since } \quad O^{T} O=O^{-1} O=\mathrm{Id}
$$

That is, the $S O(3)$ rotations (9) of vectors in \mathbb{R}^{3} are summoned for this problem, because they map the sphere into itself.
The kinetic and potential energies of the particle on the sphere may be written on the group $S O(3)$ by using the transformation (9). In these terms, the kinetic energy is given by

$$
\begin{aligned}
|\dot{\mathbf{x}}(t)|^{2} & =\operatorname{tr}\left[\left(\dot{O}(t) \mathbf{x}_{0}\right)^{T}\left(\dot{O}(t) \mathbf{x}_{0}\right)\right] \\
& =\operatorname{tr}\left(\mathbf{x}_{0}^{T} \dot{O}^{T} \dot{O} \mathbf{x}_{0}\right)=\operatorname{tr}\left(\mathbf{x}_{0}^{T} \dot{O}^{T} O O^{-1} \dot{O} \mathbf{x}_{0}\right)=\operatorname{tr}\left(\mathbf{x}_{0}^{T}\left(O^{T} \dot{O}\right)^{T}\left(O^{-1} \dot{O}\right) \mathbf{x}_{0}\right) \\
& =\operatorname{tr}\left(\mathbf{x}_{0}^{T}\left(\widehat{\Omega}^{T} \widehat{\Omega}\right) \mathbf{x}_{0}\right) \quad \text { on defining } \widehat{\Omega}:=O^{-1} \dot{O} \quad \text { and using } O^{T}=O^{-1} \\
& =\operatorname{tr}\left(I_{0} \widehat{\Omega}^{T} \widehat{\Omega}\right) \quad \text { where } I_{0}=\mathbf{x}_{0} \mathbf{x}_{0}^{T}=I_{0}^{T} .
\end{aligned}
$$

Remark. By using the hat map ${ }^{\wedge}: \mathfrak{s o}(3) \rightarrow \mathbb{R}^{3}$ given by $\widehat{\Omega}=\boldsymbol{\Omega} \times$, this expression for the kinetic energy may also be written as

$$
|\dot{\mathbf{x}}(t)|^{2}=\operatorname{tr}\left(\left(\widehat{\Omega} \mathbf{x}_{0}\right)^{T} \widehat{\Omega} \mathbf{x}_{0}\right)=\left|\widehat{\Omega} \mathbf{x}_{0}\right|^{2}=\left|\boldsymbol{\Omega} \times \mathbf{x}_{0}\right|^{2}
$$

The potential energy is given by

$$
\begin{aligned}
\frac{1}{2} A \mathbf{x} \cdot \mathbf{x} & =\frac{1}{2} \operatorname{tr}\left(\mathbf{x}^{T} A \mathbf{x}\right) \\
& =\frac{1}{2} \operatorname{tr}\left(\mathbf{x}_{0}^{T} O^{T}(t) A O(t) \mathbf{x}_{0}\right) \quad \text { with } \quad O^{T}(t)=O^{-1}(t) \\
& =\frac{1}{2} \operatorname{tr}\left(\mathbf{x}_{0}^{T} I(t) \mathbf{x}_{0}\right) \quad \text { with } \quad I(t):=O^{-1}(t) A O(t)
\end{aligned}
$$

in which the evolution of the symmetric matrix $I(t)$ preserves its eigenvalues, which are the same as those of diagonal $A=\operatorname{diag}\left(a_{1}, a_{2}, a_{3}\right)$, all assumed to be distinct and positive.
Remark. The symmetric tensor $I(t)=O^{-1}(t) A O(t)$ satisfies the evolution equation

$$
\frac{d I}{d t}=[I(t), \widehat{\Omega}]
$$

Proof. This formula is obtained by directly computing the time derivative of $I(t)=O^{-1}(t) A O(t)$ and using the formula

$$
\frac{d}{d t} O^{-1}(t)=-O^{-1} \frac{d O}{d t} O^{-1}(t)
$$

These formulas transform the Lagrangian $L: T \mathbb{R}^{3} \rightarrow \mathbb{R}$ in (8) into $\ell: \mathfrak{s o}(3) \times \operatorname{sym}(3) \rightarrow \mathbb{R}$, where

$$
\begin{equation*}
\ell(\widehat{\Omega}(t), I(t))=\frac{1}{2} \operatorname{tr}\left(I_{0} \widehat{\Omega}^{T} \widehat{\Omega}\right)-\frac{1}{2} \operatorname{tr}\left(I_{0} I(t)\right) \quad \text { for } \quad(\widehat{\Omega}, I) \in T_{e} S O(3) \times \operatorname{sym}(3) . \tag{10}
\end{equation*}
$$

Here we denote $\mathfrak{s o}(3):=T_{e} S O(3)$ and $\operatorname{sym}(3)$ is the vector space of 3×3 symmetric matrices, which transform under $S O(3)$ as $S O(3) \times \operatorname{sym}(3) \rightarrow \operatorname{sym}(3)$ by matrix conjugation.
We now substitute the transformed Lagrangian (10) into Hamilton's principle,

$$
0=\delta S=\delta \int_{a}^{b} \ell(\widehat{\Omega}(t), I(t)) d t=\delta \int_{a}^{b} \frac{1}{2} \operatorname{tr}\left(I_{0} \widehat{\Omega}^{T} \widehat{\Omega}\right)-\frac{1}{2} \operatorname{tr}\left(I_{0} I(t)\right) d t
$$

Remark. A computation with $\widehat{\Omega}:=O^{-1} \dot{O}, \quad \widehat{\Xi}:=O^{-1} \delta O$ and $I(t):=O^{-1}(t) A O(t)$ yields the variational identities

$$
\delta \widehat{\Omega}-\frac{d \widehat{\Xi}}{d t}=[\widehat{\Omega}, \widehat{\Xi}] \quad \text { and } \quad \delta I=[I(t), \widehat{\Xi}] .
$$

Proof. These formulas result from direct computations using the definitions $\widehat{\Omega}:=O^{-1} \dot{O}, \quad \widehat{\Xi}:=$ $O^{-1} \delta O$ and $I(t):=O^{-1}(t) A O(t)$, and the relation

$$
\frac{d}{d t} O^{-1}(t)=-O^{-1} \frac{d O}{d t} O^{-1}(t)
$$

On substituting these variational identities in Hamilton's principle and using the trace pairing, for matrices $\langle A, B\rangle=\operatorname{tr}\left(A^{T} B\right)$, for example,

$$
\operatorname{tr}\left(I_{0} \widehat{\Omega}^{T} \widehat{\Omega}\right)=\operatorname{tr}\left(\widehat{\Omega}^{T} \widehat{\Omega} I_{0}\right)=\operatorname{tr}\left(\left(I_{0} \widehat{\Omega}\right)^{T} \widehat{\Omega}\right)=:\left\langle I_{0} \widehat{\Omega}, \widehat{\Omega}\right\rangle
$$

we find that

$$
\begin{aligned}
0=\delta S & =\int_{a}^{b}\left\langle\frac{\partial \ell}{\partial \widehat{\Omega}}, \delta \widehat{\Omega}\right\rangle+\left\langle\frac{\partial \ell}{\partial I}, \delta I\right\rangle d t \\
& =\int_{a}^{b}\langle\widehat{\Pi}, \delta \widehat{\Omega}\rangle-\frac{1}{2}\left\langle I_{0}, \delta I\right\rangle d t \quad \text { with } \quad \widehat{\Pi}:=\frac{\partial \ell}{\partial \widehat{\Omega}}=I_{0} \widehat{\Omega} \\
& =\int_{a}^{b}\langle\widehat{\Pi}[\widehat{\Omega}, \widehat{\Pi}], \widehat{\Xi}\rangle-\frac{1}{2}\left\langle I_{0},[I(t), \widehat{\Xi}]\right\rangle d t \\
& =-\int_{a}^{b}\left\langle\frac{d \widehat{\Pi}}{d t}+[\widehat{\Omega}, \widehat{\Pi}]+\frac{1}{2}\left[I, I_{0}\right], \widehat{\Xi}\right\rangle d t+\operatorname{tr}\left(\widehat{\Pi}^{T} \widehat{\Xi}\right)
\end{aligned}
$$

This yields the Euler-Poincaré system of equations for the body angular momentum $\widehat{\Pi}(t)$ and the symmetric tensor $I(t):=O^{-1}(t) A O(t)$,

$$
\begin{equation*}
\frac{d \widehat{\Pi}}{d t}+[\widehat{\Omega}, \widehat{\Pi}]+\frac{1}{2}\left[I, I_{0}\right]=0 \quad \text { and } \quad \frac{d I}{d t}+[\widehat{\Omega}, I(t)]=0 \tag{11}
\end{equation*}
$$

The system (11) conserves the sum of the kinetic and potential energies,

$$
E(\widehat{\Omega}(t), I(t)):=\frac{1}{2} \operatorname{tr}\left(I_{0} \widehat{\Omega}^{T} \widehat{\Omega}\right)+\frac{1}{2} \operatorname{tr}\left(I_{0} I(t)\right) .
$$

Remark about the Hamiltonian formulation of the C Neumann problem.

The solution of the problem of harmonic motion on a sphere is due to C Neumann [1859]. Later, we will Legendre transform the Lagrangian for the C Neumann problem and also find the Lie-Poisson Hamiltonian structure for the system of equations (11). For now, we define

$$
H(\widehat{\Pi}(t), I(t)):=\frac{1}{2}\left\langle\widehat{\Pi}, I_{0}^{-1} \widehat{\Pi}\right\rangle+\frac{1}{2}\left\langle I(t), I_{0}\right\rangle .
$$

with variations

$$
\delta H(\widehat{\Pi}(t), I(t)):=\left\langle\delta \widehat{\Pi}, I_{0}^{-1} \widehat{\Pi}\right\rangle+\frac{1}{2}\left\langle\delta I(t), I_{0}\right\rangle .
$$

Consequently, equations (11) may be rewritten equivalently as

$$
\begin{align*}
\frac{d \widehat{\Pi}}{d t} & =-\left[\frac{\delta H}{\delta \widehat{\Pi}}, \widehat{\Pi}\right]-\left[I, \frac{\delta H}{\delta I}\right]=\operatorname{ad}_{\frac{\delta H}{\delta \Pi}}^{\delta \Pi}-I \diamond \frac{\delta H}{\delta I} \tag{12}\\
\frac{d I}{d t} & =-\left[\frac{\delta H}{\delta \widehat{\Pi}}, I(t)\right]=-£_{\frac{\delta H}{\delta \widehat{\Pi}}} I,
\end{align*}
$$

where the \diamond operation is defined by

$$
\left\langle I \diamond \frac{\delta H}{\delta I}, \widehat{\Xi}\right\rangle=\left\langle\frac{\delta H}{\delta I}, £_{\widehat{\Xi}} I\right\rangle=\left\langle\frac{\delta H}{\delta I},-[I, \widehat{\Xi}]\right\rangle=\left\langle\left[I, \frac{\delta H}{\delta I}\right], \widehat{\Xi}\right\rangle,
$$

for an arbitrary $\widehat{\Xi} \in \mathfrak{s o}(3)$ and the pairing is the trace pairing of skew-symmetric matrices.
Remark. Later, equations (12) will be discovered to comprise a Lie-Poisson Hamiltonian system on the dual of the semidirect-product Lie algebra $\mathfrak{s o}(3)$ (S)sym(3), given by

$$
\left[\left(\widehat{\Xi}_{1}, I_{1}\right),\left(\widehat{\Xi}_{2}, I_{2}\right)\right]=\left(\left[\widehat{\Xi}_{1}, \widehat{\Xi}_{2}\right], \widehat{\Xi}_{1} I_{2}-\widehat{\Xi}_{1} I_{2}\right)=\left(\left[\widehat{\Xi}_{1}, \widehat{\Xi}_{2}\right],\left[\widehat{\Xi}_{1}, I_{2}\right]-\left[\widehat{\Xi}_{2}, I_{1}\right]\right) .
$$

(c) Extra credit Compute the Euler-Lagrange equations and explain any conservation laws for the Lagrangian above in (1) with the following isotropic metric:

$$
\mathrm{g}_{a b}(\mathbf{q})=Q^{2}(\mathbf{q}) \delta_{a b}
$$

where $Q: M \rightarrow \mathbb{R}$ and $\delta_{a b}$ is the 2×2 identity matrix.
Answer. This is a mechanical analogue of Fermat's principle,

$$
0=\delta S=\delta \int_{a}^{b} L(\mathbf{q}, \dot{\mathbf{q}}) d t=\delta \int_{a}^{b} \sqrt{Q^{2}(\mathbf{q}) \dot{q}^{b} \delta_{b c} \dot{q}^{c}} d t=\delta \int_{a}^{b} Q(\mathbf{q}(s)) d s
$$

with $d s^{2}=d q^{b} \delta_{b c} d q^{c}$. That is, the Lagrangian takes the same form as for a (reparametrised) Fermat's principle; namely

$$
\begin{equation*}
L(\mathbf{q}, \dot{\mathbf{q}})=\frac{1}{2} Q^{2}(\mathbf{q}) \dot{q}^{b} \delta_{b c} \dot{q}^{c}, \tag{13}
\end{equation*}
$$

in Euclidean coordinates $\mathbf{q} \in \mathbb{R}^{3}$ with a prescribed index of refraction $Q(\mathbf{q})$. Conversely, the geometry of ray optics may be regarded as geodesic motion of particles "coasting" through a manifold with an isotropic, but spatially varying metic (index of refraction).

Exercise 1.3 Compute the Euler-Lagrange equations in the following four cases.
(a) A charged particle in a constant magnetic field. Define the magnetic field $\mathbf{B}=\nabla \times \mathbf{A}=$ const, where \mathbf{B}, \mathbf{A} are vector fields on $M=\mathbb{R}^{3}$. \mathbf{A} is called the magnetic vector potential; and \mathbf{A} is not a constant! The Lagrangian is given by:

$$
L(\mathbf{q}, \dot{\mathbf{q}})=\frac{m}{2}\|\dot{\mathbf{q}}\|^{2}+e \dot{\mathbf{q}} \cdot \mathbf{A}(\mathbf{q})
$$

where e is the electron charge and $\|\cdot\|$ is the usual Euclidean norm on \mathbb{R}^{3}.

Answer

(i) Fibre derivative

The fibre derivative gives a linear relation

$$
\mathbf{p}=\frac{\partial L}{\partial \dot{\mathbf{q}}}=m \dot{\mathbf{q}}+\frac{e}{c} \mathbf{A}(\mathbf{q})
$$

so this Lagrangian is hyperregular.
(ii) Euler-Lagrange equations

In vector form, this is

$$
\ddot{\mathbf{q}}=\frac{e}{m c} \dot{\mathbf{q}} \times \mathbf{B}(\mathbf{q}) \quad \text { with } \quad \mathbf{B}(\mathbf{q}):=\frac{\partial}{\partial \mathbf{q}} \times \mathbf{A}(\mathbf{q})
$$

and the terms on the right comprise the Lorentz force.
(b) The Kepler problem. Consider a planet of mass m in a gravitational potential generated by a star of larger mass M. Fix the star's position at the origin of coordinates and use Newton's gravitational potential:

$$
V(\mathbf{q})=-G \frac{m M}{\|\mathbf{q}\|}
$$

where $\mathbf{q} \in \mathbb{R}$ denotes here the position of the planet w.r.t the star.
Answer. The Lagrangian in this case is

$$
L=\frac{1}{2} m\|\dot{\mathbf{q}}\|^{2}+G \frac{m M}{\|\mathbf{q}\|}
$$

(i) Fibre derivative

The fibre derivative gives a linear relation

$$
\mathbf{p}=\frac{\partial L}{\partial \dot{\mathbf{q}}}=m \dot{\mathbf{q}}
$$

so this Lagrangian is hyperregular (velocity may be obtained from momentum and position).
(ii) Euler-Lagrange equations

In 3D vector form, the Euler-Lagrange equation is

$$
\ddot{\mathbf{q}}=-\frac{G M}{\|\mathbf{q}\|^{3}} \mathbf{q}
$$

and the term on the right is Newton's gravitational force.
Planar Kepler problem: For planar motion in polar coordinates

$$
(r, \dot{r}, \theta, \dot{\theta}) \in T \mathbb{R}_{+} \times T S^{1}
$$

the Lagrangian is

$$
L=\frac{m}{2}\left(\dot{r}^{2}+r^{2} \dot{\theta}^{2}\right)+\frac{G M m}{r}
$$

and the Euler-Lagrange equation is

$$
\ddot{r}=-\frac{G M}{r^{2}}+\frac{J^{2}}{r^{3}} \quad \text { with } \quad J=r^{2} \dot{\theta}=\text { const }
$$

The conserved energy is

$$
E=\frac{m}{2}\left(\dot{r}^{2}+r^{2} \dot{\theta}^{2}\right)-\frac{G M m}{r}
$$

See Appendix B of the text [GM1] for more information (and revision) about the Kepler problem.
(c) Free motion on a hyperboloid of revolution around the z-axis. We recall the equation for such a hyperboloid

$$
\|\mathbf{x}\|_{H}^{2}=\mathbf{x} \cdot A \mathbf{x}=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{a^{2}}-\frac{z^{2}}{b^{2}}=1
$$

where $\mathbf{x}=(x, y, z)^{T} \in \mathbb{R}^{3},(a, b) \in \mathbb{R}^{2}$ and $A=\operatorname{diag}\left(a^{-2}, a^{-2},-b^{-2}\right)$.

Answer. This can be done with a Lagrange multiplier, too. The Lagrangian becomes

$$
\begin{equation*}
L(\mathbf{x}, \dot{\mathbf{x}})=\frac{1}{2}\|\dot{\mathbf{x}}\|^{2}-\mu(1-\mathbf{x} \cdot A \mathbf{x}), \tag{14}
\end{equation*}
$$

on the tangent bundle

$$
T H^{2}=\left\{(\mathbf{x}, \dot{\mathbf{x}}) \in \mathbb{R}^{3} \times \mathbb{R}^{3} \mid \mathbf{x} \cdot A \mathbf{x}=1, \dot{\mathbf{x}} \cdot A \mathbf{x}=0\right\}
$$

(i) Fibre derivative

The fibre derivative gives the linear relation, $\frac{\partial L}{\partial \dot{\mathbf{x}}}=\dot{\mathbf{x}}$.
(ii) Euler-Lagrange equations

Calculating the Euler-Lagrange equations for this Lagrangian and then solving for the Lagrange multiplier μ by enforcing $\frac{d}{d t}(\dot{\mathbf{x}} \cdot A \mathbf{x})=0$ yields the equation of motion,

$$
\begin{equation*}
\ddot{\mathbf{x}}=-\left(\frac{\dot{\mathbf{x}} \cdot A \dot{\mathbf{x}}}{|A \mathbf{x}|^{2}}\right) \mathbf{x} \quad \text { or, in components, } \quad \ddot{x}^{c}=-\left(\frac{x^{c} A_{a b}}{|A \mathbf{x}|^{2}}\right) \dot{x}^{a} \dot{x}^{b}=:-\Gamma_{a b}^{c} \dot{x}^{a^{b}} \dot{x}^{b} . \tag{15}
\end{equation*}
$$

(d) Springs and masses. Consider a one-dimensional system composed of three particles with masses m_{1}, m_{2}, m_{3} interacting through two springs with spring constants k_{12} and k_{23}.
Draw a diagram showing that the three particles are aligned on a single axis and attached with the two springs such that the spring k_{12} attaches the mass m_{1} to m_{2} and the spring k_{23} attaches the mass m_{2} to m_{3}. In this case $M=\mathbb{R}^{3}$ and the spring potential energy in terms of the separation $x_{12}=x_{1}-x_{2}$ for example is given by

$$
V\left(x_{12}\right)=-k_{12}\left(x_{12}\right)^{2} .
$$

Answer. The Lagrangian for this system is $L: T \mathbb{R}^{n}$ given by

$$
L\left(x_{1}, x_{2}, \ldots, x_{n}, \dot{x}_{1}, \dot{x}_{2}, \ldots, \dot{x}_{n}\right)=\frac{1}{2} \sum_{i=1}^{n} m_{i} \dot{x}_{i}^{2}-\frac{1}{2} \sum_{i, j=1}^{n} k_{i j} x_{i j}^{2},
$$

where n is the number of particles with masses $m_{j}, j=1,2, \ldots, n$, and $x_{i j}=x_{i}-x_{j}$ are the separations between the particles.
However, since the particles are only connected to their nearest neighbours we may set

$$
L\left(x_{1}, x_{2}, \ldots, x_{n}, \dot{x}_{1}, \dot{x}_{2}, \ldots, \dot{x}_{n}\right)=\frac{1}{2} \sum_{i=1}^{n} m_{i} \dot{x}_{i}^{2}-\frac{1}{2} \sum_{i=1}^{n} k_{i, i+1}\left(x_{i}-x_{i+1}\right)^{2} .
$$

The boundary conditions at the endpoints may either be fixed ($x_{1}=0, x_{n+1}=1$), free ($x_{n+1}=0$), or periodic $\left(x_{n+1}=x_{1}\right)$. For $n=3$, we have

$$
\begin{aligned}
L\left(x_{1}, x_{2}, x_{3}, \dot{x}_{1}, \dot{x}_{2}, \dot{x}_{3}\right)= & \frac{1}{2} \sum_{i=1}^{3} m_{i} \dot{x}_{i}^{2}-\frac{1}{2} \sum_{i=1}^{3} k_{i, i+1}\left(x_{i}-x_{i+1}\right)^{2} \\
= & \frac{1}{2}\left(m_{1} \dot{x}_{1}^{2}+m_{1} \dot{x}_{2}^{2}+m_{1} \dot{x}_{3}^{2}\right) \\
& -\frac{1}{2}\left(k_{12}\left(x_{1}-x_{2}\right)^{2}+k_{23}\left(x_{2}-x_{3}\right)^{2}+k_{31}\left(x_{3}-x_{1}\right)^{2}\right) .
\end{aligned}
$$

(i) Fibre derivative

The fibre derivative gives the linear relation $p_{i}=\partial L / \partial \dot{x}_{i}=m_{i} \dot{x}_{i}, i=1,2,3$.
(ii) Euler-Lagrange equations for the periodic case are

$$
\begin{aligned}
& m_{1} \ddot{x}_{1}=\frac{\partial L}{\partial x_{1}}=-k_{12}\left(x_{1}-x_{2}\right)+k_{31}\left(x_{3}-x_{1}\right), \\
& m_{2} \ddot{x}_{2}=\frac{\partial L}{\partial x_{2}}=k_{12}\left(x_{1}-x_{2}\right)-k_{23}\left(x_{2}-x_{3}\right), \\
& m_{3} \ddot{x}_{3}=\frac{\partial L}{\partial x_{3}}=k_{23}\left(x_{2}-x_{3}\right)-k_{31}\left(x_{3}-x_{1}\right) .
\end{aligned}
$$

Note that the total momentum is conserved,

$$
\frac{d P_{t o t}}{d t}=0, \quad \text { with } \quad P_{t o t}:=\sum_{i=1}^{3} p_{i}=m_{1} \dot{x}_{1}+m_{2} \dot{x}_{2}+m_{3} \dot{x}_{3}
$$

The total energy,

$$
E_{t o t}=\frac{1}{2} \sum_{i=1}^{3} m_{i} \dot{x}_{i}^{2}+\frac{1}{2} \sum_{i=1}^{3} k_{i, i+1}\left(x_{i}-x_{i+1}\right)^{2},
$$

is also conserved, since these coupled harmonic oscillators comprise a closed conservative system.
(e) Extra credit Recover the above equations of motion in parts (a)-(d) using Newton's 2nd law.

Answer. The forces in Newton's 2nd law for this problem are the right-hand sides of the Euler-Lagrange equations above (for the periodic case).

Exercise 1.4 (Oscillator variables)

The Hamiltonian for the 2D isotropic harmonic oscillator in canonical variables $(\mathbf{q}, \mathbf{p}) \in T^{*} \mathbb{R}^{2} \simeq$ $\mathbb{R}^{2} \times \mathbb{R}^{2}$ is given by

$$
H=\frac{1}{2}|\mathbf{p}|^{2}+\frac{1}{2}|\mathbf{q}|^{2}
$$

For simplicity, we have chosen units in which the mass m and spring constant k satisfy $m=1=k$.
(a) Write the Hamiltonian H in oscillator variables given by

$$
\mathbf{q}+i \mathbf{p}=\left[\begin{array}{c}
q_{1}+i p_{1} \\
q_{2}+i p_{2}
\end{array}\right]=\left[\begin{array}{c}
a_{1} \\
a_{2}
\end{array}\right]=: \mathbf{a} \in \mathbb{C}^{2} \quad \text { with } \quad|\mathbf{a}|^{2}=\mathbf{a} \cdot \mathbf{a}^{*}=\left|a_{1}\right|^{2}+\left|a_{2}\right|^{2}
$$

Answer. In oscillator variables

$$
\mathbf{q}+i \mathbf{p}=\left[\begin{array}{l}
q_{1}+i p_{1} \\
q_{2}+i p_{2}
\end{array}\right]=\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right]=\mathbf{a} \in \mathbb{C}^{2}
$$

we may express the Hamiltonian H in terms of variables a by using

$$
|\mathbf{a}|^{2}=\mathbf{a} \cdot \mathbf{a}^{*}=\left|a_{1}\right|^{2}+\left|a_{2}\right|^{2}=q_{1}^{2}+p_{1}^{2}+q_{2}^{2}+p_{2}^{2}=|\mathbf{p}|^{2}+|\mathbf{q}|^{2}=2 H
$$

The transformation to oscillator variables is canonical: its symplectic two-form is

$$
d a \wedge d a^{*}=(d q+i d p) \wedge(d q-i d p)=-2 i d q \wedge d p
$$

where we ignore subscripts for brevity.
Likewise, the Poisson bracket transforms as

$$
\left\{a, a^{*}\right\}=\{q+i p, q-i p\}=-2 i\{q, p\}=-2 i \mathrm{Id}
$$

Thus, in oscillator variables Hamilton's canonical equations become

$$
\dot{a}=\{a, H\}=-2 i \frac{\partial H}{\partial a^{*}} \quad \text { and } \quad \dot{a}^{*}=\left\{a^{*}, H\right\}=2 i \frac{\partial H}{\partial a}
$$

The corresponding Hamiltonian vector field is

$$
X_{H}=\{\cdot, H\}=-2 i \frac{\partial H}{\partial a^{*}} \frac{\partial}{\partial a}+2 i \frac{\partial H}{\partial a} \frac{\partial}{\partial a^{*}}
$$

satisfying

$$
\left.X_{H}\right\lrcorner\left(d a \wedge d a^{*}\right)=-2 i d H
$$

where \lrcorner is the contraction sign from differential geometry.
(b) Consider the three quadratic quantities Y_{1}, Y_{2}, Y_{3}, given by

$$
Y_{1}+i Y_{2}=2 a_{1} a_{2}^{*} \quad \text { and } \quad Y_{3}=\left|a_{1}\right|^{2}-\left|a_{2}\right|^{2} .
$$

(i) Show that these quantities are invariant under the S^{1}-transformation $\mathbf{a} \rightarrow \mathbf{a} e^{i \phi}$ for any ϕ.
(ii) Are these quadratic quantities conserved by the 2D isotropic harmonic oscillator? Prove it.
(iii) Compute the Poisson brackets among Y_{1}, Y_{2}, Y_{3}.

Answer

(i) By inspection, these quantities are invariant under the S^{1}-transformation
(ii) The Hamiltonian for the 2D isotropic harmonic oscillator is

$$
H=\frac{1}{2}\left(\left|a_{1}\right|^{2}+\left|a_{2}\right|^{2}\right)=\frac{1}{2}|\mathbf{a}|^{2}
$$

The corresponding canonical equations are

$$
\dot{\mathbf{a}}=\{\mathbf{a}, H\}=-2 i \mathbf{a} \quad \text { and } \quad \dot{\mathbf{a}}^{*}=\left\{\mathbf{a}^{*}, H\right\}=2 i \mathbf{a}^{*}
$$

whose solutions are immediately found to be S^{1} phase shifts, linear in time:

$$
\mathbf{a}(t)=e^{-2 i t} \mathbf{a}(0) \quad \text { and } \quad \mathbf{a}^{*}(t)=e^{2 i t} \mathbf{a}^{*}(0)
$$

Consequently, being invariant under such S^{1} phase shifts, the three quadratic quantities

$$
Y_{1}+i Y_{2}=2 a_{1} a_{2}^{*} \quad \text { and } \quad Y_{3}=\left|a_{1}\right|^{2}-\left|a_{2}\right|^{2}
$$

are conserved by the 2D isotropic harmonic oscillator.
(iii) The three quadratic S^{1}-invariants form a vector \mathbf{Y} with components $\left(Y_{1}, Y_{2}, Y_{3}\right) \in \mathbb{R}^{3}$ whose magnitude satisfies

$$
|\mathbf{Y}|^{2}:=Y_{1}^{2}+Y_{2}^{2}+Y_{3}^{2}=\left(\left|a_{1}\right|^{2}+\left|a_{2}\right|^{2}\right)^{2}=(2 H)^{2}
$$

The Poisson brackets of the components $\left(Y_{1}, Y_{2}, Y_{3}\right) \in \mathbb{R}^{3}$ are computed by the chain rule to close among themselves as

$$
\left\{Y_{k}, Y_{l}\right\}=-\epsilon_{k l m} Y_{m}
$$

Thus, functions of these S^{1}-invariants satisfy

$$
\{F, H\}(\mathbf{Y})=-\mathbf{Y} \cdot \frac{\partial F}{\partial \mathbf{Y}} \times \frac{\partial H}{\partial \mathbf{Y}}
$$

The Hamiltonian for the 2D isotropic harmonic oscillator as expressed as $H=|\mathbf{Y}|^{2} / 2$. This Hamiltonian has derivative $\partial H / \partial \mathbf{Y}=\mathbf{Y}$; so it is a Casimir for this Poisson bracket. That is, $H=|\mathbf{Y}|^{2} / 2$ Poisson-commutes with any function of \mathbf{Y}. In particular, it Poisson-commutes with each of the components $\left(Y_{1}, Y_{2}, Y_{3}\right)$. Hence, as expected, each component of \mathbf{Y} is conserved under the dynamics generated by this Hamiltonian.

Remark. Perhaps surprisingly, the Poisson brackets among the three S^{1} invariants $\mathbf{Y} \in \mathbb{R}^{3}$ are the same as the brackets among the vector components of angular momentum $\mathbf{J}:=\mathbf{q} \times \mathbf{p}$. Why is this?
(iv) For the 2D anisotropic case, the harmonic oscillator Hamiltonian is

$$
H=\frac{1}{2}\left(\omega_{1}\left|a_{1}\right|^{2}+\omega_{2}\left|a_{2}\right|^{2}\right)=\frac{1}{4}\left(\left(\omega_{1}+\omega_{2}\right)|\mathbf{Y}|+\left(\omega_{1}-\omega_{2}\right) Y_{3}\right)
$$

and functions of the S^{1}-invariants $\left(Y_{1}, Y_{2}, Y_{3}\right)$ satisfy

$$
\frac{d F}{d t}=\{F, H\}(\mathbf{Y})=\frac{\partial F}{\partial \mathbf{Y}} \cdot \mathbf{Y} \times \frac{\partial H}{\partial \mathbf{Y}}=\frac{1}{4}\left(\omega_{1}-\omega_{2}\right) \frac{\partial F}{\partial \mathbf{Y}} \cdot \mathbf{Y} \times \widehat{\mathbf{3}}
$$

so the motion equation is

$$
\frac{d \mathbf{Y}}{d t}=\{\mathbf{Y}, H\}(\mathbf{Y})=\frac{1}{4}\left(\omega_{1}-\omega_{2}\right) \mathbf{Y} \times \widehat{\mathbf{3}}
$$

This describes precession of \mathbf{Y} about the $\widehat{\mathbf{3}}$-axis at constant frequency $\frac{1}{4}\left(\omega_{2}-\omega_{1}\right)$.

