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2 M3-4-5A16 Assessed Problems # 2: Do 4 out of 5 problems

Exercise 2.1 (The fish: a quadratically nonlinear oscillator)

Consider the Hamiltonian dynamics on a symplectic manifold of a system comprising two real
degrees of freedom, with real phase space variables (x, y, θ, z), symplectic form

ω = dx ∧ dy + dθ ∧ dz

and Hamiltonian
H = 1

2y
2 + x

(
1
3x

2 − z
)
− 2

3z
3/2

(A) Write the canonical Poisson bracket for this system.

(B) At what values of x, y and H does the system have stationary points in the (x, y) plane?

(C) Propose a strategy for solving these equations. In what order should they be solved?

(D) Identify the constants of motion of this system and explain why they are conserved.

(E) Compute the associated Hamiltonian vector field XH and show that it satisfies

XH ω = dH

(F) Write the Poisson bracket that expresses the Hamiltonian vector field XH as a divergenceless
vector field in R3 with coordinates x = (x, y, z) ∈ R3. Explain why this Poisson bracket satisfies
the Jacobi identity.

(G) Identify the Casimir function for this R3 bracket. Show explicitly that it satisfies the definition
of a Casimir function.

(H) Sketch a graph of the intersections of the level surfaces in R3 of the Hamiltonian and Casimir
function. Show the directions of flow along these intersections. Identify the locations and types
of any relative equilibria at the tangent points of these surfaces.

Figure 1: Phase plane for the saddle-node fish shape arising from the intersections of the level surfaces in R3 of the
Hamiltonian and Casimir function.

(I) Linearise around the relative equilibria on a level set of the Casimir (z) and compute its eigen-
values.

(J) If you found a hyperbolic equilibrium point in the previous part connected to itself by a homoclinic
orbit, then reduce the equation for the homoclinic orbit to an indefinite integral expression.
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Exercise 2.2 (3D Volterra system)
Consider the dynamical system in (x1, x2, x3) ∈ R3,ẋ1ẋ2

ẋ3

 =

 x1x2
x2x3 − x1x2
−x2x3

 = x2

 x1
x3 − x1
−x3

 (1)

This is a 3D version of the Volterra [1931] model of competition among species, which for more species
is given by

ẋn = xn(xn+1 − xn−1), n = 1, 2, . . . , N, with x0 = 0 = xN+1.

The LV system is also widely applicable in physics and chemistry.

(A) Find two conservation laws for the system (1).

(B) Write the system (1) in terms of the cross product of the gradients of the two conserved quantities.

(C) Find the equilibrium states of the system and determine their stability.

(D) Write the system (1) in two Hamiltonian forms that use its two conserved quantities as Hamilto-
nians.

(E) Verify that this system may be written as dL
dt = [L,B] for the 4× 4 matrices

L :=


x1 0

√
x1x2 0

0 x1 + x2 0
√
x2x3√

x1x2 0 x2 + x3 0
0

√
x2x3 0 x3

 B :=
1

2


0 0 −√x1x2 0
0 0 0 −√x2x3√
x1x2 0 0 0
0

√
x2x3 0 0


(F) Explain how the conservation laws found earlier are related to the matrices L and B.

(G) Give the geometrical interpretation of the formula dL
dt = [L,B] with 4× 4 matrices L and B.

(H) Write the system (1) as a double matrix commutator, dL
dt = [L, [L,N ] ]. In particular, find N

explicitly.

(I) Give the geometrical interpretation of the formula dL
dt = [L, [L,N ] ].

+++++++++++++++++++++++++++++++++++++++++++++++++++++++

Figure 2: These are sketches of the global dynamics of the 3D May-Leonard system addressed in Problem 2.3 on the
positive octant for κ+ λ = − 2 and −1 < κ < 0. Courtesy of Ref [1] in Problem 2.3.
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Exercise 2.3 (The 3D May-Leonard system)

Consider the 3D May-Leonard system governed by the equations:

ẋ = −x(x+ κy + λz) ,

ẏ = − y(y + κz + λx) ,

ż = − z(z + κx+ λy) ,

(2)

for two real constants κ and λ. One notices its cyclic symmetry in (x, y, z). This system describes
nonlinear aspects of competition among three species [ML1975].

(A) Show that the system (2) preserves volume in R3 when κ+ λ = − 2.

(B) For the volume-preserving case κ = −1 = λ, system (2) becomes

ẋ = −x(x− y − z) ,
ẏ = − y(y − z − x) ,

ż = − z(z − x− y) .

(3)

(i) Transform to quadratic variables

p1 = yz , p2 = zx , p3 = xy

and find the equations for ṗ1, ṗ2, ṗ3 implied by the ML equations (3).

(ii) Show that the equations for ṗ1, ṗ2, ṗ3 imply three (linearly dependent) constants of motion.

(iii) Motivated by your result, find two real quadratic functions C and H for which the system
(3) may be written in Nambu vector form as a cross product of their gradients in R3, i.e.,

ẋ = ∇C ×∇H = Ĉ∇H = − Ĥ∇C with x = (x, y, z)T and Ĉ = ∇C× = − ĈT . (4)

In index notation for vector components, i, j, k = 1, 2, 3, the first of these would be

ẋi = ĈikH, k with Ĉik = − εikjC, j = − Ĉki ,

by the hat map.

(iv) Write the 3× 3 matrix Ĉ explicitly for C = y(z − x).

(v) Explain what non-uniqueness of this representation of the solutions arises because of the
linear dependence among the three constants of motion.

(vi) Show that the system (3) is canonically Hamiltonian on level sets of C and H, by deriving
the canonical Poisson brackets.
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Exercise 2.4 (Charged particle moving on a sphere S2 in a magnetic field (CPSB) )
Recall that the Lagrangian for a charged particle of mass m in a magnetic field B = curlA in three

Euclidean spatial dimensions (q, q̇) ∈ TqR3 is

L(q, q̇) =
m

2
q̇ · q̇ +

e

c
q̇ ·A(q),

for constants m, e, c and prescribed function A(q). For a constant magnetic field in the ẑ-direction,
the vector potential is given by A(q) = B0

2 ẑ× q. In this case, the Lagrangian is given by

L(q, q̇) =
m

2
q̇ · q̇ +

e

c
q̇ · B0

2
ẑ× q .

The motion may be restricted to stay on a sphere by passing from a spatially fixed frame into a frame
moving with a rotation O(t) ∈ SO(3) that follows the particle. Then q(t) = O(t)q0 and q̇(t) = Ȯ(t)q0.
In the moving frame the previous Lagrangian becomes

L(O(t), Ȯ(t)) =
m

2
Ȯ(t)q0 · Ȯ(t)q0 +

eB0

2c
Ȯ(t)q0 · ẑ×O(t)q0

=
m

2
Ȯ(t)q0 ·OO−1Ȯ(t)q0 +

eB0

2c
Ȯ(t)q0 ·O(O−1ẑ× q0)

=
1

2
(Ω× q0) · (Ω× q0) +

eB0

2c
(Ω× q0) · (Γ× q0)

=
1

2
Ω · IΩ +

eB0

2c
Ω · I Γ =: `(Ω, Γ) .

The new notation is O−1Ȯ(t) = Ω× with Ω ∈ R3 and Γ = O−1ẑ ∈ R3.

(A) Derive the CPSB equations using Hamilton’s principle with the Lagrangian `(Ω, Γ).

Verify that the following equations hold (Show your work!)

d

dt
(IΩ) + Ω× IΩ +

eB0

2 c

(
Ω× I Γ + I(Γ×Ω) + Γ× IΩ︸ ︷︷ ︸

Magnetic torque

)
= 0 and Γ̇ = Γ×Ω .

(B) Find two constants of the motion for the CHTE equations.

(C) Derive the CPSB Hamiltonian h(Π,Γ) and its variational derivatives, by Legendre-transforming
l(Ω,Γ), the reduced Lagrangian for CPSB.

(D) Write the CPSB equations in Lie–Poisson bracket matrix form.
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Exercise 2.5 (Anisotropic harmonic oscillator on the sphere Sn−1)
The motion of a particle of mass m undergoing anisotropic harmonic oscillations in Rn is governed

by Hamilton’s principle with the following Lagrangian

L(x, ẋ) =
m

2
ẋ · ẋ− 1

2
x · K0x,

for (x, ẋ) ∈ TxRn and a constant n × n symmetric matrix K0 that determines the spring constant in
each direction.

One restricts the motion to stay on the Sn−1 sphere by setting x(t) = O(t)x0 and ẋ(t) = Ȯ(t)x0,
with (O, Ȯ) ∈ TOSO(n).

(A) Show that for this type of motion the original Lagrangian becomes

`(Ω̂,K) =
m

2
tr
(
(Ω̂x0)

T (Ω̂x0)
)
− 1

2
tr
(
x0x

T
0K
)

=
m

2
tr
(
IΩ̂T Ω̂

)
− 1

2
tr
(
IK
)

with

I = x0x
T
0 , Ω̂(t) = O−1Ȯ(t) ∈ so(n) and K(t) = O−1K0O(t) ,

where I and K0 are n× n constant symmetric matrices.

(B) Derive the variational relations,

δΩ̂ =
dΞ̂

dt
+
[

Ω̂ , Ξ̂
]

δK =
[
K , Ξ̂

]
.

(C) Compute the reduced Euler–Lagrange equations for the Lagrangian `(Ω̂,K) by taking matrix vari-
ations in its Hamilton’s principle δS = 0 with S =

∫
`(Ω̂,K) dt, to find

δS =
1

2

∫ b

a
tr
(
MT δΩ̂

)
dt+

1

2

∫ b

a
tr
(

Ξ
[
K , I

])
dt ,

with matrix commutator [K, I] := KI − IK, variation Ξ := O−1δO ∈ so(n) and variational
derivative M := ∂l/∂Ω = IΩ + ΩI.

(D) By integrating by parts, invoking homogeneous endpoint conditions, then rearranging, derive the
following formula for the variation,

δS = − 1

2

∫ b

a
tr

((
dM

dt
−
[
M , Ω

]
−
[
K , I

])
Ξ

)
dt .

This means that Hamilton’s principle for δS = 0 with arbitrary Ξ implies an equation for the
evolution of M given by

dM

dt
=
[
M , Ω̂

]
+
[
K(t) , I

]
. (5)

(E) Derive a differential equation for K(t) from the time derivative of its definition K(t) := O−1(t)K0O(t),
as

dK
dt

=
[
K , Ω̂

]
. (6)

The last two equations constitute a closed dynamical system for M(t) and K(t), with initial
conditions specified by the values of Ω̂(0) and K(0) = K0 for O(0) = Id at time t = 0.
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(F) Following Manakov’s idea [Man1976], show that these equations may be combined into a commu-
tator of polynomials,

d

dt

(
K + λM + λ2I2

)
=
[
K + λM + λ2I2 , Ω̂ + λI

]
. (7)

(G) Show that the commutator form (7) implies for every non-negative integer power K that

d

dt
(K + λM + λ2I2)K = [(K + λM + λ2I2)K , (Ω̂ + λI)] .

(H) Show that

tr(K + λM + λ2I2)K = constant , (8)

for each power of λ. That is, all the coefficients of each power of λ are constant in time for the
motion of a rigid body in a quadratic field.

Answer Since the commutator is antisymmetric, its trace vanishes and K conser-

vation laws emerge, as
d

dt
tr(K + λM + λ2I2)K = 0 ,

after commuting the trace operation with the time derivative. N


