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Abstract

MPA16
Should it be PA or AP? We will do both in this class!
AP = Applications of Pure maths, e.g., Noether’s theorem: Lie group symmetry of Hamilton’s variational

principle implies conservation laws for its equations of motion.
PA = Purifications of Applied maths, e.g., Euler fluid dynamics describes geodesic flow on the manifold

of smooth invertible maps acting on the domain of flow.
We will do both in this class!
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Marks

1. Assessed Homework:

• To help you prepare for the Final Exam, three Assessed Homework sets of 4 or 5 problems each will be
handed out, spaced about three weeks apart, e.g., at week 3, week 6 and week 9. Each Assessed Homework
set will be due about twelve days after it is assigned, although the due date for the last set may be delayed
until immediately after the Winter Break, if desired.

2. Final Exam: Three of the five questions will be taken from the assessed homework assignments.

3. To help you prepare for the Assessed Homework sets, many Practice Problems and sketches of their solutions
will be provided intermittently, written on the board as the lectures progress.

4. Lecture notes will be available online at http://wwwf.imperial.ac.uk/~dholm/classnotes/

Office hours

Arranged individually or in groups by appointment via email.

http://wwwf.imperial.ac.uk/~dholm/classnotes/
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Class introduction

This class explains, via many self-contained examples, a systematic framework for using Geometry in studying
Mechanics. Here, these terms mean the following.

• Geometry involves linear algebra, transformation theory, differential equations, variational calculus, Lie groups
and their actions on manifolds.

• Mechanics means “the branch of physics concerned with the motion of bodies in a frame of reference”. Usually
this means differential equations, e.g., Ẋ = F (X, t).

• Study means “formulate and solve, so as to reveal the geometric meaning of the problem and thereby understand
better how to obtain and interpret its solution geometrically”.

For example, in the language of GM, Euler’s rigid body dynamics becomes geodesic motion on the Lie group of 3D
rotations SO(3) with respect to the Riemannian metric given by the moment of inertia.

The solution may also be represented as motion by smooth flows parameterised by time t that takes place along
the intersections of two-dimensional surfaces in R3 that are level sets of the conservation laws for energy and angular
momentum.

This year is also the centenary of Noether’s theorem which associates symmetries of Hamilton’s variational
principle with constants of motion of the Euler-Lagrange equations. We will use Noether’s theorem as an organising
principle throughout these lectures, on both the Lagrangian and Hamiltonian sides.
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Figure 1: Geometric Mechanics has involved many great mathematicians!
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1 Classical mechanics: Definitions for motion on smooth manifolds

1.1 Definitions: Space, Time, Motion, . . . , Tangent space, Velocity, Motion equation

Space

Space is taken to be a smooth manifold Q with points q ∈ Q (Positions, States, Configurations).

Let Q be a smooth manifold dimQ = n. That is, Q is a smooth space that is locally Rn.
Operationally, a smooth manifold is a space on which the rules of calculus apply.

Figure 2: A manifold Q is defined by the disjoint union (or, atlas) of local charts, each of which is isomorphic to RdimQ.
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Examples of manifolds

Figure 3: The circle S1 is an example of a manifold that can be covered with two charts that are each locally R1.

-
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θ/2
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Figure 4: The Riemann map shows that the unit sphere S2 is a manifold that can be covered with two charts that are each locally R2.
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Exercise. Figure 4 illustrates Riemann’s stereoscopic projection, used in class to show that the circle
S1 is a manifold which may be covered by two charts. Derive the values of the stereoscopic projections
xN and xS from the North and South poles onto the x-axis, respectively, of a point on the circle at
polar angle θ. Explain the angle θ/2. How are xN and xS related to each other? Hint: you may use
trigonometry. F

Answer. A point on the circle at polar angle θ from the North pole has height z = cos θ. The inter-
section of its stereographic projection with the x-axis is found from the proportion r = xN

1 = sin θ
1−cos θ =

cot(θ/2) , provided cos θ 6= 1 . The corresponding stereographic projection from the South pole in Figure 4 satis-
fies the proportion xS

1 = sin θ
1+cos θ , provided cos θ 6= −1 . Consequently, xSxN = 1, so that xS = 1/xN = tan(θ/2)

for θ 6= 0, π. N

Remark. The manifold Q may sometimes be identified with a Lie group G. We will do this when we consider
rotation and translation, for example. In this case, the configurations are obtained from the group action G×Q0 → Q
where Q0 is a reference configuration and the group is G = SE(3) the special Euclidean Lie group of motions in three
dimensions.

Time

Time is taken to be a manifold T with points t ∈ T . Usually T = R (for real 1D time), but we will also consider
T = R2, and the option to let T and Q both be complex manifolds is not out of the question.
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Motion

Motion is a map φt : T → Q, where subscript t denotes dependence on time t. For example, when T = R, the motion
is a curve qt = φt ◦ q0 obtained by composition of functions. The motion is called a flow if φt+s = φt ◦φs, for s, t ∈ R,
and φ0 = Id, so that φ−1

t = φ−t. Note that the composition of functions is associative, (φt ◦φs) ◦φr = φt ◦ (φs ◦φr) =
φt ◦ φs ◦ φr = φt+s+r, but in general it is not commutative.

When the motion is obtained from a group action G×Q0 → Q, then it may be identified with a map φt : T → G,
which we may regard as a curve on the group G.

Thus, we should anticipate motion and mechanics on Lie group manifolds.
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1.2 Curves on manifolds and their tangent spaces

The tangent space TqQ contains vectors vq = q̇(t) ∈ TqQ, tangent to curve q(t) ∈ Q at point q. The coordinates
are (q, vq) ∈ TQq. Note, dimTqQ = 2n and subscript q reminds us that vq is an element of the tangent space at the
point q and that on manifolds we must keep track of base points.

Figure 5: This is a sketch of the tangent bundle TS1 of the circle S1, TS1 = {(x,v) ∈ TR2 : |x|2 = 1 and x · v = 0}.

The union of tangent spaces TQ := ∪q∈QTqQ is also called the tangent bundle of the manifold Q.
The curve q(t) describes the motion on manifold Q. The curve q̇(t) ∈ TqQ is called the tangent lift of the
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curve q(t) ∈ Q.

1.3 Velocity and the Motion Equation

Velocity

The tangent lift vector vq = q̇(t) ∈ TqQ is called the velocity along a flow q(t) that describes a smooth curve in Q.

Motion Equation

The motion equation that determines the flow qt ∈ Q takes the form

q̇t = f(qt)

where the map f : q ∈M → f(q) ∈ TqM is a prescribed vector field over Q.

For example, if the curve qt = φt ◦ q0 is a flow, then

q̇t = φ̇tφ
−1
t ◦ qt = f(qt)

so that
φ̇t = f ◦ φt =: φ∗tf

which defines the pullback of f by φt.
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1.4 Variational Principles for classical mechanics

• Define kinetic energy KE : TM → R, via a Riemannian metric gq( · , · ) : TM × TM → R. Explicitly,
KE = 1

2gq(q̇, q̇) =: 1
2‖q̇‖

2.

• Choose the Lagrangian L : TM → R. (For example, one could choose L to be KE.)

• Hamilton’s principle is δS = 0 with S =
∫ b
a L(q, q̇)dt, for a family of curves q(t, ε) parameterised smoothly

by (t, ε) ∈ R× R. The linearisation

δS :=
d

dε

∣∣∣∣
ε=0

∫ b

a

L(q(t, ε), q̇(t, ε))dt with δq(t) :=
dq(t, ε)

dε

∣∣∣∣
ε=0

defines the variational derivative δS of S near the identity ε = 0. The variations in q are assumed to vanish
at endpoints in time, so that q(a, ε) = q(a) and q(b, ε) = q(b).

a

b

q
1

q
2

Figure 6: This is a sketch of variations of a family of curves on a manifold.



M 3-4-5 A16 Notes: Geometric Mechanics DD Holm Spring term 2020 15

2 Classical mechanics: Euler–Lagrange equation

Theorem 1 (Hamilton 1835, Euler 1750, Lagrange 1756). Hamilton’s principle δS = 0 with
S =

∫ b
a L(q, q̇)dt implies the Euler–Lagrange (EL) equation:

d

dt

∂L(q, q̇)

∂q̇
=
∂L(q, q̇)

∂q
, for any L(q, q̇) .

Proof 1 Vary the curve q(t) in the family q(t, ε) ∈ C(Q) using the linearisation

δS :=
d

dε

∣∣∣∣
ε=0

∫ b

a

L(q(t, ε), q̇(t, ε))dt with δq(t) :=
dq(t, ε)

dε

∣∣∣∣
ε=0

and set δ dqdt = d
dtδq in the variation of the action S as

δS = δ

∫ b

a

L(q, q̇)dt =

∫ b

a

δL(q, q̇)dt =

∫ b

a

〈
∂L

∂q̇
, δq̇

〉
+

〈
∂L

∂q
, δq

〉
︸ ︷︷ ︸
Pairing

dt =

∫ b

a

〈
∂L

∂q̇
,
d

dt
δq

〉
+

〈
∂L

∂q
, δq

〉
dt

=

∫ b

a

〈
− d

dt

∂L

∂q̇
+
∂L

∂q︸ ︷︷ ︸
EL equation

, δq

〉
dt +

〈
∂L

∂q̇
, δq

〉 ∣∣∣∣b
a︸ ︷︷ ︸

Endpoint term = 0

�
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Proof Vary coordinates (q, v) ∈ TQ, subject to the constraint v = dq
dt (tangent lift)

δS = δ

∫ b

a

L(q, v) +

〈
p,
dq

dt
− v
〉
dt =

∫ b

a

〈
∂L

∂v
− p, δv

〉
+

〈
∂L

∂q
− dp

dt
, δq

〉
+
〈
δp, q̇ − v

〉
dt+

〈
p, δq

〉∣∣∣∣b
a

Then we assemble the EL equation from the various stationary conditions, and evaluate ∂L
∂v

∣∣
v=q̇

.
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2.1 What to do in solving a Lagrangian mechanics problem

1. Define the configuration manifold of a given mechanical system and find a suitable coordinate system on that
manifold.

2. Find the Lagrangian and compute the Euler-Lagrange equations.

3. For simple (one-dimensional) systems, sketch phase portraits.

4. Compute energy and find how it evolves as a function of time.

5. Find the equilibria of the system and compute linear oscillations about that equilibrium by finding the normal
frequencies and normal modes.

6. Find integrals of motion for a Lagrangian system using symmetries of the Lagrangian and Noether’s theorem.

7. Compute the Legendre transformation from the Lagrangian to the Hamiltonian description and derive Hamilton’s
canonical equations.

8. Write the Poisson brackets and find the evolution equations for phase space functions of (q, p) and possibly of t.

9. Determine the equilibria of the system from critical points of the sum of the Hamiltonian and constants of the
motion.

10. Determine the stability of the equilibrium solutions by taking a second variation around the equilibrium and
finding whether the corresponding Hamiltonian for the linearised problem is definite in sign.

11. Reduce by a symmetry of the Lagrangian

12. Repeat from 1. above.
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2.2 Example - The isoperimetric problem (what Lagrange wrote to Euler about).

The problem is to find the curve between two points (x1, y1) and (x2, y2), of specified length, that maximises the area
integral

∫ x2

x1
y(x)dx.

In this example the length of the curve is

L[y] =

∫ x2

x1

√
dx2 + dy2 =

∫ x2

x1

√
1 + y′2dx, with y′(x) = dy/dx ,

which takes the specified value l = const. The area is

A[y] =

∫∫
dx ∧ dy =

∫ x2

x1

y(x)dx.

We look for extrema of the modified functional

S[y] =

∫ x2

x1

ydx− λ
∫ x2

x1

(
√

1 + y′2dx− l ),

where λ is a scalar constant (Lagrange multiplier), to be determined. The Euler-Lagrange equation is

λ
d

dx

(
y′√

1 + y′2

)
+ 1 = 0 . (1)

Hence, a first integration yields y′√
1+y′2

= −(x− x0)/λ, giving the parametric solution, after solving for y′2,

x = x0 ± λ sin(θ), y = y0 ± λ cos(θ), (2)

so (x− x0)
2 + (y − y0)

2 = λ2 and the extremum is the arc of a circle of radius λ.
The variational problem satisfied by a soap bubble is analogous to the isoperimetric problem. For the soap bubble,

the surface area is extremised, holding the volume integral constant. The Lagrange multiplier is the pressure, p.
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2.3 Example: Hamilton’s Principle for geodesics (covariant derivatives)

• Geodesics: When L = KE = 1
2gq(q̇, q̇) =: 1

2‖q̇‖
2, the solution q(t) of the EL equations that passes from point

q(a) to q(b) is called the geodesic path with respect to the metric gq : TM × TM → R. The geodesic represents
the path of shortest distance q(a)→ q(b) measured by

ds2 := dqagab(q)dq
b = gq(q̇, q̇)dt

2 = ‖q̇‖2 dt2

• Exercise: Compute the EL equations for a geodesic with respect to the metric gq : TM × TM → R.
That is, compute the EL equations for L = KE = 1

2gq(q̇, q̇) =: 1
2‖q̇‖

2.

• Answer: The KE Lagrangian is

L(q, q̇) =
1

2
q̇bgbc(q)q̇

c .

Its partial derivatives are given by

∂L

∂q̇a
= gac(q)q̇

c and
∂L

∂qa
=

1

2

∂gbc(q)

∂qa
q̇bq̇c .

Consequently, its Euler–Lagrange equations are

d

dt

∂L

∂q̇a
− ∂L

∂qa
= gae(q)q̈

e +
∂gae(q)

∂qb
q̇bq̇e − 1

2

∂gbe(q)

∂qa
q̇bq̇e = 0 .

Symmetrising the coefficient of the middle term and contracting with co-metric gca satisfying gcagae = δce yields

q̈ c + Γcbe(q)q̇
bq̇e = 0 with Γcbe(q) =

1

2
gca
[
∂gae(q)

∂qb
+
∂gab(q)

∂qe
− ∂gbe(q)

∂qa

]
, (3)
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in which the Γcbe are called the Christoffel symbols for the Riemannian metric gab.

These Euler–Lagrange equations are the geodesic equations of a free particle moving in a Riemannian space.
They are often written as

q̈ +∇q̇q̇ = 0,

in terms of the covariant derivative ∇q̇.

2.4 Ten examples of Hamilton’s principle for Simple Mechanical Systems

For simple mechanical systems, L(q, q̇) = T (q̇)− V (q) = KE − PE. For example,

1. Planar isotropic oscillator, (x, ẋ) ∈ TR2: L = m
2 |ẋ|

2 − k
2 |x|

2 =⇒ ẍ = −ω2x with ω2 = k/m

2. Planar anisotropic oscillator, (x, ẋ) ∈ TR2: L = m
2 |ẋ|

2 − k1

2 x
2
1 − k2

2 x
2
2 =⇒ ẍi = −ω2

i xi with ω2
i =

ki/m i = 1, 2

3. Planar pendulum, (x, ẋ) ∈ TR2, constrained to TS1 = {x, ẋ ∈ TR2| 1 − |x|2 = 0 & x · ẋ = 0}: L =
m
2 |ẋ|

2 −mg ê2 · x− µ
2 (1− |x|2) =⇒ mẍ = −mgê2 · (Id− x⊗ x)− m|ẋ|2x, (gravity & centripetal force)

4. Planar pendulum motion lifted to a curve in SO(2): x(t) = O(θ(t))x0 ∈ R2 , O(θ(t)) ∈ SO(2) , |x0|2 = R2,

where x(0) = x0.

ẋ(t) = ȮO−1(t)x = θ̇(t) ê3 × x for (θ, θ̇) ∈ TSO(2) ,

L = m
2 R

2θ̇2 −mgR(1− cos θ) =⇒ θ̈ = −ω2 sin θ with ω2 = g/R
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5. Charged particle in a magnetic field, (x, ẋ) ∈ TR2: L = m
2 |ẋ|

2 + e
c ẋ ·A(x) =⇒ ẍ = e

mcẋ×B with B =
curl A

6. Kepler problem, (r, ṙ, θ, θ̇) ∈ TR+ × TS1: L = m
2

(
ṙ2 + r2θ̇2

)
+ GMm

r =⇒ r̈ = −GM
r2 + J2

r3 with J =

r2θ̇ = const

7. Free motion on a sphere, (x, ẋ) ∈ TR3, constrained to TS2 = {(x, ẋ) ∈ TR3 : |x| = 1 & x · ẋ = 0}:
L = 1

2 |ẋ|
2 + 1

2µ(1− |x|2)

8. Spherical pendulum (a), (x, ẋ) ∈ TR3, on TS2 = {(x, ẋ) ∈ TR3 : |x| = 1 & x · ẋ = 0}:
L = m

2 |ẋ|
2 −mg ê3 · x + 1

2µ(1− |x|2)

9. Spherical pendulum (b), setting x(t) = O(t)x0 , ẋ(t) = Ȯ(t)x0 for (O, Ȯ) ∈ TSO(3) , where x0 = x(0)
initially and

L =
m

2
|ẋ|2 −mg ê3 · x

=
m

2
|Ȯ(t)x0|2 −mgOT (t)ê3 · x0

=
m

2
|O−1Ȯ(t)x0|2 −mgO−1(t)ê3 · x0

=
m

2
|Ω× x0|2 −mgΓ · x0

where (O−1Ȯ)ij = −εijkΩk and Γ = O−1(t)ê3. Rotations preserve length, so |x|2 = x0|2 = 1. Set g = 0 for free
motion on TS2.

10. Rotating rigid body, Ω̂ = O−1Ȯ ∈ T (SO(3) ' so(3) ` = 1
2Ω ·IΩ with Ω× = Ω̂ , that is, −εijkΩk = Ω̂ij
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3 Classical mechanics: Hamilton’s equations

3.1 Legendre transform

• LT : (q, q̇) ∈ TM → (q, p) ∈ T ∗M defines momentum p as the fibre derivative of L, namely

p :=
∂L(q, q̇)

∂q̇
∈ T ∗M (fibre derivative) .

The LT is invertible for q̇ = f(q, p), provided the Hessian ∂2L(q, q̇)/∂q̇∂q̇ has nonzero determinant. Note,
dimT ∗M = 2n.

• In terms of the LT, the Hamiltonian H : T ∗M → R is defined by

H(q, p) =
〈
p, q̇
〉
− L(q, q̇)

in which the expression 〈p, q̇〉 in this calculation identifies a pairing 〈 · , · 〉 : T ∗M × TM → R.

Taking the differential of this definition yields

dH =
〈
Hp, dp

〉
+
〈
Hq, dq

〉
=
〈
dp, q̇

〉
+
〈
p− Lq̇, dq̇

〉
−
〈
Lq, dq

〉
from which Hamilton’s principle δS = 0 for S =

∫ b
a 〈p, q̇〉 −H(q, p) dt produces Hamilton’s canonical equations

on phase space T ∗M ,

Hp = q̇ and Hq = −Lq = − ṗ .
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• Hamilton’s principle δS = 0 for S =
∫ b
a 〈p, q̇〉 − H(q, p) dt produces Hamilton’s canonical equations on phase

space T ∗M ,

Hp = q̇ and Hq = −Lq = − ṗ .

Exercise. Verify the previous statement. That is, compute the results of the following
Phase-space form of Hamilton’s principle on T ∗M , given by δS = 0

with S =
∫ b
a 〈p, q̇〉 −H(q, p) dt. F

• Answer. One computes

δS = δ

∫ b

a

〈p, q̇〉 −H(q, p) dt =

∫ b

a

δ〈p, q̇〉 − δH(q, p) dt

=

∫ b

a

〈
δp , q̇ −Hp

〉
−
〈
ṗ+Hq, δq

〉
dt+

〈
p, δq

〉∣∣∣b
a︸ ︷︷ ︸

Endpoint term

N

Remark 2. We will return to the endpoint term in formulating Noether’s theorem on phase space, that is, on
T ∗M .
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3.2 Legendre transform in simple mechanical systems – Exercise sheet

• Legendre transform: H(q, p) = 〈p, q̇〉 − L(q, q̇) = T (p) + V (q) = KE + PE.

For example,

1. Planar isotropic oscillator, (x,p) ∈ T ∗R2: H = 1
2m |p|

2 + k
2 |x|

2

2. Planar anisotropic oscillator, (x,p) ∈ T ∗R2: H = 1
2m |p|

2 + k1

2 x
2
1 + k2

2 x
2
2

3. Planar pendulum in polar coordinates, (θ, pθ) ∈ T ∗S1: H = 1
2mR2p

2
θ +mgR(1− cos θ)

4. Planar pendulum, (x,p) ∈ T ∗R2, constrained to S1 = {x ∈ R2 : 1− |x|2 = 0}: H = 1
2m |p|

2 +mg ê2 · x−
µ(1− |x|2)

5. Charged particle in a magnetic field, (x,p) ∈ T ∗R2: H = 1
2m |p−

e
cA(x)|2 p := ∂L/∂q̇ = mẋ+ e

cA(x) ∈
T ∗M

6. Kepler problem, (r, pr, θ, pθ) ∈ T ∗R+ × T ∗S1: H = p2
r

2m +
p2
θ

2mr2 − GMm
r with pθ = r2θ̇ = const

7. Free motion on a sphere, (x,p) ∈ T ∗R3, constrained to S2 = {x ∈ R3 : 1 − |x|2 = 0}: H = 1
2m |p|

2 −
µ(1− |x|2)

8. Spherical pendulum (a), (x,p) ∈ T ∗R3, constrained to S2 = {x ∈ R3 : 1 − |x|2 = 0}: H = 1
2m |p|

2 +
mg ê3 · x− µ(1− |x|2)
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9. Spherical pendulum (b), (O, Ȯ) ∈ TSO(3), ξ̂ = O−1Ȯ ∈ T (SO(3) ' so(3), Π = ∂`/∂Ω ∈ T ∗(SO(3) '
so(3)∗ ' R3 H = 1

2Π · I
−1Π + gΓ · x0 with Π = ∂`

∂Ω = IΩ. Set g = 0 to get freely rotating rigid body
motion.

10. Rotating rigid body, Π ∈ T ∗(SO(3) ' so(3)∗ ' R3 H = 1
2Π · I

−1Π with Π = ∂`
∂Ω = IΩ.

3.3 Canonical Poisson bracket

• The Hamiltonian dynamics of a phase-space function is given by

d

dt
F (q, p) =

∂F

∂q
q̇ +

∂F

∂p
ṗ =

∂F

∂q

∂H

∂p
− ∂F

∂p

∂H

∂q
:= {F, H}

The operation {F, H} is called the canonical Poisson bracket of F with H on the phase space T ∗M .

The canonical Poisson bracket operation {· , ·} is a map among smooth real functions F(T ∗M) : T ∗M → R

{· , ·} : F(T ∗M)×F(T ∗M)→ F(T ∗M) , (4)

so that Hamiltonian dynamics on phase space T ∗M is given by Ḟ = {F , H} for any F ∈ F(T ∗M).

Definition 3 (Poisson bracket). A Poisson bracket operation {· , ·} is defined by its properties listed below:

– It is bilinear.
– It is skew-symmetric, {F , H} = −{H , F}.
– It satisfies the Leibniz rule (product rule),

{FG , H} = {F , H}G+ F{G , H} ,

for the product of any two functions F and G on M .
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– It satisfies the Jacobi identity,

{F , {G , H}}+ {G , {H , F}}+ {H , {F , G}} = 0 , (5)

for any three functions F , G and H on M .

Remark. The Leibniz rule associates Poisson brackets with differential operators on smooth functions F ∈
F(T ∗M).

The differential operator or Hamiltonian vector field generated by the canonical Poisson bracket with F is

XF := { · , F } =
∂F

∂p

∂

∂q
− ∂F

∂q

∂

∂p
.

• Exercise: What is Noether’s theorem for Hamilton’s principle in phase-space, on T ∗M ?

• Answer: For an infinitesimal transformation (δq , δp) that induces δL = δ
(
〈p, q̇〉 −H(q, p)

)
we have

δS = δ

∫ b

a

〈
p, q̇
〉
−H(q, p) dt =

∫ b

a

δ
〈
p, q̇
〉
− δH(q, p) =

∫ b

a

〈
δp , q̇ −Hp

〉
−
〈
ṗ+Hq, δq

〉
dt+

〈
p, δq

〉∣∣∣b
a︸ ︷︷ ︸

Endpoint
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3.4 Cotangent lift and Noether’s theorem on the Hamiltonian side

Suppose the variations due to the infinitesimal transformations on M take the form δq = ξM(q). Then the corre-
sponding Hamiltonian for these infinitesimal transformations is

J ξ :=
〈
p, ξM(q)

〉
so that δq =

∂J ξ

∂p
= ξM(q) and δp = − ∂J

ξ

∂q
= − ξ′M(q)Tp

The last expression is called the cotangent lift to T ∗qM of the infinitesimal transformation q → qε = q + εξM(q) on
M .

The cotangent lift specifies the infinitesimal transformation of p ∈ T ∗qM , given the infinitesimal transformation of
q ∈M .

q → qε = q + εξM(q) on M =⇒ (q, p)→ (qε, pε) = (q + εξM(q), p− εξ′M(q)Tp) on T ∗qM .

The time derivative of J ξ(q, p) is given by

d

dt
J ξ(q, p) =

∂J ξ

∂q

∂H

∂p
− ∂J ξ

∂p

∂H

∂q
= − ∂H

∂p
δp− ∂H

∂q
δq = − δH = {J ξ, H} = −{H, J ξ} =

d

dε

∣∣∣∣
ε=0

H(q, p).

In the last step we defined the infinitesimal transformation of H under canonical transformations generated by J ξ :=
〈p, ξM(q)〉 := 〈p, δq〉, the conserved endpoint term in Noether’s theorem. This calculation proves the following.

Corollary 4. On the Hamiltonian side, Noether’s theorem for conservation of the endpoint term J ξ :=
〈p, ξM(q)〉 := 〈p, δq〉 follows from Lie symmetry of the Hamiltonian function under δH = {H, J ξ} = 0.
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Remark 5. The differential operator or Hamiltonian vector field generated by the canonical Poisson bracket with
J ξ is defined by

d

dε
= XJξ := { · , J ξ } =

∂J ξ

∂p

∂

∂q
− ∂J ξ

∂q

∂

∂p
= ξM(q)

∂

∂q
− ξ ′(q)Tp ∂

∂p
= δq

∂

∂q
+ δp

∂

∂p
.

3.5 Quick review: Angular velocity and angular momentum

Let G×M →M with G = SO(3) and M = R3. That is, SO(3)× R3 → R3.
Let q(ε) = O(ε)q(0) with O ∈ SO(3), so that OTO = Id and q ∈ R3. Then the infinitesimal transformation is1

δq := q′(ε)
∣∣
ε=0

=
[
O′(ε)q(0)

]
ε=0

=
[
O′(ε)O−1(ε)q(ε)

]
ε=0

:= ξ̂q = ξ × q with ξ̂ab = −εabcξc.

Remark 6 (Hat map ). The components of any 3 × 3 skew matrix ξ̂ may be identified with the corresponding
components of a vector ξ ∈ R3, by the linear invertible relation,

ξ̂ =

 0 −ξ3 ξ2

ξ3 0 −ξ1

−ξ2 ξ1 0

 with ξ̂ab = −εabcξc , (6)

for a, b, c = 1, 2, 3. This is an isomorphism (one-to-one invertible map) between 3× 3 skew-symmetric matrices and
vectors in R3.

Remark 7 (Hat map ). The overscript hat (̂ ) applied to a vector identifies that vector in R3 with a 3× 3 skew-
symmetric matrix. For example, the unit vectors in the Cartesian basis set, {e1, e2, e3}, are associated with the basis
elements of so(3), by êa, or in matrix components,

(êa)bc = −δdaεdbc = −εabc = (ea×)bc .

1The matrix ξ̂ = ȮO−1 = ȮOT is skew, since d(OOT )
dt = d(Id)

dt = ȮOT +OȮT = ȮOT + (ȮOT )T = ξ̂ + ξ̂T = 0.
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This equation introduces the convenient notation ê that denotes the basis for the 3× 3 skew-symmetric matrices êa,
with a = 1, 2, 3 as a vector of matrices. One may check the commutator [êa, êb] = εabcêc; so that

[ ξ̂, η̂ ] = ξ × η · ê =: (ξ × η)̂
for ξ̂ = ξaêa and η̂ = ηbêb.

3.5.1 Quick review of the angular momentum map

The Hamiltonian
J ξ(q, p) = q × p · ξ = p · ξM(q) = p · ξ × q

generates infinitesimal SO(3) rotations around the vector ξ ∈ so(3) ' R3, as we compute

δq =
{
q, J ξ(q, p)

}
= ξ × q(t), δp =

{
p, J ξ(q, p)

}
= ξ × p(t),

using the canonical Poisson bracket
{
· , ·

}
. Thus, the cotangent lift of an infinitesimal rotation of q given by

ξM(q) = ξ × q is an infinitesimal rotation of p given by − ξ′M(q)Tp = ξ × p. These equations imply the following
variation for J(q, p) = q × p ∈ so(3)∗ ' R3

δJ = ξ × J(t) for ξ ∈ so(3) ' R3 and J ∈ so(3)∗ ' R3 ,

as obtained by using the product rule for the Poisson bracket and the Jacobi identity for the cross product of vectors
in R3. 2

The quantity J(q, p) = q × p ∈ so(3)∗ ' R3 is called the angular momentum .

The map J(q, p) = q × p : T ∗qM → so(3)∗ ' R3 is the cotangent lift momentum map for the action of the
Lie group of spatial rotations G = SO(3) on the manifold M = R3.

2Thus, δJ = {q × p, Jξ(q, p)} = δ(q × p) = δq × p+ q × δp = (ξ × q)× p+ q × (ξ × p) = p× (q × ξ) + q × (ξ × p) = − ξ × (p× q) = ξ × (q × p).
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3.6 The angular momentum map: Lie-Poisson brackets for SO(3).

Exercise: Show for vectors ξ, η ∈ R3 that for angular momentum J(q, p) = q× p ∈ so(3)∗ ' R3 and J ξ = ξ ·J(q, p)
that {

J ξ, Jη
}

= J ξ×η.

Answer: The proof follows by a direct calculation using Jacobi’s identity for vector cross products:3{
J ξ, Jη

}
=
{
J · ξ, J · η

}
=
{
q × p · ξ, q × p · η

}
can

= (q × p) · (ξ × η) = J · (ξ × η) = J ξ×η.

Hence, for functions F (J(q, p)) = F ◦ J and H(J(q, p)) = H ◦ J of the angular momentum map J we have{
Jk, Jl

}
= εkl

mJm and
{
F (J), H(J)

}
= J · ∂F

∂J
× ∂H

∂J
so that

dJ

dt
=
{
J, H(J)

}
= −J × ∂H

∂J
.

Thus, the angular momentum map J(q, p) : T ∗R3 → R3 is Poisson , which means that

{F ◦ J ,H ◦ J } = {F, H} ◦ J .

3Using the calculation in the previous footnote,
{
q × p · ξ, q × p · η

}
can

= −η · {q × p, Jξ(q, p)}can = −η · ξ × (q × p) = −J · η × ξ = J · ξ × η.
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3.7 An angular momentum map that generalises from SO(3) to other Lie groups.

For any Lie algebra g, the cotangent lift momentum map satisfies (recall the commutator for the hat map!){
J ξ, Jη

}
= ±J [ξ, η],

where [ξ, η] = −[η, ξ] is the Lie bracket between ξ, η ∈ g, which we also denote as [ξ, η] =: adξη. The ± sign
convention is (−) for left-invariant (g−1ġ) and (+) for right-invariant (ġg−1) Lie algebra actions, respectively.

The corresponding Lie–Poisson bracket is{
F (J), H(J)

}
:= ±

〈
J ,

[
∂F

∂J
,
∂H

∂J

]〉
g∗×g

=: ∓
〈
J , ad∂H/∂J

∂F

∂J

〉
g∗×g

=: ∓
〈

ad∗∂H/∂JJ ,
∂F

∂J

〉
g∗×g

.

Consequently, for Lie-Poisson systems, the dynamics of the cotangent lift momentum map is governed by

dJ

dt
=
{
J, H(J)

}
= ∓ ad∗∂H/∂JJ .

This generalises the angular momentum map Exercise for SO(3) to arbitrary Lie groups and their Lie algebras.

The proof follows by a direct calculation using the Lie-Poisson bracket:{
J ξ, Jη

}
=
{〈
J , ξ

〉
,
〈
J , η

〉}
= ±

〈
J , [ξ , η]

〉
= ±J [ξ , η]

where we have used ξ = ξjej, η = ηkek and [ej, ek] = cjk
iei to compute

[ξ, η] = [ξjej, η
kek] = ξj[ej, ek]η

k = ξjηkcjk
iei = [ξ, η]iei .
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Hence, for functions of the momentum map J we now have the result that{
Jk, Jl

}
= ±cklmJm and

{
F (J), H(J)

}
= ∓

〈
J , ad∂H/∂J

∂F

∂J

〉
g∗×g

so
dJ

dt
=
{
J, H(J)

}
= ∓ ad∗∂H/∂J J .

Thus, the momentum map J(q, p) : T ∗M → g∗ is Poisson, which means that {F ◦ J ,H ◦ J } = {F, H} ◦ J .
The Lagrangian counterpart of Lie–Poisson theory is Euler–Poincaré theory, from Poincaré [1901] that we will

study next.
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Lecture 1, Friday 10 Jan 2020: Introduction to the Course and to Smooth Manifolds

4 What is Geometric Mechanics?

GM lifts mechanics on a manifold M to mechanics on a Lie group G which acts (transitively) on M .

This sentence defining GM introduces three main concepts into classical Lagrangian and Hamiltonian mechanics:

• The configuration spaces are Manifolds. A manifold M is a space which admits differentiable transformations
along curves (motions).
In particular, manifolds admit the rules of calculus.

• Lie groups are groups of transformations which depend smoothly on a set of parameters, e.g. rotations or
translations.
In particular, Lie groups are groups which are also manifolds.

• A Group action is a transformation of a Lie group G which takes an initial point q0 ∈ M in a manifold M to
another one along a smooth curve qt ∈M , denoted qt = gtq0, for gt a curve in Lie group G parameterised by t.

This class provides examples of how these concepts are used!
Lie groups describe the symmetries of Hamilton’s principle 0 = δS, with S =

∫ b
a L(q.q̇) dt for a Lagrangian

L : (q, q̇) ∈ TM → R, where TM (tangent bundle of M) is the union of the set of tangent vectors to M at all points
q ∈M .
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4.1 The Geometric Mechanics Framework (GMF) of relationships for understanding dynamics

Classical mechanics may be visualised as the top face of the GMF cube.

L : TM → R H : T ∗M → R

Euler-Lagrange eqns Hamilton’s eqns

Lagrange variational principle

Legendre Transform

Hamilton variational principle

Figure 7: Framework for Classical Mechanics

Geometric mechanics will trace through all of the corners and edges of the GMF cube.

L : TM → R H : T ∗M → R

EL eqns Ham eqns

Noether’s Theorem ` : g→ R h : g∗ → R Noether’s Theorem

Euler-Poincaré eqns Lie-Poisson eqns

Lag vp

Legendre Transform

TM/G Ham vp Reduction via

Momentum Map

J(q,p)∈ g∗' T ∗M/G

EP vp

LT

LP vp

TM/G J(q,p)

Figure 8: Framework for Geometric Mechanics
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1. Space is taken to be a smooth manifold M with points q ∈M (Positions, States, Configurations).

Time is taken to be a manifold T with points t ∈ T . Usually T = R
Let M be a smooth manifold dimM = n. That is, M is a smooth space that is locally Rn.

Operationally, a smooth manifold M is a space on which the rules of calculus apply.

We will consider curves q(t) ∈M .

2. Define the Lagrangian function as a smooth real-valued mapping defined on TM , the tangent space of the
configuration manifold M ; namely,

Lagrangian L(q(t), v(t)) : TM → R

Action integral S :=

∫ b

a

L(q, v) +

〈
p,
dq

dt
− v
〉
dt .

3. Embed the curve q(t) ∈M in a family of curves given by the one-parameter smooth map

q(t)→ q(t, ε) ∈M with q(t, 0) = q(t),

so that ε = 0 is the identity map.

Define the variation operation δq := dq/dε|ε=0 and invoke Hamilton’s Principle:

0 = δS =

∫ b

a

〈
δp,

dq

dt
− v
〉

+

〈
∂L

∂v
− p , δv

〉
+

〈
∂L

∂q
− dp

dt
, δq

〉
dt+ 〈p, δq〉

∣∣∣b
a
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Remark 8. The variations define the pairing 〈 · , · 〉 : TM × T ∗M → R, where (q, v) ∈ TM (tangent space)
and (q, p) ∈ T ∗M (cotangent space); and p := ∂L/∂v is the fiber derivative of the Lagrangian L(q, v).

Consequently, for variations that vanish at the endpoints in time, so that δq(a) = 0 = δq(b), and are otherwise
arbitrary, we have the stationarity conditions

δp :
dq

dt
− v = 0 , δv :

∂L

∂v
− p = 0 , δq :

dp

dt
− ∂L

∂q
= 0

Remark 9. The variable p is a Lagrange multiplier. Its variation enforces the constraint v = dq
dt known as

the tangent lift of the curve q(t).

4. The three stationarity conditions obtained from Hamilton’s Principle imply the Euler-Lagrange equation.

d

dt

∂L

∂(dq/dt)
− ∂L

∂q
= 0 .

5. Define the Hamiltonian H(p, q) : T ∗M → R via the Legendre transformation LT : TM → T ∗M ,

H(q, p) = 〈p, v〉 − L(q, v) ,

with differential

dH(q, p) =

〈
∂H

∂p
, dp

〉
+

〈
∂H

∂q
, dq

〉
= 〈v, dp〉 −

〈
∂L

∂q
, dq

〉
+

〈
p− ∂L

∂v
, dv

〉
.
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6. Introduce Hamilton’s principle on Phase Space (p, q) ∈ T ∗M

Hamiltonian H(p, q) : T ∗M → R

Phase Space Action S :=

∫ b

a

〈
p,
dq

dt

〉
−H(q, p)dt

Hamilton’s Principle: 0 = δS =

∫ b

a

〈
δp,

dq

dt
− ∂H

∂p

〉
−
〈
∂H

∂q
+
dp

dt
, δq

〉
dt+ 〈p, δq〉

∣∣∣b
a

Hamilton’s Canonical Equations: δp :
dq

dt
− ∂H

∂p
= 0 , δq :

dp

dt
+
∂H

∂q
= 0

7. Prove Noether’s theorem on both the Lagrangian and Hamiltonian sides.

Theorem 10 (Noether’s theorem). If the action integral S is invariant under a smooth infinitesimal transfor-
mation δq = Φξ(q), then the quantity

Jξ(q, p) := 〈p,Φξ(q)〉
is a constant of the motion. That is, Jξ(q, p) is conserved when the equations of motion hold.

Proof. On the Lagrangian side, suppose that L(q, dqdt ) is invariant under q → q + εΦξ(q). Then, if the Euler-

Lagrange equation holds, we have 〈p,Φξ(q)〉
∣∣∣b
a

= 0, which means that Jξ(q, p) must be constant.

Likewise, the same conclusion 〈p,Φξ(q)〉
∣∣∣b
a

= 0 follows on the Hamiltonian side, when Hamilton’s canonical
equations hold, and the phase space action is invariant.

8.
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Definition 11 (Canonical Poisson bracket). By direct computation, one finds

d

dt
Jξ(q, p) =

∂Jξ
∂q

dq

dt
+
∂Jξ
∂p

dp

dt
=
∂Jξ
∂q

∂H

∂p
− ∂H

∂q

∂Jξ
∂p

=:
{
Jξ , H

}
Consequently, Hamilton’s Canonical equations may be rewritten as

dq

dt
=
{
q , H

}
and

dp

dt
=
{
p , H

}
Exercise. Show that the canonical Poisson brackets defined by {F,H} := FqHp − HqFp have the
following properties

(a) Binary map on smooth phase space functions { · , · } : C∞(T ∗M,R)×C∞(T ∗M,R)→ C∞(T ∗M,R)

(b) Skew symmetric: {F,H} = −{H,F}, for F,H ∈ C∞(T ∗M,R)

(c) Bilinear: {F, aH + bJ} = a{F,H}+ b{F, J}, for a, b ∈ R
(d) Leibnitz: {F,HJ} = {F,H}J +H{F, J}
(e) Jacobi: {F, {H, J}}+ {H, {J, F}}+ {J, {F,H}} = 0

The Jacobi identity may be verified formally by writing {G, H} = G(H) − H(G) symbolically.
Then write

{F , {G , H} } = F (G(H))− F (H(G))−G(H(F )) +H(G(F )) .

Summation over cyclic permutations then yields the result.
F
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Lie groups. Consider a group of transformations which depend smoothly on a set of parameters, labelled ε,

q(t)→ q(t, ε) ∈M with q(t, 0) = q(t),

so that ε = 0 is the identity map. Such a group is called a Lie group.
The infinitesimal transformation of q under this group is given by the tangent at the identity, denoted as

δq := dq/dε|ε=0 .

Cotangent lift. Suppose the infinitesimal transformation of q is given by δq = Φξ(q).
This δq = Φξ(q) lifts to the infinitesimal transformation of p by analogy with Hamilton’s equations, as

δq :=
dq

dε

∣∣∣
ε=0

=
{
q , Jξ

}
= Φξ(q) and δp :=

dp

dε

∣∣∣
ε=0

=
{
p , Jξ

}
= −p∂Φξ(q)

∂q

Consequently, (Conservation of Jξ) implies (Invariance of H) under the infinitesimal transformations associated
with Jξ, and vice versa since

δH =
dH

dε

∣∣∣
ε=0

=
{
H , Jξ

}
= −

{
Jξ , H

}
= − d

dt
Jξ(q, p) = 0

On the other hand, if the Hamiltonian H depends on the variables Jξ(q, p), but H(J) is not invariant under the
transformations generated by { · , Jξ} then we may still write

d

dt
Jξ =

{
Jξ , H

}
=
{
Jξ , Jη

}∂H
∂Jη

which yields the transformation law for Poisson brackets,

d

dt
F (J) =

{
F , H

}
(J(q, p)) =

∂F

∂Jξ

{
Jξ , Jη

}∂H
∂Jη
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Closure. If the Poisson brackets of the components of J close among themselves, so that
{
Jξ , Jη

}
= JγC

γ
ξη

where Cγ
ξη comprise a set of constants, then the dynamics on the J space reduces to

d

dt
Jξ = JγC

γ
ξη

∂H

∂Jη
and

d

dt
F (J) = JγC

γ
ξη

∂F

∂Jξ

∂H

∂Jη
=:
{
F , H

}
LP

(J) ,

in which { · , · }LP preserves the properties of the canonical Poisson bracket provided the constants Cγ
ξη for

ξ, η, γ = 1, 2, . . . , r are structure constants for a Lie algebra, where [eξ, eη] = eγC
γ
ξη for a Lie algebra whose

structure constants are Cγ
ξη in the basis eξ with ξ = 1, 2, . . . , r.
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5 Quick definitions of what we need here about Lie groups and Lie algebras

Definition 12 (Group). A group G is a set of elements that possesses a binary product (multiplication), G×G→
G, such that the following properties hold:

• The product gh of g and h is associative, that is, (gh)k = g(hk).

• An identity element exists, e : eg = g and ge = g, for all g ∈ G.

• The inverse operation exists, G→ G, so that gg−1 = g−1g = e.

Definition 13 (Lie group). A Lie group is a group that depends smoothly on a set of parameters. That is,
a Lie group is both a group and a smooth manifold, for which the group operation is by composition of smooth
invertible functions.

e
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Definition 14. A Lie algebra is a vector space g together with a bilinear operation

[ · , · ] : g× g→ g ,

called the Lie bracket for g, that satisfies the defining properties:

• bilinearity, e.g.,
[au + bv , w] = a[u , w] + b[v , w] ,

for constants (a, b) ∈ R and any vectors (u,v,w) ∈ g;

• skew-symmetry,
[u , w] = −[w , u] ;

• Jacobi identity,
[u , [v , w] ] + [v , [w , u] ] + [w , [u , v] ] = 0 ,

for all u,v,w in g.

5.1 Structure constants

Suppose g is any finite-dimensional Lie algebra. The Lie bracket for any choice of basis vectors {e1, . . . , er} of g
must again lie in g. Thus, constants ckij exist, where i, j, k = 1, 2, . . . , r, called the structure constants of the
Lie algebra g, such that

[ ei , ej ] = ckijek . (7)

Since {e1, . . . , er} form a vector basis, the structure constants in (7) determine the Lie algebra g from the
bilinearity of the Lie bracket. The conditions of skew-symmetry and the Jacobi identity place further constraints
on the structure constants. These constraints are
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• skew-symmetry
ckji = − ckij , (8)

• Jacobi identity
ckijc

m
lk + cklic

m
jk + ckjlc

m
ik = 0 . (9)

Conversely, any set of constants ckij that satisfy relations (8) and (9) defines a Lie algebra g.

Exercise. Prove that the Jacobi identity requires the relation (9). F

Answer. The Jacobi identity involves summing three terms of the form

[ el , [ ei , ej ] ] = ckij[ el , ek] = ckijc
m
lkem .

Summing over the three cyclic permutations of (l, i, j) of this expression yields the required relation (9) among
the structure constants for the Jacobi identity to hold. N
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5.2 Lie group symmetries and Noether’s theorem

Introduction of Lie group symmetries:

• A group is a set of elements with an associative binary product that has a unique inverse and identity
element.

• A Lie group G is a group whose transformations depends smoothly on a set of parameters in Rdim(G).
(A Lie group is also a smooth manifold, so it is an ideal arena for geometric mechanics, e.g., rigid body
motion on SO(3).)

Noether’s theorem: Suppose q(t, ε) = qε(t) = φε ◦ q(t) represents a Lie group, i.e., group of transformations
of q(t) that depends smoothly on a set of parameters ε. Its linearisation is computed from a Taylor series as

q(t)→ qε(t) = q(t) + ε
dq(t, ε)

dε

∣∣∣∣
ε=0

+O(ε2) = q(t) + εδq(t) +O(ε2),

where the linear term is a vector field on Q

δq(t) :=
dq(t, ε)

dε

∣∣∣∣
ε=0

=
d

dε

∣∣∣∣
ε=0

(φε ◦ q0) =: Φ(q) , called the infinitesimal transformation

That is, Φ(q) is the linearisation of the flow map φε at the point q ∈ Q.

Suppose also that the Lagrangian L(q, q̇) in Hamilton’s principle δS = 0 with S =
∫ b
a L(q, q̇)dt is invariant

under these infinitesimal transformations, so that δS = 0 as a consequence of this invariance. Then the endpoint
term above 〈∂L∂q̇ , δq〉 = 〈p, δq〉 is a constant of the motion. That is, the quantity 〈∂L∂q̇ , δq〉 = 〈p, δq〉 is a constant,
whenever q(t) is a solution of the EL equations for this invariant Lagrangian. This argument proves the following.
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Theorem 15 (Noether, 1918).
To each Lie symmetry of the Lagrangian, ( ddε

∣∣
ε=0
L(q, q̇)) = 0, there corresponds a conservation law,

〈∂L∂q̇ ,Φ(q)〉 = 〈p,Φ(q)〉.

Example: Ignorable coordinates : For L(q, q̇, θ̇) invariant under θ → θ + ε, δθ = ε, we have d
dt

〈
∂L
∂θ̇
, ε
〉

=〈
∂L
∂θ , ε

〉
= 0.
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5.3 Infinitesimal vs Finite Transformation of a Lie Group

The infinitesimal transformation of a Lie group G acting on a manifold Q as G×Q→ Q is given by the linear
term in the Taylor series of the finite transformation

qε = φε(q0) = q0 + ε

[
d

dε
φε(q0)

]
ε=0

+O(ε2)

= q0 + εΦ(q0) +O(ε2)

and denoted as
δq =

dqε
dε

∣∣∣
ε=0

= Φ(q)

In more generality, for smooth functions f ∈ C∞(Q) we have the pull-back relation

d

dε
(φε
∗f) = φε

∗LvΦ
f

where the vector field vΦ generates the smooth flow φε.

Then, evaluating at ε = 0 gives
d

dε
(φε
∗f)
∣∣∣
ε=0

= LvΦ
f

This is the dynamical definition of the Lie derivative of the function f by the vector field

vΦ := Φ(q) · ∇q = Φj(q)
∂

∂qj
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This definition identifies infinitesimal transformations of Lie groups with vector fields, as

d

dε
= Φj(qε)

∂

∂qεj

Consequently, the finite transformation of the Lie group can be determined from the characteristic equations of
the vector field vΦ as

dvε =
dq1

Φ1(q)
= · · · = dqj

Φj(q)
= · · · = dqn

Φn(q)
with n = dimQ
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5.4 Class Review: Geometric Mechanics deals with group invariant variational principles (Noether)

d
dt
∂L
∂q̇ −

∂L
∂q = 0,〈

∂L
∂q̇ , δq

〉
TM

∣∣t=b
t=a

= 0

}
L(q, v) : TM → R H(q, p) : T ∗M → R


∂H
∂p = q̇, ∂H

∂q = −ṗ,(
XH (dq ∧ dp) = dH

)

d
dt

∂l
∂ξα = ∂l

∂ξγ c
γ
αβξ

β(
d
dt
∂l
∂ξ = ad∗ξ

∂l
∂ξ

) l(ξ) : g→ R h(J) : g∗ → R
dJα
dt = {Jα, Jβ} ∂h∂Jβ = Jγc

γ
αβ

∂h
∂Jβ(

dJ
dt = ad∗∂h/∂JJ

)
Reduction by Lie symmetry

LTδS=0

〈p, δq〉TM=〈J(q,p), ξ〉g (momentum map)

δS=0

δSred=0 δSred=0Reduced LT

Hamilton’s principle (HP): δS = 0 with S =
∫ b
a L(q, v) + 〈p, q̇ − v〉TM dt and S =

∫ b
a 〈p, q̇〉TM −H(q, p)dt

Reduction by Lie symmetry TM : qt = gtq0, q̇t = ġtq0, and L(g, v) = L(kg, kv), k ∈ G, set L(e, g−1v) =: l(ξ)
Noether’s theorem: Lie symmetry of HP implies conservation of 〈∂L∂q̇ , δq〉TM = 〈p , δq〉TM = 〈J(q, p), ξ〉g
Legendre transformation (LT ): p := ∂L

∂q̇ , H(q, p) := 〈p, v〉TM − L(q, v), and J := ∂l
∂ξ , h(J) := 〈J, ξ〉g − l(ξ)

Reduced Hamilton’s principle: Sred =
∫ b
a l(ξ) + 〈J, g−1ġ − ξ〉g dt and Sred =

∫ b
a 〈J, g

−1ġ〉g − h(J)dt
Adjoint and co-adjoint actions: Ad : G× g→ g, ad : g× g→ g, Ad∗ : G× g∗ → g∗, ad∗ : g× g∗ → g∗
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5.5 Worked example for angular momentum

Exercise. (a) What are the conditions on δqi = Ai
ξ(q) so that

{
Jξ , Jη

}
= JγC

γ
ξη for a set of constants

Cγ
ξη?

(b) What are the conditions in Part (a) in the case that Ai
ξ(q) = ξ̂ ijq

j with i, j = 1, 2, 3, when ξ̂ ij is a
constant matrix?
(c) Show that infinitesimal rotations of R3 are involved when ξ̂ ij is a constant 3 × 3 skew-symmetric
matrix.
(d) Compute the cotangent lift formulas in the ladder of commuting diagrams above for reduction in the
case that q ∈ R3 and δq = ξ × q; that is, δqi = ξ̂ ijq

j for i, j = 1, 2, 3. F

Answer. (a) Upon defining Jξ := piA
i
ξ(q), one finds

{
Jξ , Jη

}
= J[ξ,η] := pi

[
Aξ , Aη

]i
:= pi

[
Aj
ξ(q)

∂

∂qj
Ai
η(q)− Aj

η(q)
∂

∂qj
Ai
ξ(q)

]
=: pi

[
Cξη

γ(q)Ai
γ(q)

]
=: JγCξη

γ

For Cξηγ to be a set of constants we must have linearity Ai
ξ(q) = (Aξ)

i
jq
j, so that Jξ := pi(Aξ)

i
jq
j. In that

case, we have a matrix Lie algebra, with elements (Aξ)
i
j, whose structure constants are determined from matrix

commutators, {
Jξ , Jη

}
= J[ξ,η] := pi

[
Aξ , Aη

]i
k
qk := pi

[
(Aξ)

i
j(Aη)

j
k − (Aη)

i
j(Aξ)

j
k

]
qk

:= piCξη
γ(Aγ)

i
kq
k := JγCξη

γ
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(b) In the case that Ai
ξ(q) = ξ̂ ijq

j with i, j = 1, 2, 3, when ξ̂ ij is a constant matrix, we have the bilinear form,

piδq
i = piA

i
ξ(q) = pi(ε

i
jkξ

j)qk = piξ̂
i
kq
k .

(c) In the case that ξ̂ is a 3×3 skew-symmetric matrix, we discover the hat map isomorphism̂ : so(3) ' R3, by
which the Lie algebra so(3) of infinitesimal rotations in R3 may be represented by 3×3 skew-symmetric matrices,

ξ̂ ik = − εikjξj = − ξ̂ ki , or

 0 −ξ3 ξ2

ξ3 0 −ξ1

−ξ2 ξ1 0

 .

Remark 16 (Properties of the hat map for so(3)). The hat map arises in the infinitesimal rotations

ξ̂ ik = (O−1dO/ds) ik
∣∣
s=0

= εikjξ
j ,

for O ∈ SO(3) with detO = 1 and OOT = Id.

The matrix ξ̂ = O−1Ȯ = OT Ȯ is skew, since d(OTO)
dt = d(Id)

dt = ȮTO +OT Ȯ = (O−1Ȯ)T +O−1Ȯ = ξ̂T + ξ̂ = 0.

The hat map is an isomorphism:

(R3,×) 7→ (so(3), [ · , · ] ) .

That is, the hat map identifies the composition of two vectors in R3 using the cross product with the commutator
of two skew-symmetric 3× 3 matrices. Specifically, we write for any two vectors q, ξ ∈ R3,

(ξ × q)k = εkjmξ
jqm = ξ̂km q

m .

In matrix form, we may write
ξ × q = ξ̂ q for all ξ, q ∈ R3 .
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Exercise. Verify the following formulas for p,q, ξ ∈ R3:

(p× q)̂ =
[
p̂, q̂
]
,[

p̂, q̂
]
ξ = (p× q)× ξ ,

p · q =
1

2
trace

(
p̂T q̂

)
= − 1

2
trace

(
p̂ q̂
)
.

F

(d) In the case that q ∈ R3 and δq = ξ×q = {q, Jξ}, the canonical Poisson bracket generates the cotangent lift
infinitesimal transformation of the canonical momentum, δp = ξ × p = {p, Jξ}, and the momentum map turns
out to be the familiar expression for the angular momentum of a particle in phase space T ∗R3,

Jξ = J · ξ = p · ξ × q = q× p · ξ ⇐⇒ J = q× p

When we take ξ = ei, with i = 1, 2, 3, as the basis of orthonormal unit vectors in R3, we find the Poisson bracket
relations for the components with Ji = J · ei to be{

Jj , Jk
}

=
{
J · ej , J · ek

}
= J · ej × ek = J · εijkei = Jiε

i
jk with i, j, k = 1, 2, 3 .

Consequently, we may verify our previous calculation for arbitrary linear transformations in this case simply in
terms of vector multiplication in R3, as{

Jξ, Jη

}
=
{
J · ξ, J · η

}
=
{
q × p · ξ, q × p · η

}
can

= (q × p) · (ξ × η) = J · (ξ × η) = Jξ×η = J[ξ̂,η̂],

where the middle part of the calculation follows by expanding as{
q × p · ξ, q × p · η

}
can

= −η · {q × p, Jξ(q, p)}can = −η · ξ × (q × p) = −J · η × ξ = J · ξ × η .
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N
The corresponding Poisson bracket is given by

{F,H}(J) =
∂F

∂Jα
{Jα, Jβ}

∂H

∂Jβ
= Jγε

γ
αβ

∂F

∂Jα

∂H

∂Jβ
= J · ∂F

∂J
× ∂H

∂J
with α, β, γ = 1, 2, 3.

In particular, as one might have expected, since J ∈ R3, the infinitesimal rotation of J generated by the Poisson
bracket with Jξ = J · ξ is given by

δJ = {J , Jξ} = ξ × J

Upon denoting J = x ∈ R3 this Poisson bracket becomes

{F, H} = ∇C · ∇F ×∇H

with motion equation

ẋ = −∇C ×∇H where C(x) =
1

2
|x|2 .

This means the motion takes place on spheres along intersections of level sets of C and H.

-z = (q, p) ∈ T ∗R3 T ∗R3

dz
dt = {z, H(z)}can dimT ∗R3 = 6

?

Equivariance J(t) = q(t)× p(t) (momap)

-

dJ
dt = {J, H(J)}LP = − J × ∂H

∂J dim(S2) = 2

?

J ∈ R3 ' so(3)∗ R3 ' so(3)∗

J(0) = q(0)× p(0)

This is reduction by symmetry using the cotangent lift momentum map on the Hamiltonian side.
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5.6 Reduction by symmetry on the Lagrangian side

1. We may lift the dynamics for the curve q(t) ∈ M on a manifold M to a curve on a Lie group G by setting
q(t) = g(t)q(0) ∈ M for a curve g(t) ∈ G. For geometric mechanics on a Lie group G, reduce L : TG → R
and H : T ∗G→ R by the action of the Lie group G on its tangent space TG and its cotangent space, T ∗G, via
pullbacks TG→ TeG ' g and T ∗G→ T ∗eG ' g∗.

2. Apply Hamilton’s principle on the Lagrangian side after setting q(t) = g(t)q(0) ∈ M for a curve g(t) ∈ G with
tangent ġ(t) = vg ∈ TgG. Obtain
(i) the EL equation from the Lagrangian L(g, v) : TG→ R in the constrained Hamilton’s principle

0 = δS(g, v) =

∫ b

a

L(g, vg) + 〈p , ġ − vg〉 dt

which implies as before, but now with q(t) = g(t)q(0) ∈M

δp :
dg

dt
− vg = 0 , δvg :

∂L

∂vg
− p = 0 , δg :

dp

dt
− ∂L

∂g
= 0

and
(ii) the reduced Euler–Poincaré (EP) dynamics on g∗, the dual of the Lie algebra, obtained when the Lagrangian
is invariant under the action of any k ∈ G so that

L(g, vg) = L(kg, kvg)

In this case, we choose L(e, g−1vg) = `(ξ), where ξ := g−1vg ∈ TeG ' g. Then we rewrite the previous
constrained Hamilton’s principle as the Hamilton–Pontryagin principle, given by

0 = δS(ξ, µ, g) =

∫ b

a

`(ξ) + 〈µ , g−1ġ − ξ〉 dt
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The stationarity conditions now are obtained from a side calculation which yields, with η := g−1δg,

δ(g−1ġ) =
dη

dt
+ (ξη − ηξ) :=

dη

dt
+ [ξ, η] =:

dη

dt
+ adξ η

in which we use δ(g−1) = − g−1(δg)g−1 and δ(ġ) = (δg) .̇

By defining the variation operation δq := dq/dε|ε=0 and invoking the Hamilton–Pontryagin principle one finds:

0 = δS =

∫ b

a

〈
δµ, g−1ġ − ξ

〉
+

〈
∂`

∂ξ
− µ , δξ

〉
+

〈
µ ,

dη

dt
+ adξ η

〉
dt+ 〈µ, η〉

∣∣∣b
a

δµ : g−1ġ − ξ = 0 , δξ :
∂`

∂ξ
− µ = 0 , δg :

dµ

dt
− ad∗ξ µ = 0

where the operation ad∗ : g × g∗ → g∗ is the dual of the operation ad : g × g → g with respect to the pairing
〈 · , · 〉 : g∗ × g→ R, according to

〈ad∗ξ µ , η〉 = 〈µ , adξ η〉 .

3. The three stationarity conditions obtained from the Hamilton–Pontryagin principle imply the Euler–Poincaré
equation.

d

dt

∂`

∂ξ
− ad∗ξ

∂`

∂ξ
= 0

4. Define the Hamiltonian h(µ) : g∗ → R via the reduced Legendre transformation LT : g→ g∗.

h(µ) = 〈µ, ξ〉 − `(ξ)
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with differential

dh(µ) =

〈
∂h

∂µ
, dµ

〉
= 〈ξ, dµ〉+

〈
µ− ∂`

∂ξ
, dξ

〉
Thus, we find

∂h

∂µ
= ξ and

∂`

∂ξ
= µ .

5. Introduce Hamilton’s principle on g∗ (µ ∈ g∗)

Hamiltonian h(µ) : g∗ → R

Phase Space Action S :=

∫ b

a

〈µ, g−1ġ〉 − h(µ) dt

Hamilton’s Principle: 0 = δS =

∫ b

a

〈
δµ, g−1ġ − ∂h

∂µ

〉
−
〈
dµ

dt
− ad∗g−1ġ µ , g

−1δg

〉
dt+ 〈µ, g−1δg〉

∣∣∣b
a

Lie–Poisson Equations: δµ : g−1ġ − ∂h

∂µ
= 0 , g−1δg :

dµ

dt
− ad∗g−1ġ µ = 0
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5.7 Rigid body – Clebsch Hamilton’s principle

Review of the Clebsch Hamilton’s principle for the Euler-Lagrange equations
First, before deriving the Lagrangian and Hamiltonian formulations of rigid body dynamics, let’s recall our earlier

derivation of the Euler-Lagrange equations from the constrained Hamilton’s principle, in which we varied coordinates
(q, v) ∈ TQ, subject to the constraint v = dq

dt (tangent lift). In this case, the constrained action integral was varied
according to

δS = δ

∫ b

a

L(q, v) +

〈
p,
dq

dt
− v
〉
dt =

∫ b

a

〈
∂L

∂v
− p, δv

〉
+

〈
∂L

∂q
− dp

dt
, δq

〉
+
〈
δp, q̇ − v

〉
dt+

〈
p, δq

〉∣∣∣∣b
a

.

Then we assembled the EL equation
d

dt

∂L(q, q̇)

∂q̇
=
∂L(q, q̇)

∂q

from the various stationary conditions, and evaluated ∂L
∂v

∣∣
v=q̇

= ∂L(q,q̇)
∂q̇ .

In our next paragraph, we are going to do the same sort of variational calculation when Q ∈ SO(3) and derive the
equations for a rigidly rotating body described by a curve in SO(3), for the case G×M →M when both G = SO(3)
and M = SO(3). That is, SO(3) × SO(3) → SO(3), with flow Q(t + s) = Q(t)Q(s) and Q(t − t) = Q(0) = Id,
obtained from the rotation group SO(3) acting on itself.

A sketch of the computation using the hat map isomorphism ξ̂ ∈ so(3) → ξ ∈ R3 follows, as preparation for the
Lie algebra operations in our next paragraph. Here, the constrained action integral is varied according to

0 = δS = δ

∫ b

a

`(Ω) +

〈
p,
dq

dt
− Ω× q

〉
dt =⇒ ∂`

∂Ω
= q × p , dq

dt
= Ω× q , dp

dt
= Ω× p ,

〈
p, δq

〉∣∣∣∣b
a

= 0.

d

dt

∂`

∂Ω
= −Ω× (q × p) = −Ω× ∂`(Ω)

∂Ω
=⇒ dΠ

dt
= −Ω× Π for Π =

∂`

∂Ω
=⇒ d|Π|2

dt
= 0 .
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Theorem 17 (Clebsch form of Hamilton’s principle for the rigid body).
For Q ∈ SO(3), the Euler-Lagrange equations become Euler-Poincaré rigid-body equations in matrix commutator
form,

d

dt

∂l

∂Ω̂
= −

[
Ω̂,

∂l

∂Ω̂

]
or, for Π̂ :=

∂l

∂Ω̂
, equivalently

dΠ̂

dt
= −Ω̂Π̂ + Π̂Ω̂ = −

[
Ω̂, Π̂

]
, (10)

with (body, left-invariant) angular velocity Ω̂ = Q−1Q̇ = −Ω̂T ∈ so(3) = TeSO(3) and body angular momentum
Π̂ := ∂l/∂Ω̂. The commutator equation (10) emerges from the constrained Hamilton’s principle, δS = 0 with
constrained action integral

S(Ω̂, Q, P ) =

∫ b

a

l(Ω̂)+
〈
P , Q̇−QΩ̂

〉
dt =

∫ b

a

l(Ω̂)+tr
(
P T
(
Q̇−QΩ̂

))
dt =

∫ b

a

l(Ω̂)+tr
(

(QTP )T
(
Q−1Q̇−Ω̂

))
dt ,

(11)
for (Q,P ) ∈ T ∗SO(3). Stationarity (δS = 0) leads to the following variational conditions

Π̂ =
δl

δΩ̂
=

1

2
(P TQ−QTP ) ∈ so(3)∗ ,

〈
P , Q̇−QΩ̂

〉
:= tr

(
P T
(
Q̇−QΩ̂

))
= tr

(
(QTP )T

(
Q−1Q̇− Ω̂

))
,

and the quantities (Q,P ) ∈ T ∗SO(3) satisfy the following symmetric equations,

Q̇ = QΩ̂ and Ṗ = P Ω̂ , (12)

as a result of the constraints. These equations have Lie-Poisson Hamiltonian form,

dF

dt
=
{
F , H

}
= −

〈
Π ,

[
∂F

∂Π
,
∂H

∂Π

]〉
. (13)
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Proof. The variations of the constrained action S in (11) are given by

δS =

∫ b

a

〈 δl

δΩ̂
, δΩ̂

〉
−
〈
P , Q δΩ̂

〉
+
〈
δP , Q̇−QΩ̂

〉
+
〈
P , δQ̇− (δQ) Ω̂

〉
dt

=

∫ b

a

{
tr
[(

Π̂T − 1

2
(P TQ−QTP )

)
δΩ̂
]

+ tr
[
δP T

(
Q̇−QΩ̂

)]
− tr

[(
Ṗ T + Ω̂P T

)
δQ
]}
dt+

〈
P , δQ

〉∣∣∣b
a
.

Thus, stationarity of this implicit variational principle implies the following set of equations

Π̂ =
δl

δΩ̂
=

1

2
(P TQ−QTP ) , Q̇ = QΩ̂ and Ṗ = P Ω̂ . (14)

The commutator form of the rigid-body equations in (10) emerges from these, upon elimination of Q and P , as

dΠ̂

dt
=

1

2
(Ṗ TQ+ P T Q̇− Q̇TP −QT Ṗ )

=
1

2
Ω̂(QTP − P TQ)− 1

2
(P TQ−QTP )Ω̂

= − Ω̂ Π̂ + Π̂ Ω̂ = −
[
Ω̂, Π̂

]
.

These are Euler’s equations for the rigid body on T ∗SO(3) ' so(3)∗.
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We Legendre transform the Lagrangian l(Ω̂) to the Hamiltonian H(Π̂), as

H(Π̂) =
〈

Π̂ , Ω̂
〉
− l(Ω̂) with dH =

〈
dΠ̂ , Ω̂

〉
+

〈
Π̂− ∂l

∂Ω̂
, dΩ̂

〉
.

Then, by using Ω̂ = ∂H/∂Π̂ and Ω̂T = −Ω̂ we find the following Lie-Poisson bracket for the Hamiltonian formulation
of the rigid body dynamics,

dF

dt
=

〈
∂F

∂Π̂
,
dΠ̂

dt

〉
=

〈
∂F

∂Π̂
,

[
Π̂ ,

∂H

∂Π̂

]〉

= tr

(
∂F

∂Π̂

[
Π̂ ,

∂H

∂Π̂

]T)
= − tr

(
Π̂T

[
∂F

∂Π̂
,
∂H

∂Π̂

])
= −

〈
Π̂ ,

[
∂F

∂Π̂
,
∂H

∂Π̂

]〉
=:
{
F , H

}
.

In the ad-ad∗ notation, with [ξ, η] =: adξη for ξ, η ∈ g, where in this case g = so(3), the Lie-Poisson bracket is written
as

dF

dt
= −

〈
Π̂ ,

[
∂F

∂Π̂
,
∂H

∂Π̂

]〉
=:

〈
Π̂ , ad∂H

∂Π̂

∂F

∂Π̂

〉
=:

〈
ad∗∂H

∂Π̂

Π̂ ,
∂F

∂Π̂

〉
.

From this Lie Poisson equation, one verifies that

dΠ̂

dt
= ad∗∂H

∂Π̂

Π̂ = −
[
∂H

∂Π̂
, Π̂

]
.
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5.8 Hamilton-Pontryagin principle for the Rigid Body equations

The Hamilton-Pontryagin constrained variation principle is more direct than the Clebsch variational principle, although
it does not reveal the momentum map associated with the reduction by symmetry of the Lagrangian.

Consider the following constrained left-invariant action integral,

0 = δS(Ω̂, O, Ȯ) = δ

∫ b

a

l(Ω̂) + 〈 Π̂ , O−1Ȯ − Ω̂ 〉 dt

=

∫ b

a

〈 δl

δΩ̂
− Π̂ , δΩ̂

〉
+ 〈 δΠ̂ , O−1Ȯ − Ω̂ 〉+ 〈 Π̂ , δ(O−1Ȯ) 〉 dt ,

with Frobenius pairing of skew symmetric matrices 〈 Π̂ , Ω̂〉 = tr(Π̂T Ω̂).
Denote δ( · ) = ∂

∂ε|ε=0( · ) = ( · )′ as well as Ω̂ = O−1Ȯ and Ξ̂ = O−1O′, then compute that

(O−1Ȯ)′ = Ω̂′ = −(O−1O′)(O−1Ȯ) + Ȯ′ = −Ξ̂Ω̂ + Ȯ′

(O−1O′)˙ = Ξ̂ ˙ = −(O−1Ȯ)(O−1O′) +O′˙ = −Ω̂Ξ̂ + Ȯ′ .

Subtracting these two equations yields

Ω̂′ = δΩ̂ = Ξ̂ ˙ + Ω̂Ξ̂− Ξ̂Ω̂ =: Ξ̂ ˙ +
[
Ω̂ , Ξ̂

]
=: Ξ̂ ˙ + adΩ̂ Ξ̂ .

Substitution then yields∫ b

a

〈 Π̂ , δ(O−1Ȯ) 〉 dt =

∫ b

a

〈 Π̂ ,
dΞ̂

dt
+ adΩ̂ Ξ̂ 〉 dt+ 〈 Π̂ , Ξ̂ 〉

∣∣b
a

=

∫ b

a

〈
− dΠ̂

dt
+ ad∗

Ω̂
Π̂ , Ξ̂

〉
dt+ 〈 Π̂ , Ξ̂ 〉

∣∣b
a
,

where adΩ̂Ξ̂ = [Ω̂ , Ξ̂] and ad∗
Ω̂
Π̂ = −[Ω̂ , Π̂] via the Frobenius pairing 〈 Π̂, adΩ̂ Ξ̂〉 = 〈 ad∗

Ω̂
Π̂, Ξ̂ 〉.

Consequently, we recover Euler’s rigid body equation, dΠ̂
dt = −[Ω̂ , Π̂].
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5.9 Hamilton-Pontryagin principle for the Euler–Poincaré equations

Theorem 18 (Hamilton–Pontryagin principle for the Euler–Poincaré equations).
The Euler–Poincaré equation

d

dt

δl

δξ
= ad∗ξ

δl

δξ
(15)

on the dual Lie algebra g∗ is equivalent to the following variational principle,

δS(ξ, g, ġ) = δ

∫ b

a

l(ξ, g, ġ) dt = 0, (16)

for a constrained left-invariant action integral

S(ξ, g, ġ) =

∫ b

a

l(ξ, g, ġ) dt =

∫ b

a

[
l(ξ) + 〈µ , (g−1ġ − ξ) 〉

]
dt .

Proof. The variations of S in formula (16) are given by

δS =

∫ b

a

〈 δl
δξ
− µ , δξ

〉
+
〈
δµ , (g−1ġ − ξ)

〉
+
〈
µ , δ(g−1ġ)

〉
dt .

Substituting δ(g−1ġ) = η̇ + adξ η obtained from δ(ġ) = (δg)˙ with η := g−1δg into the last term produces∫ b

a

〈
µ , δ(g−1ġ)

〉
dt =

∫ b

a

〈
µ , η̇ + adξ η

〉
dt

=

∫ b

a

〈
− µ̇+ ad∗ξ µ , η

〉
dt+

〈
µ , η

〉∣∣∣b
a
,
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where η = g−1δg vanishes at the endpoints in time. Thus, stationarity δS = 0 of the Hamilton–Pontryagin variational
principle yields the following set of equations:

δl

δξ
= µ , g−1ġ = ξ , µ̇ = ad∗ξ µ . (17)

Legendre transformation. After the Legendre transformation to

h(µ) = 〈µ , ξ 〉 − `(ξ) (18)

we have the differential relations

dh =

〈
∂h

∂µ
, dµ

〉
= 〈 dµ , ξ 〉+

〈
µ− ∂l

∂ξ
, δξ

〉
(19)

so that ∂h/∂µ = ξ, which leads to the Hamiltonian formulation of the Hamilton–Pontryagin equations (20)

µ̇ = ad∗∂h/∂µ µ ,
dF

dt
=

〈
ad∗∂h/∂µ µ ,

∂F

∂µ

〉
=

〈
µ , ad∂h/∂µ

∂F

∂µ

〉
= −

〈
µ ,

[
∂F

∂µ
,
∂H

∂µ

]〉
=:
{
F , H

}
. (20)

Exercise. Recalculate the Hamilton-Pontryagin variational principle and derive its associated Lie-Poisson
bracket for a constrained right-invariant action integral

S(ξ, g, ġ) =

∫ b

a

[
l(ξ) + 〈µ , (ġg−1 − ξ) 〉

]
dt .

F
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Answer.

δl

δξ
= µ , ġg−1 = ξ , µ̇ = − ad∗ξ µ . Note the minus sign for right-invariance, cf. (20).

We will need the right-invariant Euler-Poincaré and Lie-Poisson equations when we study fluid dynamics. N

Exercise. Suppose left-invariance of the previous action principle is broken by the presence in the La-
grangian of a parameter a0 which transforms under the group g as at = g−1

t a0, whose definition implies that
it satisfies the auxiliary equation,

dat
dt

=
d(g−1

t a0)

dt
= −(g−1

t ġtg
−1
t )a0 = −g−1

t ġtat = −ξat

The reduced Lagrangian becomes l(ξ) → l(ξ, g−1a0) with ξ = ġg−1 and g ∈ G. The symmetry of the
Lagrangian is thus reduced from the group G to the isotropy subgroup Ga0

⊂ G which leaves a0 invariant
under left action. That is, ga0 = 0 for all g ∈ Ga0

. In the presence of this broken symmetry, the previous
constrained action integral becomes

S(ξ, a0, g, ġ) =

∫ b

a

l(ξ, g−1a0, g, ġ) dt =

∫ b

a

[
l(ξ, g−1a0) + 〈µ , (g−1ġ − ξ) 〉

]
dt .

Show that the Euler–Poincaré equation (21) changes to

d

dt

δl

δξ
= ad∗ξ

δl

δξ
+

∂l

∂at
� at (21)

where the � operator notation is defined by〈
∂l

∂at
� at , η

〉
=

〈
∂l

∂at
, −ηat

〉
F
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L : TM → R H : T ∗M → R

EL eqns Ham eqns

Noether’s Theorem ` : g→ R h : g∗ → R Noether’s Theorem

Euler-Poincaré eqns Lie-Poisson eqns

Lag vp

Legendre Transform

TM/G Ham vp Reduction via

Momentum Map

J(q,p)∈ g∗' T ∗M/G

EP vp

LT

LP vp

TM/G J(q,p)

Figure 9: Framework for Geometric Mechanics

Summary for the rigid body

• Relation between left-invariant Lagrangians:

L(Q, Q̇) = L(e,Q−1Q̇) = `(Ω)

• Poisson brackets:

{F,H} = −Π · ∂F
∂Π
× ∂H

∂Π
= −

〈
Π,

[
∂F

∂Π
,
∂H

∂Π

]〉

{Π, H} = Π× I−1Π, (Π = IΩ)
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L(Q, Q̇) : TSO(3)→ R H(Q,P ) : T ∗SO(3)→ R

d
dt

∂L
∂Q̇
− ∂L

∂Q
= 0

Euler-Lagrange
dF
dt

(Q,P ) = {F,H}can

Hamilton

Lagrangian
Noether

`(Ω) : so(3)→ R h(Π) : so∗(3)→ R Hamiltonian
Noether

d
dt

∂`
∂Ω

= ∂`
∂Ω
× Ω

Euler-Poincaré

dΠ
dt

= {Π, H}
Lie-Poisson

LagHvp

LT P=∂L/∂Q̇

Ω=Q−1Q̇
HamHvp

Π

EPvp

LT Π=∂`/∂Ω

LPvp

Ω=Q−1Q̇ Π

Figure 10: Rigid body dynamics

• Momentum map

For Q ∈ SO(3) and δQ = Φξ(Q) ∈ TSO(3), the Noether quantity is

Jξ(P,Q) :=
〈
P,Φξ(Q)

〉
TSO(3)

=
〈
Π, ξ

〉
so(3)
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5.10 The reduced Kepler problem: Newton (1686)

The reduced Kepler problem of planetary motion arises from Hamilton’s principle for the Lagrangian

L(r, ṙ) =
1

2
|ṙ|2 − V (r) =

1

2

(
|ṙ|2 + r2θ̇2

)
− V (r) with V (r) = − µ

r
.

For this Lagrangian, Hamilton’s Principle implies Newton’s equation of motion,

r̈ +
µr

r3
= 0 , (22)

in which µ is a constant and r = |r| with r ∈ R3.
Scale invariance of this equation under the changes R→ s2R and T → s3 T in the units of space R and time T for

any constant (s) means that it admits families of solutions whose space and time scales are related by T 2/R3 = const.
This is Kepler’s third law. Newton (1686) showed that his equation (22) implied that T 2/a3 = (2π)2/µ = constant,
and thereby founded celestial mechanics.

1. The scalar (resp. vector) product of equation (22) with r shows conservation of the energy E and (resp.) specific
angular momentum L, given by

E =
1

2
|ṙ|2 − µ

r
(energy) , or H(r, pr, pθ) =

1

2

(
p2
r +

p2
θ

r2

)
− µ

r
(Hamiltonian)

L = r× ṙ (specific angular momentum) .

Since r · L = 0, the planetary motion in R3 takes place in a plane to which vector L is perpendicular. This is
the orbital plane. Constancy of magnitude L means the orbit sweeps out equal areas in equal times (Kepler’s
second law). In the orbital plane, one may specify plane polar coordinates (r, θ) with unit vectors (r̂, θ̂) in the
plane and r̂× θ̂ = L̂ normal to it. In particular,

L = r× ṙ = rr̂× (ṙr̂ + rθ̇θ̂) = r2θ̇ r̂× θ̂ = r2θ̇ L̂ = pθ L̂ ,

so the magnitude of the angular momentum is L = |L| = r2θ̇ = pθ.
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2. The unit vectors for polar coordinates in the orbital plane are r̂ and θ̂. These vectors satisfy

dr̂

dt
= θ̇ L̂× r̂ = θ̇ θ̂ and

dθ̂

dt
= θ̇ L̂× θ̂ = − θ̇ r̂ , where θ̇ =

L

r2
.

Newton’s equation of motion (22) for the Kepler problem may now be written equivalently using θ̇/L = 1/r2

and dθ̂
dt = − θ̇ r̂, as

0 = r̈ +
µr

r3
= r̈ +

µ

L
θ̇ r̂ =

d

dt

(
ṙ− µ

L
θ̂
)
.

This equation implies conservation of the following vector in the plane of motion:

K = ṙ− µ

L
θ̂ (Hamilton’s vector) .

The cross product of the two conserved vectors K and L yields another conserved vector in the plane of motion

J = K× L = ṙ× L− µr̂ (Laplace–Runge–Lenz vector) .

3. Note immediately that J · L = 0 = J · K, J2 = 2EL2 + µ2 = K2L2 and the dimensions of J are given by
[J ] = [µ] = [r]3[t]−2, the same as Kepler’s Third Law! Thus, from their definitions, these conserved quantities
are related by

K2 = 2E +
µ2

L2
=
J2

L2
, upon using K2 =

∣∣∣ṙ− µ

L
θ̂
∣∣∣2 = |ṙ|2 − 2µ

L
ṙ · θ̂ +

µ2

L2
= |ṙ|2 − 2µ

r
+
µ2

L2
,

since ṙ = ṙ r̂ + rθ̇ θ̂ and L = r2θ̇. Equivalently,

L2 +
J2

(−2E)
=

µ2

(−2E)
=⇒ −2E =

µ2 − J2

L2
and J ·K× L = K2L2 = J2 ,

where J2 := |J|2, etc. and −2E > 0 for bounded orbits. Hence, the motion (r, ṙ) ∈ TR3 ' R3 × R3 takes place
in 6 dimensions on the intersections of level sets of E, J2 − 2EL2 = µ2 and J · L = 0.
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4. Orient the conserved Laplace–Runge–Lenz vector J in the orbital plane to point along the reference line for the
measurement of the polar angle θ, say from the centre of the orbit (Sun) to the perihelion (point of nearest
approach, on midsummer’s day). The scalar product of r and J then yields an elegant result for the Kepler orbit
in plane polar coordinates:

r · J = rJ cos θ = r · (ṙ× L− µ r/r) = r · (ṙ× L)− µ r ,

which implies

r(θ) =
L2

µ+ J cos θ
=

l⊥
1 + e cos θ

. (23)

As expected, the orbit r(θ) is a conic section whose origin is at one of the two foci. This is Kepler’s first law.

Let a and b be respectively the semi-major and semi-minor axes of the ellipse drawn with a string of length 2a
attached at foci ±e. One may form two right angles with the string to discover that e2 + b2 = a2 and l⊥ = b2/a,
by Pythagoras’ theorem. The eccentricity vanishes (e = 0) for a circle and correspondingly K = 0 implies that
ṙ = µ θ̂/L. The eccentricity takes values 0 < e < 1 for an ellipse, e = 1 for a parabola and e > 1 for a hyperbola.

In summary: the Laplace–Runge–Lenz vector J is directed from the focus of the orbit to its perihelion (point
of closest approach). The eccentricity of the elliptical orbit is e = J/µ = KL/µ =

√
a2 − b2 and its semi-latus

rectum (normal distance from the line through the foci to the orbit) is l⊥ = L2/µ = b2/a.

5. One may use the conservation of L in Ldt = r× dr or L in Ldt = r2dθ to show that the constancy of magnitude
L = |L| means the orbit sweeps out equal areas in equal times. This is Kepler’s second law.

For an elliptical orbit, the integral LT =
∫ T

0 Ldt =
∫ 2π

0 r(θ)2dθ = 2A yields the period in terms of angular
momentum and the area; namely, T = 2A/L. Hence, 4A2/T 2 = L2 = µl⊥
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6. One may use the result of part 5 and the geometric properties of ellipses to show that the period of the orbit is
given by (

T

2π

)2

=
a3

µ
=

µ2

(−2E)3
. (24)

The relation T 2/a3 = (2π)2/µ = constant comprises Kepler’s third law, which reflects the scale invariance of
Newton’s equation. The constant µ is Newton’s universal constant of gravitational attraction.

This is a profound relation! Time and space are linked! The period and aphelion-to-perihelion distance of a
planetary orbit determines the fundamental gravitational property which holds the universe together!

7. One may check that the Poisson brackets amongst the components of the vectors L = r×p and J = p×L−µr/r
satisfy the following relations:

{Li, Lj} = εijkLk ,

{Li, Jj} = εijkJk , =⇒ {Li, J̄j} = εijkJ̄k with J̄k := Jk/
√
−2H ,

{Ji, Jj} = − 2HεijkLk , =⇒ {J̄i, J̄j} = εijkLk after using {Li, H} = 0 = {Ji, H} .

In tabular form, this is

{(L, J) , (L, J)} =

{ · , · } L J

L

J

L× J×
J× −2H L×

. (25)

Importantly, these relations imply that the Poisson bracket with Ji alters both the eccentricity and the width of
an elliptical orbit, as one finds upon using {J2, Ji} = 4H(J× L)i = 2H{L2, Ji} in the following sequence,

{Ji, e2}µ2 = {Ji, J2} = − 4HεijkJjLk = − 4H(J× L)i = − 2H{L2, Ji} = − 2Hµ{l⊥, Ji} .
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The conservation laws {L2, H} = 0 and {Ji, H} = 0 allow the use of formula (25) to check the properties of
the previous Poisson bracket relations. In particular, two Casimir functions Poisson commute with any other
functions F (J,L) on any level surface of H, and therefore are constants of the (J,L) motions. Namely,

C1 = J2 − 2H L2 and C2 = J · L =⇒ {Ji, Ca} = 0 = {Li, Ca} , i = 1, 2, 3, a = 1, 2 .

For the Kepler problem, the level sets of the Casmirs take the physically meaningful values C1 = µ2 and C2 = 0.
In summary, the motion (r,p) ∈ T ∗R3 ' R3 × R3 takes place in 6 dimensions on the intersections of level sets
of phase space functions H, C1 = J2 − 2EL2 = µ2 and C2 = J · L = 0, all in involution under Poisson brackets.
The dimensions drop as 6− 2− 2 = 2. Hence, this Hamiltonian system is integrable.

8. Upon referring to the relationships between the orbital parameters and the conservation laws derived in (23),
explain how the canonical transformations generated by J affect the (i) energy, (ii) eccentricity and (iii) width
of the orbit.

The canonical transformations generated by J change both the eccentricity e and the width l⊥ of the orbit, but
in conserving a certain combination of them, they map closed ellipses into closed ellipses, without any precession.
Namely, {

Ji,
(
J2 − 2H L2

)}
= (−2Hµ)

{
Ji,

e2µ

−2H
+ l⊥

}
= 0 .

Note that because of equation (24) the canonical transformations generated by the Runge-Lenz vector J preserve
the period and the semi-major axis of the elliptical Kepler orbit, while changing its area (A = πab = LT/2)
and shape (b/a) with b =

√
a2 − e2 =

√
l⊥a, by altering its eccentricity (e = J/µ) and its semi-latus rectum
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(l⊥ = L2/µ) with J2/L2 = K2 = e2µ/l⊥, according to

{e2, Ji} =
1

µ2
{J2, Ji} =

4H

µ2
(J× L)i = −4HL2

µ2
Ki = −4Hl⊥

µ
Ki ,

{l⊥, Ji} =
1

µ
{L2, Ji} =

2

µ
(J× L)i = −2L2

µ
Ki = −2l⊥Ki .

Finally, if we define M± :=
√
−2H L ± J, with |M+|2 = (J2 − 2HL2) = µ2 = |M−|2 since L · J = 0 then we

find the following Poisson bracket relations for negative energy (-2H>0),

{M+
i ,M

−
j } = 0 , {M+

i ,M
+
j } = 2εijkM

+
k , {M

−
i ,M

−
j } = 2εijkM

−
k ,

which one may recognize as the Lie-Poisson brackets on the dual of the Lie algebra of so(3)× so(3) ' so(4), for
which |M±|2 are Casimirs.

Exercise. How do these Poisson bracket relations change when H ≥ 0? F
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6 Transformation Theory

motion
motion equation
vector field
diffeomorphism
flow
fixed point
equilibrium

linearisation
infinitesimal transformation
pull-back
push-forward
Jacobian matrix
directional derivative
commutator

differential, d
differential k-form
wedge product, ∧
Lie derivative, £Q

product rule
fluid dynamics
other flows

6.1 Motions, pull-backs, push-forwards, commutators & differentials

• A motion is defined as a smooth curve q(t) ∈ M parameterised by t ∈ R that solves the motion equation,
which is a system of differential equations

q̇(t) =
dq

dt
= f(q) ∈ TM , (26)

or in components

q̇i(t) =
dqi

dt
= f i(q) i = 1, 2, . . . , n , (27)

• The map f : q ∈M → f(q) ∈ TqM is a vector field.

According to standard theorems about differential equations that are not proven in this course, the solution, or
integral curve, q(t) exists, provided f is sufficiently smooth, which will always be assumed to hold.
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• Vector fields can also be defined as differential operators that act on functions, as

d

dt
G(q) = q̇i(t)

∂G

∂qi
= f i(q)

∂G

∂qi
i = 1, 2, . . . , n, (sum on repeated indices) (28)

for any smooth function G(q) : M → R.

• To indicate the dependence of the solution of its initial condition q(0) = q0, we write the motion as a smooth
transformation

q(t) = φt(q0) .

Because the vector field f is independent of time t, for any fixed value of t we may regard φt as mapping from
M into itself that satisfies the composition law

φt ◦ φs = φt+s

and
φ0 = Id .

Setting s = − t shows that φt has a smooth inverse. A smooth mapping that has a smooth inverse is called a
diffeomorphism. Geometric mechanics deals with diffeomorphisms.

• The smooth mapping φt : R×M →M that determines the solution φt ◦ q0 = q(t) ∈M of the motion equation
(26) with initial condition q(0) = q0 is called the flow of the vector field Q.

A point q? ∈M at which f(q?) = 0 is called a fixed point of the flow φt, or an equilibrium.

Vice versa, the vector field f is called the infinitesimal transformation of the mapping φt, since

d

dt

∣∣∣∣
t=0

(φt ◦ q0) = f(q) .
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That is, f(q) is the linearisation of the flow map φt at the point q ∈M .
More generally, the directional derivative of the function h along the vector field f is given by the action of a
differential operator, as

d

dt

∣∣∣∣
t=0

h ◦ φt =

[
∂h

∂φt

d

dt
(φt ◦ q0)

]
t=0

=
∂h

∂qi
q̇i =

∂h

∂qi
f i(q) =: Qh .

• Under a smooth change of variables q = c(r) the vector field Q in the expression Qh transforms as

Q = f i(q)
∂

∂qi
7→ R = gj(r)

∂

∂rj
with gj(r)

∂ci

∂rj
= f i(c(r)) or g = c−1

r f ◦ c , (29)

where cr is the Jacobian matrix of the transformation. That is, since h(q) is a function of q,

(Qh) ◦ c = R(h ◦ c) .

We express the transformation between the vector fields as R = c∗Q and write this relation as

(Qh) ◦ c =: c∗Q(h ◦ c) . (30)

The expression c∗Q is called the pull-back of the vector field Q by the map c. Two vector fields are equivalent
under a map c, if one is the pull-back of the other, and fixed points are mapped into fixed points.
The inverse of the pull-back is called the push-forward. It is the pull-back by the inverse map.

• The commutator
QR−RQ =:

[
Q, R

]
of two vector fields Q and R defines another vector field. Indeed, if

Q = f i(q)
∂

∂qi
and R = gj(q)

∂

∂qj
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then [
Q, R

]
=

(
f i(q)

∂gj(q)

∂qi
− gi(q)∂f

j(q)

∂qi

)
∂

∂qj

because the second-order derivative terms cancel. By the pull-back relation (30) we have

c∗
[
Q, R

]
=
[
c∗Q, c∗R

]
(31)

under a change of variables defined by a smooth map, c. This means the definition of the vector field commutator
is independent of the choice of coordinates. As we shall see, the tangent to the relation c∗t

[
Q, R

]
=
[
c∗tQ, c

∗
tR
]

at the identity t = 0 is the Jacobi condition for the vector fields to form an algebra.

• The differential of a smooth function f : M →M is defined as

df =
∂f

∂qi
dqi .

• Under a smooth change of variables s = φ ◦ q = φ(q) the differential of the composition of functions d(f ◦ φ)
transforms according to the chain rule as

df =
∂f

∂qi
dqi , d(f ◦ φ) =

∂f

∂φj(q)

∂φj

∂qi
dqi =

∂f

∂sj
dsj =⇒ d(f ◦ φ) = (df) ◦ φ (32)

That is, the differential d commutes with the pull-back φ∗ of a smooth transformation φ,

d(φ∗f) = φ∗df . (33)

In a moment, this pull-back formula will give us the rule for transforming differential forms of any order.
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6.2 Wedge products

• Differential k-forms on an n-dimensional manifold are defined in terms of the differential d and the antisymmetric
wedge product (∧) satisfying

dqi ∧ dqj = − dqj ∧ dqi , for i, j = 1, 2, . . . , n (34)

By using wedge product, any k-form α ∈ Λk on M may be written locally at a point q ∈ M in the differential
basis dqj as

αm = αi1...ik(m)dqi1 ∧ · · · ∧ dqik ∈ Λk , i1 < i2 < · · · < ik , (35)

where the sum over repeated indices is ordered, so that it must be taken over all ij satisfying i1 < i2 < · · · < ik.
Roughly speaking differential forms Λk are objects that can be integrated. As we shall see, vector fields also act
on differential forms in interesting ways.

• Pull-backs of other differential forms may be built up from their basis elements, the dqik . By equation (33),

Theorem 19 (Pull-back of a wedge product). The pull-back of a wedge product of two differential forms is the
wedge product of their pull-backs:

φ∗t (α ∧ β) = φ∗tα ∧ φ∗tβ . (36)
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6.3 Lie derivatives

Definition 20 (Lie derivative of a differential k-form). The Lie derivative of a differential k-form Λk by a
vector field Q ∈ X is defined by linearising its flow φt around the identity t = 0,

£QΛk =
d

dt

∣∣∣∣
t=0

φ∗tΛ
k maps X× Λk 7→ Λk .

Hence, by equation (36), the Lie derivative satisfies the product rule for the wedge product.

Corollary 21 (Product rule for the Lie derivative of a wedge product).

£Q(α ∧ β) = £Qα ∧ β + α ∧£Qβ . (37)

• Pullbacks of vector fields lead to Lie derivative expressions, too.

Definition 22 (Lie derivative of a vector field). The Lie derivative of a vector field Y ∈ X by another vector
field X ∈ X is defined by linearising the flow φt of X around the identity t = 0,

£XY =
d

dt

∣∣∣∣
t=0

φ∗tY maps £X ∈ X 7→ X .

Theorem 23. The Lie derivative £XY of a vector field Y by a vector field X satisfies

£XY =
d

dt

∣∣∣∣
t=0

φ∗tY = [X, Y ] , (38)

where [X, Y ] = XY − Y X is the commutator of the vector fields X and Y .
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Proof. Denote the vector fields in components as

X = X i(q)
∂

∂qi
=

d

dt

∣∣∣∣
t=0

φ∗t and Y = Y j(q)
∂

∂qj
.

Then, by the pull-back relation (30) a direct computation yields, on using the matrix identity dM−1 = −M−1dMM−1,

£XY =
d

dt

∣∣∣∣
t=0

φ∗tY =
d

dt

∣∣∣∣
t=0

(
Y j(φtq)

∂

∂(φtq)j

)

=
d

dt

∣∣∣∣
t=0

Y j(φtq)

[
∂(φtq)

∂q

−1
]k
j

∂

∂qk


=

(
Xj ∂Y

k

∂qj
− Y j ∂X

k

∂qj

)
∂

∂qk

= [X, Y ] .

Corollary 24. The Lie derivative of the relation (31) for the pull-back of the commutator c∗t
[
Y, Z

]
=
[
c∗tY, c

∗
tZ
]

yields the Jacobi condition for the vector fields to form an algebra.

Proof. By the product rule and the definition of the Lie bracket (38) we have

d

dt

∣∣∣∣
t=0

φ∗t
[
Y, Z

]
=
[
X,
[
Y, Z

]]
=
[
[X, Y ], Z

]
+
[
Y, [X,Z]

]
=

d

dt

∣∣∣∣
t=0

[
φ∗tY, φ

∗
tZ
]

This is the Jacobi identity for vector fields.
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Use the hat map and the relation Rt(x× y) = Rtx× Rty to show that the same argument gives the Jacobi
identity for the cross product of vectors in R3, when φ∗t is a rotation.

6.4 Contraction

Definition 25 (Contraction). In exterior calculus, the operation of contraction denoted as introduces a pairing
between vector fields and differential forms. Contraction is also called substitution of a vector field into a differential
form. For basis elements in phase space, contraction defines duality relations,

∂q dq = 1 = ∂p dp , and ∂q dp = 0 = ∂p dq , (39)

so that differential forms are linear functions of vector fields. A Hamiltonian vector field,

XH = q̇
∂

∂q
+ ṗ

∂

∂p
= Hp∂q −Hq∂p = { · , H } , (40)

satisfies the intriguing linear functional relations with the basis elements in phase space,

XH dq = Hp and XH dp = −Hq . (41)

Definition 26 (Contraction rules with higher forms). The rule for contraction or substitution of a vector field into a
differential form is to sum the substitutions of XH over the permutations of the factors in the differential form that
bring the corresponding dual basis element into its leftmost position. For example, substitution of the Hamiltonian
vector field XH into the symplectic form ω = dq ∧ dp yields

XH ω = XH (dq ∧ dp) = (XH dq) dp− (XH dp) dq .
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In this example, XH dq = Hp and XH dp = −Hq, so

XH ω = Hpdp+Hqdq = dH ,

which follows from the duality relations (39).

This calculation has proved the following.

Theorem 27 (Hamiltonian vector field). The Hamiltonian vector field XH = { · , H } satisfies

XH ω = dH with ω = dq ∧ dp . (42)

Remark 28.
The purely geometric nature of relation (42) argues for it to be taken as the definition of a Hamiltonian vector field.

Lemma 29. d2 = 0 for smooth phase-space functions.

Proof. For any smooth phase-space function H(q, p), one computes

dH = Hqdq +Hpdp

and taking the second exterior derivative yields

d2H = Hqp dp ∧ dq +Hpq dq ∧ dp
= (Hpq −Hqp) dq ∧ dp = 0 .

Relation (42) also implies the following.
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Corollary 30 (Poincaré’s theorem). The flow of XH preserves the exact two-form ω for any Hamiltonian H.

Proof. Preservation of ω may be verified first by a formal calculation using (42). Along

XH = (dq/dt, dp/dt) = (q̇, ṗ) = (Hp,−Hq) ,

for a solution of Hamilton’s equations, we have

£XH
ω = £XH

(dq ∧ dp)

=
d

dt

∣∣∣
t=0
g∗t (dq ∧ dp)

=
d

dt

∣∣∣
t=0

(g∗t dq ∧ g∗t dp)
= dq̇ ∧ dp+ dq ∧ dṗ

= dHp ∧ dp− dq ∧ dHq

= d(Hp dp+Hq dq)

= d(XH ω)

= d(dH) = 0 .

The first two steps use the product rule for Lie derivatives of differential forms

£XH
(dq ∧ dp) =

d

dt

∣∣∣
t=0
g∗t (dq ∧ dp) =

d

dt

∣∣∣
t=0

(g∗t dq ∧ g∗t dp)

=
[ d
dt
g∗t dq ∧ g∗t dp+ g∗t dq ∧

d

dt
g∗t dp

]
t=0

= £XH
dq ∧ dp+ dq ∧£XH

dp

(43)

and the third-to-the-last and last steps use the property of the exterior derivative d that d2 = 0 for continuous
forms. The latter is due to the equality of cross derivatives Hpq = Hqp and antisymmetry of the wedge product
dq ∧ dp = − dp ∧ dq.
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Definition 31 (Symplectic flow). A flow is symplectic if it preserves the phase-space area or symplectic two-form,
ω = dq ∧ dp.

According to this definition, Corollary 30 may be simply re-stated as

Corollary 32 (Poincaré’s theorem). The flow of a Hamiltonian vector field is symplectic.

Definition 33 (Canonical ṫransformations). A smooth invertible map g of the phase space T ∗M is called a canonical
transformation if it preserves the canonical symplectic form ω on T ∗M , i.e., g∗ω = ω, where g∗ω denotes the pull-
back of ω under the map g.

Remark 34 (Criterion for a canonical transformation).
Suppose in original coordinates (p, q) the symplectic form is expressed as ω = dq ∧ dp. A transformation g : T ∗M 7→
T ∗M written as (Q,P ) = (Q(p, q), P (p, q) is canonical if the direct computation shows that dQ∧dP = g∗(dq∧dp) =
c dq ∧ dp, up to a constant factor c. (Such a constant factor c is unimportant, since it may be absorbed into the units
of time in Hamilton’s canonical equations.)

Remark 35.
By Corollary 32 (Poincaré’s Theorem), the Hamiltonian phase flow gt is a one-parameter group of canonical transfor-
mations.

Theorem 36 (Preservation of Hamiltonian form). Canonical transformations preserve the Hamiltonian form.

Proof. The coordinate-free relation XH ω = dH with ω = dq ∧ dp keeps its form if

dQ ∧ dP = g∗(dq ∧ dp) = c dq ∧ dp ,

up to the constant factor c. Hence, Hamilton’s equations re-emerge in canonical form in the new coordinates, up to a
rescaling by c which may be absorbed into the units of time.
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6.5 Summary of natural operations on differential forms

Besides the wedge product, three basic operations are commonly applied to differential forms. These are contraction,
exterior derivative and Lie derivative.

• Contraction with a vector field X lowers the degree:

X Λk 7→ Λk−1 .

• Exterior derivative d raises the degree:

dΛk 7→ Λk+1 .

• Lie derivative £X by vector field X preserves the degree:

£XΛk 7→ Λk , where £XΛk =
d

dt

∣∣∣∣
t=0

φ∗tΛ
k ,

in which φt is the flow of the vector field X. In analogy with fluids one may write £XΛk = d
dtΛ

k along dx
dt = X.

• Lie derivative £X satisfies Cartan’s formula: (The proof is a direct calculation.)

£Xα = X dα + d(X α) for α = αi1...ikdx
i1 ∧ · · · ∧ dxik ∈ Λk .

Remark 37.
Note also that the Lie derivative commutes with the exterior derivative. That is,

d(£Xα) = £Xdα , for α ∈ Λk(M) and X ∈ X(M) .
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6.6 Examples of contraction, or interior product

Definition 38 (Contraction, or interior product). Let α ∈ Λk be a k-form on a manifold M ,

α = αi1...ikdx
i1 ∧ · · · ∧ dxik ∈ Λk , with i1 < i2 < · · · < ik ,

and let X = Xj∂j be a vector field. The contraction or interior product X α of a vector field X with a k-form
α is defined by

X α = Xjαji2...ikdx
i2 ∧ · · · ∧ dxik . (44)

Note that

X (Y α) = X lY mαmli3...ikdx
i3 ∧ · · · ∧ dxik

= −Y (X α) ,

by antisymmetry of αmli3...ik, particularly in its first two indices.

Remark 39 (Examples of contraction).

1. A mnemonic device for keeping track of signs in contraction or substitution of a vector field into a differential
form is to sum the substitutions of X = Xj∂j over the permutations that bring the corresponding dual basis
element into the leftmost position in the k-form α. For example, in two dimensions, contraction of the vector
field X = Xj∂j = X1∂1 +X2∂2 into the two-form α = αjkdx

j ∧ dxk with α21 = −α12 yields

X α = Xjαji2dx
i2 = X1α12dx

2 +X2α21dx
1 .

Likewise, in three dimensions, contraction of the vector field X = X1∂1 + X2∂2 + X3∂3 into the three-form
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α = α123dx
1 ∧ dx2 ∧ dx3 with α213 = −α123, etc. yields

X α = X1α123dx
2 ∧ dx3 + cyclic permutations

= Xjαji2i3dx
i2 ∧ dxi3 with i2 < i3 .

2. The rule for contraction of a vector field with a differential form develops from the relation

∂j dxk = δkj ,

in the coordinate basis ej = ∂j := ∂/∂xj and its dual basis ek = dxk. Contraction of a vector field with a
one-form yields the dot product, or inner product, between a covariant vector and a contravariant vector is given
by

Xj∂j vkdx
k = vkδ

k
jX

j = vjX
j ,

or, in vector notation,

X v · dx = v ·X .

This is the dot product of vectors v and X.

3. By the linearity of its definition (44), contraction of a vector field X with a differential k-form α satisfies

(hX) α = h(X α) = X hα .
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Our previous calculations for two-forms and three-forms provide the following additional expressions for con-
traction of a vector field with a differential form, which may be written in vector notation as:

X B · dS = −X×B · dx ,
X d 3x = X · dS ,

d(X d 3x) = d(X · dS) = (div X) d 3x .

Remark 40 (Physical examples of contraction).
The first of these contraction relations represents the Lorentz, or Coriolis force, when X is particle velocity and B is
either magnetic field, or rotation rate, respectively. The second contraction relation is the flux of the vector X through
a surface element. The third is the exterior derivative of the second, thereby yielding the divergence of the vector X.

Exercise. Show that
X (X B · dS) = 0

and
(X B · dS) ∧B · dS = 0 ,

for any vector field X and two-form B · dS. F

Proposition 41 (Contracting through wedge product). Let α be a k-form and β be a one-form on a manifold M
and let X = Xj∂j be a vector field. Then the contraction of X through the wedge product α ∧ β satisfies

X (α ∧ β) = (X α) ∧ β + (−1)kα ∧ (X β) . (45)

Proof. The proof is a straightforward calculation using the definition of contraction. The exponent k in the factor
(−1)k counts the number of exchanges needed to get the one-form β to the left most position through the k-form
α.
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Proposition 42. [Contraction is natural under pull-back]
That is,

φ∗(X(m) α) = X(φ(m)) φ∗α = φ∗X φ∗α . (46)

Proof. Direct verification using the relation between pull-back of forms and push-forward of vector fields. Note the
implication, £X(Y α) = [X , Y ] α + Y (£Xα).

Definition 43 (Alternative notations for contraction). Besides the hook notation with , one also finds in the
literature the following two alternative notations for contraction of a vector field X with k-form α ∈ Λk on a manifold
M :

X α = iXα = α(X, · , · , . . . , ·︸ ︷︷ ︸
k − 1 slots

) ∈ Λk−1 . (47)

In the last alternative, one leaves a dot ( · ) in each remaining slot of the form that results after contraction. For
example, contraction of the Hamiltonian vector field XH = { · , H} with the symplectic two-form ω ∈ Λ2 produces the
one-form

XH ω = ω(XH , · ) = −ω( · , XH) = dH .

In this alternative notation, the proof of formula (46) in Proposition 42 may be written, as follows.

Proof. Since forms are multilinear maps to the real numbers, one may define the pull-back of a k-form, α, by

φ∗α(X1, X2, ...) := α(φ∗X,φ∗X2, ...) .
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Therefore, we are able to use the following proof.

φ∗X φ∗α(X1, X2, ....) = φ∗α(φ∗X,X1, X2, ...)

= α(φ∗φ
∗X,φ∗X1, φ∗X2, ...)

= α(X,φ∗X1, φ∗X2, ...)

= (X α)(φ∗X1, φ∗X2, ...)

= φ∗(X α)(X1, X2, ...)

Now, if we allow X1, X2, . . . to be arbitrary, then formula (46) in Proposition 42 follows.

Proposition 44 (Hamiltonian vector field definitions). The two definitions of Hamiltonian vector field XH

dH = XH ω and XH = { · , H}

are equivalent.

Proof. The symplectic Poisson bracket satisfies {F,H} = ω(XF , XH), because

ω(XF , XH) := XH XF ω = XH dF = −XF dH = {F, H} .

Remark 45.
The relation {F, H} = ω(XF , XH) means that the Hamiltonian vector field defined via the symplectic form coincides
exactly with the Hamiltonian vector field defined using the Poisson bracket.
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6.7 Exercises in exterior calculus operations

Vector notation for differential basis elements One denotes differential basis elements dxi and dSi = 1
2εijkdx

j ∧ dxk,
for i, j, k = 1, 2, 3 in vector notation as

dx := (dx1, dx2, dx3) ,

dS = (dS1, dS2, dS3)

:= (dx2 ∧ dx3, dx3 ∧ dx1, dx1 ∧ dx2) ,

dSi :=
1

2
εijkdx

j ∧ dxk ,

d 3x = dVol := dx1 ∧ dx2 ∧ dx3

=
1

6
εijkdx

i ∧ dxj ∧ dxk .

Exercise. (Vector calculus operations) Show that contraction : X× Λk → Λk−1 of the vector field
X = Xj∂j =: X · ∇ with the differential basis elements dx, dS and d 3x recovers the following familiar
operations among vectors:

X dx = X ,

X dS = X× dx ,
(or, X dSi = εijkX

jdxk)

Y X dS = X×Y ,

X d 3x = X · dS = XkdSk ,

Y X d 3x = X×Y · dx = εijkX
iY jdxk ,

Z Y X d 3x = X×Y · Z . F
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Exercise. (Exterior ḋerivatives in vector notation) Show that the exterior derivative and wedge
product satisfy the following relations in components and in three-dimensional vector notation:

df = f,j dx
j =: ∇f · dx ,

0 = d2f = f,jk dx
k ∧ dxj ,

df ∧ dg = f,j dx
j ∧ g,k dxk

=: (∇f ×∇g) · dS ,
df ∧ dg ∧ dh = f,j dx

j ∧ g,k dxk ∧ h,l dxl

=: (∇f · ∇g ×∇h) d 3x . F

Exercise. (Vector calculus formulas) Show that the exterior derivative yields the following vector
calculus formulas:

df = ∇f · dx ,
d(v · dx) = (curl v) · dS ,
d(A · dS) = (div A) d 3x .

The compatibility condition d2 = 0 is written for these forms as

0 = d2f = d(∇f · dx) = (curl grad f) · dS ,
0 = d2(v · dx) = d

(
(curl v) · dS

)
= (div curl v) d 3x .

The product rule is written for these forms as

d
(
f(A · dx)

)
= df ∧A · dx + fcurl A · dS
=
(
∇f ×A + fcurl A

)
· dS

= curl (fA) · dS ,
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d
(
(A · dx) ∧ (B · dx)

)
= (curl A) · dS ∧B · dx−A · dx ∧ (curl B) · dS
=
(
B · curl A−A · curl B

)
d 3x

= d
(
(A×B) · dS

)
= div(A×B) d 3x .

These calculations yield familiar formulas from vector calculus for quantities curl(grad), div(curl), curl(fA)
and div(A×B). F

6.8 Integral calculus formulas

Exercise. (Integral calculus formulas) Show that the Stokes’ theorem for the vector calculus formulas
yields the following familiar results in R3:

• The fundamental theorem of calculus, upon integrating df along a curve in R3 starting at point
a and ending at point b: ∫ b

a

df =

∫ b

a

∇f · dx = f(b)− f(a) .

• The classical Stokes theorem, for a compact surface S with boundary ∂S:∫
S

(curl v) · dS =

∮
∂S

v · dx .

(For a planar surface S ∈ R2, this is Green’s theorem.)
• The Gauss divergence theorem, for a compact spatial domain D with boundary ∂D:∫

D

(div A) d 3x =

∮
∂D

A · dS .
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F

These exercises illustrate the following,

Theorem 46 (Stokes’ ṫheorem). Suppose M is a compact oriented k-dimensional manifold with boundary ∂M
and α is a smooth (k − 1)-form on M . Then ∫

M

dα =

∮
∂M

α .

6.9 Summary and an exercise

Summary

The pull-back φ∗t of a smooth flow φt generated by a smooth vector field X on a smooth manifold
M commutes with the exterior derivative d, wedge product ∧ and contraction .

That is, for k-forms α, β ∈ Λk(M), and m ∈M , the pull-back φ∗t satisfies

d(φ∗tα) = φ∗tdα ,

φ∗t (α ∧ β) = φ∗tα ∧ φ∗tβ ,
φ∗t (X α) = φ∗tX φ∗tα .

In addition, the Lie derivative £Xα of a k-form α ∈ Λk(M) by the vector field X tangent to the
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flow φt on M is defined either dynamically or geometrically (by Cartan’s formula) as

£Xα =
d

dt

∣∣∣∣
t=0

(φ∗tα) = X dα + d(X α), (48)

in which the last equality is Cartan’s geometric formula in (57) for the Lie derivative.

Definition 47. (Lie derivative pull-back formula)
The tangent to the pull-back φ∗tα of a differential form α is the pull-back of the Lie derivative of α
wrt the vector field X that generates the flow, φt:

d

dt
(φ∗tα) = φ∗t

(
£Xα

)
.

Likewise, for the push-forward, which is the pull-back by the inverse, we have

d

dt
((φ−1

t )∗α) = −(φ−1
t )∗

(
£Xα

)
.

Definition 48. (Advected quantity)
A quantity which is invariant along a flow trajectory satisfies α0(x0) = αt(xt) = (φ∗tαt)(x0), so that

0 =
d

dt
α0(x0) =

d

dt
(φ∗tαt)(x0) = φ∗t (∂t + £X)αt(x0) = (∂t + £X)αt(xt)

Or vice versa
αt(xt) = (α0 ◦ φ−1

t )(xt) = ((φt)∗α0)(xt)
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satisfies
d

dt
αt(xt) =

d

dt
(φt)∗α0 = −£Xαt .

Exercise.

(a) Verify the formula [X , Y ] α = £X(Y α)− Y (£Xα).
(b) Use (a) to verify £[X , Y ]α = £X£Yα−£Y£Xα.
(c) Use (b) to verify the Jacobi identity.
(d) Use (c) to verify that the divergence-free vector fields are closed under commutation.
(e) For a top-form α show divergence-free vector fields that

[X , Y ] α = d
(
X (Y α)

)
. (49)

(f) Write the equivalent of equation (49) as a formula in vector calculus.

F

Answer.

(a) The required formula follows immediately from the product rule in (43) for the dynamical
definition of the Lie derivative. Since pull-back commutes with contraction, insertion of a vector
field into a k-form transforms under the flow φt of a smooth vector field Y as

φ∗t (Y α) = φ∗tY φ∗tα .
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A direct computation using the dynamical definition of the Lie derivative £Yα = d
dt|t=0(φ∗tα) ,

then yields

d

dt

∣∣∣
t=0
φ∗t
(
Y α

)
=
( d
dt

∣∣∣
t=0
φ∗tY

)
α

+ Y
( d
dt

∣∣∣
t=0
φ∗tα

)
.

Hence, we recognise that the desired formula is the product rule met earlier in equation (43):

£X(Y α) = (£XY ) α + Y (£Xα) .

(b) Insert £XY = [X , Y ] into the product rule formula in part (a). Then

[X , Y ] α = £X(Y α)− Y (£Xα).

Now use Cartan’s formula in (57)

£Xα =
d

dt

∣∣∣∣
t=0

(φ∗tα) = X dα + d(X α),
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to compute the required result, as

£[X , Y ]α = d([X , Y ] α) + [X , Y ] dα

= d
(
£X(Y α)− Y (£Xα)

)
+ £X(Y dα)− Y (£Xdα)

= £Xd(Y α)− d(Y (£Xα)

+ £X(Y dα)− Y d(£Xα)

= £X(£Yα)−£Y (£Xα) .

Can you think of an alternative proof based on the dynamical definition of the Lie derivative?

(c) Applying part (b), (£[X , Y ]α = £X£Yα − £Y£Xα) to α = d3x proves that £[X , Y ]d
3x = 0;

since both £Y d
3x = 0 = £Xd

3x, because, e.g., £Y d
3x = (divY ) d3x.

(d) As a consequence of part (b),
£[Z , [X , Y ] ]α = £Z(£X£Y −£Y£X)α− (£X£Y −£Y£X)£Zα

= £Z£X£Yα−£Z£Y£Xα−£X£Y£Zα + £Y£X£Zα ,

and summing over cyclic permutations verifies that
£[Z , [X ,Y ] ] α + £[X , [Y ,Z] ] α + £[Y , [Z ,X] ] α = 0 .

This is the Jacobi identity for the Lie derivative.

(e) Substituting the relation £XY = [X, Y ] into the product rule above in part (b) and rearranging yields

[X, Y ] α = £X(Y α)− Y (£Xα) , (50)
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as required, for an arbitrary k-form α.
From formula (50), we have

[X , Y ] α = £X(Y α)− Y (£Xα)

= d
(
X (Y α) +X d(Y α)

)
− Y (£Xα)

= d
(
X (Y α)

)
+X (£Y α− Y dα)− Y (£Xα)

= d
(
X (Y α)

)
+X (£Y α)− Y (£Xα)

[X , Y ] α = d
(
X (Y α)

)
+ (div Y)X α− (div X)Y α. (51)

The last two steps to obtain (51) follow, because dα = 0 and £Xα = (div X)α for a top-form α.
For divergence-free vectors X and Y, the last result takes the elegant form,

[X , Y ] α = d
(
X (Y α)

)
, (52)

when div X = 0 = div Y.

(f) The vector calculus formula to which equation (51) is equivalent may be found by writing its left and right sides
in a coordinate basis, as

[X , Y ] α = (X · ∇Y −Y · ∇X) · dS
d
(
X (Y α)

)
+X (£Y α)− Y (£Xα) = − curl (X×Y) · dS + (div Y) X · dS− (div X) Y · dS

Thus, equation (51) for a top-form α dnx is equivalent to the well-known vector calculus identity

(X · ∇Y −Y · ∇X) = − curl (X×Y) + (div Y) X− (div X) Y .

N
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Exercise.

(a) Starting from

[u , v] α = £u(v α)− v (£uα)

prove the following

£u(v α)−£v(u α) = 2[u, v] α + v £uα− u £vα

= [u, v] α− u (v α) + d(u (v α))

(b) Evaluate the last equation for a k-form α with k = 3, 2, 1, in terms of vector calculus
expressions.

F

Answer.

(a)

[u, v] α = £u(v α)− v £uα

= d(u (v α)) + u d(v α)− v £uα

= d(u (v α)) + u (£vα− v dα)− v £uα

= d(u (v α)) + u £vα− u (v dα)− v £uα

[u, v] α + u (v α) = d(u (v α)) + (u £vα− v £uα)
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u £vα− v £uα = [u, v] α + u (v α)− d(u (v α))

v £uα− u £vα = [v, u] α + v (u α)− d(v (u α))

= −[u, v] α− u (v α) + d(u (v α))

£u(v α)−£v(u α) = 2[u, v] α + v £uα− u £vα

= [u, v] α− u (v dα) + d(u (v α))

(b) For a 3-form α = d3x (top form in 3D) one again finds the vector calculus identity in the previous exercise which
is antisymmetric under exchange of u and v,

(divv)u− (divu)v − curl(u× v) = (u · ∇)v − (v · ∇)u =: [u,v]

For a 2-form α = α · dS in 3D one finds the vector calculus identity

−u× curl(α× v) + v × curl(α× u) = α× [u,v] + (divα)(u× v) +∇(α · u× v)

in which we denote as in the previous vector calculus identity

[u,v] := (u · ∇)v − (v · ∇)u = − curl(u× v)− (divu)v + (divv)u

After the substitution of this expression for [u,v] obtained in the case of the 3-form α = d3x, one sees that the
vector calculus identity for a 2-form α = α · dS has cyclic permutation symmetry

u×curl(v×α)+v×curl(α×u)+α×curl(u×v) = (divu)(v×α)+(divv)(α×u)+(divα)(u×v)+∇(α·u×v)

Also, in the divergence-free case this reduces to

curl
(
u× curl(v ×α) + v × curl(α× u) +α× curl(u× v)

)
= 0.

For a 1-form α = α · dx, the result turns out to be trivial.

N



M 3-4-5 A16 Notes: Geometric Mechanics DD Holm Spring term 2020 100

7 Hamilton’s principle for fluid dynamics

7.1 Advected quantities in fluid dynamics

We regard fluid flow as a smooth invertible time-dependent transformation of initial conditions x0

regarded as fluid labels taking values in a configuration manifold M acted on by smooth invertible
maps Diff(M). Thus, we lift the motion of fluid parcels xt ∈ M with initial condition x0 ∈ M to
the manifold of diffeomorphisms by identifying it with a time-dependent curve gt ∈ Diff(M) with
g0 = Id, whose action from the left generates the motion xt,

xt = gtx0 with ẋt = ġtx0 = (ut ◦ gt)x0

g 1-

x

CurrentReference

g(t)

(t)

x0
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Advected quantity. A quantity at(xt) = a0(x0) which remains invariant under the flow is said to
be advected by the flow. In terms of the group action, advected quantities satisfy

a0(x0) = at(xt) = (at ◦ gt)(x0) = (g∗t at)(x0)

where g∗t at is the pull-back of at by gt. Invariance of an advected quantity implies an evolution
equation

0 =
d

dt
a0(x0) =

d

dt
(g∗t at)(x0) = g∗t

(
(∂t + £u)at

)
(x0) = (∂t + £u)at(xt)

where £u denotes the Lie derivative with respect to the vector field u = ġg−1 which generates the
flow gt.

Vice versa, we have the push-forward relation

d

dt
at(xt) =

d

dt
(a0g

−1
t )(xt) =

d

dt

(
(gt)∗a0

)
(xt) = −(£uat)(xt) .

The previous formula will be useful in taking variations of advected quantities in Hamilton’s prin-
ciple, since it implies the following formula for the variation of an advected quantity, at at fixed
t,

δat(xt) = a′t(xt) :=
( d
dε

∣∣∣
ε=0
at,ε

)
(xt) = −(£vtat)(xt) where vt =

(dgt,ε
dε

g−1
t,ε

)∣∣∣
ε=0

= g′g−1

where £v denotes the Lie derivative with respect to the vector field v = [gε
′g−1
ε ]ε=0 which generates

the flow gε.
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Equality of cross derivatives in t and ε implies the following pair of relations

(ġ)′ ◦ g−1 = (u ◦ g)′ ◦ g−1 = (∂xu)g′ ◦ g−1 + (u′ ◦ g) ◦ g−1

= (∂xu)v + u′

(g′ )˙ ◦ g−1 = (∂xv)u + v̇ ,

from which we conclude upon substituting u = ġg−1 that

δ(ġg−1) = (ġg−1)′ = v̇ + (∂xv)u− (∂xu)v = v̇ − [u, v] = v̇ − aduv = v̇ − adġg−1v

Now we are ready to compute the Euler-Poincaré equations for fluid dynamics.

7.2 Euler-Poincaré equations for fluid dynamics

We shall compute the compute the Euler-Poincaré equations for fluid dynamics using the Hamilton-
Pontryagin principle,

0 = δS = δ

∫ T

0

`(u, a0g
−1
t ) + 〈m, ġg−1 − u〉 dt

=

∫ T

0

〈
δ`

δu
−m, δu

〉
+

〈
δ`

δa
, −£va

〉
+
〈
m, ∂tv − adġg−1v

〉
+
〈
δm , ġg−1 − u

〉
dt

=

∫ T

0

〈
δ`

δu
−m, δu

〉
+

〈
δ`

δa
� a− ∂tm− ad∗ġg−1m, v

〉
+
〈
δm , ġg−1 − u

〉
dt + 〈m, v〉

∣∣∣T
0
,
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where we have used δ(a0g
−1
t ) = −£va and have defined the diamond operator (�) as

� : V ∗ × V → X∗ defined by
〈
δ`

δa
� a , v

〉
:=

〈
δ`

δa
, −£va

〉
and the ad∗ operation as

ad∗ : X× X∗ → X∗ defined by 〈ad∗um, v〉 =
〈
m, aduv

〉
In particular, ad∗um = £um, so that the fluid motion equation for m = m · dx⊗ d3x and advection
equations become

(∂t + £u)m =
δ`

δa
� a and (∂t + £u)a = 0

In general, fluid motion advects mass, so thatDt(xt)d
3xt = D0(x0)d3x0, which implies the continuity

equation
0 = (∂t + £u)(Dt(xt)d

3xt) =
(
∂tD + div(Du)

)
d3x

Consequently, the motion equation may be rewritten as(
∂t + £u

)
(D−1m · dx) =

1

D

δ`

δa
� a

in which 1
D
δ`
δa � a is a 1-form. Integrating this relation around a material loop ct moving with the

fluid yields
d

dt

∮
ct

(D−1m · dx) =

∮
ct

1

D

δ`

δa
� a
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This is the Kelvin-Noether theorem, which arises from relabelling symmetry of the Lagrangian fluid
parcels.

7.3 Euler’s fluid equations

Euler’s equations for the incompressible motion of an ideal flow of a fluid of unit density and velocity
u satisfying div u = 0 in a rotating frame with Coriolis parameter curl R = 2Ω are given in the
form of Newton’s law of force by

∂t u + u · ∇u︸ ︷︷ ︸
acceleration

= u× 2Ω︸ ︷︷ ︸
Coriolis

− ∇p︸︷︷︸
pressure

. (53)

Exercise. Prove that Euler’s equations in a rotating frame arise as Euler-Poincaré equa-
tions from Hamilton’s variational principle for the following action integral.

0 = δS =

∫ T

0

1

2
D|u|2 + Du ·R− p(D − 1) d3x dt

F

The Newton’s law equation for Euler fluid motion in (53) may be rearranged into an alternative
form,

∂t v − u× ω +∇
(
p +

1

2
|u|2
)

= 0 , (54)
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by denoting
v ≡ u + R , ω = curl v = curl u + 2Ω , (55)

and using the fundamental vector calculus identity of fluid dynamics

u · ∇v + vj∇uj = −u× curl v +∇(u · v) . (56)

This identity follows from equality of the dynamic and geometricdefinitions of the Lie derivative
£uα of a k-form α ∈ Λk(M) by the vector field u = ġg−1 tangent to the flow gt on M as

£uα =
d

dt

∣∣∣∣
t=0

(g∗tα) = u dα + d(u α), (57)

in which the last equality is Cartan’s geometric formula for the Lie derivative.
For the case of the circulation 1-form α = v · dx, this becomes

£u(v · dx) =
(
u · ∇v + vj∇uj

)
· dx

= u d(v · dx) + d(u v · dx)

= u (curl v · dS) + d(u · v)

=
(
− u× curl v +∇(u · v)

)
· dx ,

(58)

and the identity (55) emerges. This identity and the calculation (58) recasts Euler’s fluid motion
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equation into the following geometric form:(
∂

∂t
+ £u

)
(v · dx) = (∂tv − u× curl v +∇(u · v)) · dx

= −∇
(
p +

1

2
|u|2 − u · v

)
· dx

= − d
(
p +

1

2
|u|2 − u · v

)
.

(59)

Requiring preservation of the divergence-free (volume-preserving) constraint ∇ · u = 0 results in
a Poisson equation for pressure p, which may be written in several equivalent forms,

−∆p = div
(
u · ∇u− u× 2Ω

)
= ui,juj,i − div

(
u× 2Ω

)
= tr S2 − 1

2
|curl u|2 − div

(
u× 2Ω

)
, (60)

where S = 1
2(∇u +∇uT ) is the strain-rate tensor.

We introduce the Lamb vector,
` := −u× ω , (61)

which represents the nonlinearity in Euler’s fluid equation (54). The Poisson equation (60) for
pressure p may now be expressed in terms of the divergence of the Lamb vector,

− ∆

(
p +

1

2
|u|2

)
= div(−u× curl v) = div ` . (62)
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Remark 49 (Boundary conditions).
Because the velocity u must be tangent to any fixed boundary, the normal component of the motion
equation must vanish. This requirement produces a Neumann condition for pressure given by

∂n

(
p +

1

2
|u|2

)
+ n̂ · ` = 0 , (63)

at a fixed boundary with unit outward normal vector n̂.

Remark 50 (Helmholtz vorticity dynamics).
Taking the curl of the Euler fluid equation (54) yields the Helmholtz vorticity equation

∂tω − curl(u× ω) = 0 , (64)

whose geometrical meaning will emerge in discussing Stokes’ Theorem 66 for the vorticity of a
rotating fluid.

The rotation terms have now been fully integrated into both the dynamics and the boundary
conditions. In this form, theKelvin circulation theorem and the Stokes vorticity theorem
will emerge naturally together as geometrical statements.
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7.4 Kelvin’s circulation theorem

Theorem 51 (Kelvin’s circulation theorem). The Euler equations (53) preserve the circula-
tion integral I(t) defined by

I(t) =

∮
c(u)

v · dx , (65)

where c(u) is a closed circuit moving with the fluid at velocity u.

Proof. The dynamical definition of the Lie derivative in (57) yields the following for the time rate
of change of this circulation integral:

d

dt

∮
c(u)

v · dx =

∮
c(u)

(
∂

∂t
+ £u

)
(v · dx)

=

∮
c(u)

(
∂v

∂t
+
∂v

∂xj
uj + vj

∂uj

∂x

)
· dx

= −
∮
c(u)

∇
(
p +

1

2
|u|2 − u · v

)
· dx

= −
∮
c(u)

d

(
p +

1

2
|u|2 − u · v

)
= 0 . (66)

The last step in the proof follows, because the integral of an exact differential around a closed loop
vanishes.
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The exterior derivative of the Euler fluid equation in the form (59) yields Stokes’ theorem, after
using the commutativity of the exterior and Lie derivatives [d, £u] = 0,

d£u(v · dx) = d
(
− u× curlv · dx + d(u · v)

)
= £u(curl v · dS)

= − curl
(
u× curl v

)
· dS

=
[
u · ∇curl v + curl v(div u)− (curl v) · ∇u

]
· dS ,

(by div u = 0) =
[
u · ∇curl v − (curl v) · ∇u

]
· dS

=: [u, curl v ] · dS , (67)

where [u, curl v ] denotes (minus) the Jacobi–Lie bracket of the vector fields u and curl v.
This calculation proves the following.

Theorem 52. Euler’s fluid equations (54) imply that
∂ω

∂t
= − [u, ω ] (68)

where [u, ω ] denotes the Jacobi–Lie bracket of the divergenceless vector fields u and ω := curl v.

The exterior derivative of Euler’s equation in its geometric form (59) is equivalent to the curl of its
vector form (54). That is,

d

(
∂

∂t
+ £u

)
(v · dx) =

(
∂

∂t
+ £u

)
(curl v · dS) = 0 . (69)
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Hence from the calculation in (67) and the Helmholtz vorticity equation (69) we have(
∂

∂t
+ £u

)
(curl v · dS) =

(
∂tω − curl(u× ω)

)
· dS = 0 , (70)

in which one denotes ω := curl v. This Lie-derivative version of the Helmholtz vorticity equation
may be used to prove the following form of Stokes’ theorem for the Euler equations in a rotating
frame.
Theorem 53. [Kelvin/Stokes’ theorem for vorticity of a rotating fluid]

d

dt

∮
c(u)

v · dx =
d

dt

∫∫
S(u)

curl v · dS

=

∫∫
S(u)

(
∂

∂t
+ £u

)
(curl v · dS)

=

∫∫
S(u)

(
∂tω − curl (u× ω)

)
· dS = 0 ,

(71)

where the surface S(u) is bounded by an arbitrary circuit ∂S = c(u) moving with the fluid.

7.5 Steady solutions: Lamb surfaces

According to Theorem 52, Euler’s fluid equations (54) imply that
∂ω

∂t
= − [u, ω ] . (72)
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Consequently, the vector fields u, ω in steady Euler flows, which satisfy ∂tω = 0, also satisfy
the condition necessary for the Frobenius theorem to hold – namely, that their Jacobi–Lie bracket
vanishes. That is, in smooth steady, or equilibrium, solutions of Euler’s fluid equations, the flows of
the two divergenceless vector fields u and ω commute with each other and lie on a surface in three
dimensions.

A sufficient condition for this commutation relation is that the Lamb vector ` := −u× curl v

in (61) satisfies
` := −u× curl v = ∇H(x) , (73)

for some smooth function H(x). This condition means that the flows of vector fields u and curl v

(which are steady flows of the Euler equations) are both confined to the same surface H(x) = const.
Such a surface is called a Lamb surface.

The vectors of velocity (u) and total vorticity (curl v) for a steady Euler flow are both perpendic-
ular to the normal vector to the Lamb surface along ∇H(x). That is, the Lamb surface is invariant
under the flows of both vector fields, viz

£uH = u · ∇H = 0 and £curl vH = curl v · ∇H = 0 . (74)

The Lamb surface condition (73) has the following coordinate-free representation.

Theorem 54 (Lamb surface condition). The Lamb surface condition (73) is equivalent to the
following double substitution of vector fields into the volume form,

dH = u curl v d 3x . (75)
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Proof. Recall that the contraction of vector fields with forms yields the following useful formula for
the surface element:

∇ d 3x = dS . (76)

Then using results from previous exercises in vector calculus operations one finds by direct compu-
tation that

u curl v d 3x = u (curl v · dS)

= −
(
u× curl v

)
· dx

= ∇H · dx
= dH . (77)

Remark 55.
Formula (77)

u (curl v · dS) = dH

is to be compared with
Xh ω = dH ,

in the definition of a Hamiltonian vector field in Equation (42) of Theorem 27. Likewise, the
stationary case of the Helmholtz vorticity equation (69), namely,

£u(curl v · dS) = 0 , (78)
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is to be compared with the proof of Poincaré’s theorem in Corollary 30

£Xhω = d(Xh ω) = d2H = 0 .

Thus, the two-form curl v · dS plays the same role for stationary Euler fluid flows as the sym-
plectic form dq ∧ dp plays for canonical Hamiltonian flows. We seek the corresponding symplectic
coordinates.

Definition 56. The Clebsch representation of the one-form v · dx is defined by

v · dx = −Π dΞ + dΨ . (79)

The functions Ξ, Π and Ψ are called Clebsch potentials for the vector v.4

In terms of the Clebsch representation (79) of the one-form v·dx, the total vorticity flux curl v·dS =

d(v · dx) is the exact two-form,
curl v · dS = dΞ ∧ dΠ . (80)

This amounts to writing the flow lines of the vector field of the total vorticity curl v as the intersec-
tions of level sets of surfaces Ξ = const and Π = const. In other words,

curl v = ∇Ξ×∇Π , (81)

with the assumption that these level sets foliate R3. That is, one assumes that any point in R3

along the flow of the total vorticity vector field curl v may be assigned to a regular intersection of
these level sets. The main result of this assumption is the following theorem.

4The Clebsch representation is another example of a cotangent lift momentum map.
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Theorem 57 (Lamb surfaces are symplectic manifolds). [ArKh1992, ArKh1998] The
steady flow of the vector field u satisfying the symmetry relation given by the vanishing of the
commutator [u, curl v ] = 0 on a three-dimensional manifold M ∈ R3 reduces to incompressible
flow on a two-dimensional symplectic manifold whose canonically conjugate coordinates (Ξ, Π) are
provided by the total vorticity flux

curl v d 3x = curl v · dS = dΞ ∧ dΠ .

The reduced flow is canonically Hamiltonian on this symplectic manifold. Furthermore, the reduced
Hamiltonian is precisely the restriction of the invariant H onto the reduced phase space.

Proof. Restricting formula (77) to coordinates on a total vorticity flux surface (80) yields the exterior
derivative of the Hamiltonian,

dH(Ξ, Π) = u (curl v · dS)

= u (dΞ ∧ dΠ)

= (u · ∇Ξ) dΠ− (u · ∇Π) dΞ

=:
dΞ

dT
dΠ− dΠ

dT
dΞ

=
∂H

∂Π
dΠ +

∂H

∂Ξ
dΞ , (82)

where T ∈ R is the time parameter along the flow lines of the steady vector field u, which carries the
Lagrangian fluid parcels. On identifying corresponding terms, the steady flow of the fluid velocity
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u is found to obey the canonical Hamiltonian equations,

(u · ∇Ξ) = £uΞ =:
dΞ

dT
=
∂H

∂Π
=
{

Ξ, H
}
, (83)

(u · ∇Π) = £uΠ =:
dΠ

dT
= − ∂H

∂Ξ
=
{

Π, H
}
, (84)

where { · , · } is the canonical Poisson bracket for the symplectic form dΞ ∧ dΠ.

Corollary 58. The vorticity flux dΞ ∧ dΠ is invariant under the flow of the velocity vector field u.

Proof. By (82), one verifies

£u(dΞ ∧ dΠ) = d
(
u (dΞ ∧ dΠ)

)
= d2H = 0 .

This is the standard computation in the proof of Poincaré’s theorem in Corollary 30 for the preser-
vation of a symplectic form by a canonical transformation. Its interpretation here is that the steady
Euler flows preserve the total vorticity flux, curl v · dS = dΞ ∧ dΠ.

7.6 The conserved helicity of ideal incompressible flows

Definition 59 (Helicity). The helicity Λ[curl v] of a divergence-free vector field curl v that is tangent
to the boundary ∂D of a simply connected domain D ∈ R3 is defined as

Λ[curl v] =

∫
D

v · curl v d 3x , (85)

where v is a divergence-free vector-potential for the field curl v.
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Remark 60.
The helicity is unchanged by adding a gradient to the vector v. Thus, v is not unique and div v = 0

is not a restriction for simply connected domains in R3, provided curl v is tangent to the boundary
∂D.

The helicity of a vector field curl v measures the total linking of its field lines, or their relative
winding. (For details and mathematical history, see [ArKh1998].) The idea of helicity goes back to
Helmholtz and Kelvin in the 19th century. The principal feature of this concept for fluid dynamics
is embodied in the following theorem.

Theorem 61 (Euler flows preserve helicity). When homogeneous or periodic boundary con-
ditions are imposed, Euler’s equations for an ideal incompressible fluid flow in a rotating frame with
Coriolis parameter curl R = 2Ω preserves the helicity

Λ[curl v] =

∫
D

v · curl v d 3x , (86)

with v = u+R, for which u is the divergenceless fluid velocity (div u = 0) and curl v = curl u+ 2Ω

is the total vorticity.

Proof. Rewrite the geometric form of the Euler equations (59) for rotating incompressible flow with
unit mass density in terms of the circulation one-form v := v · dx as(

∂t + £u

)
v = − d

(
p +

1

2
|u|2 − u · v

)
=: − d$ , (87)



M 3-4-5 A16 Notes: Geometric Mechanics DD Holm Spring term 2020 117

and £u d
3x = 0. Here, $ is an augmented pressure variable,

$ := p +
1

2
|u|2 − u · v . (88)

The fluid velocity vector field is denoted as u = u ·∇ with div u = 0. Then the helicity density,
defined as

v ∧ dv = v · curl v d 3x = λ d 3x , with λ = v · curl v , (89)

obeys the dynamics it inherits from the Euler equations,(
∂t + £u

)
(v ∧ dv) = −d$ ∧ dv − v ∧ d2$ = −d($dv) , (90)

after using d2$ = 0 and d2v = 0. In vector form, this result may be expressed as a conservation
law, (

∂tλ + div λu
)
d 3x = − div($ curl v) d 3x . (91)

Consequently, the time derivative of the integrated helicity in a domain D obeys

d

dt
Λ[curl v] =

∫
D

∂tλ d
3x = −

∫
D

div(λu + $ curl v) d 3x

= −
∮
∂D

(λu + $ curl v) · dS , (92)

which vanishes when homogeneous, or periodic, or even Neumann boundary conditions are imposed
on the values of u and curl v at the boundary ∂D.
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Remark 62.
This result means the helicity integral

Λ[curl v] =

∫
D

λ d 3x

is conserved in periodic domains, or in all of R3 with vanishing boundary conditions at spatial
infinity. However, if either the velocity or total vorticity at the boundary possesses a nonzero
normal component, then the boundary is a source of helicity (that is, it causes winding of field lines
of curl v). For a fixed impervious boundary, the normal component of velocity does vanish, but no
such condition is imposed on the total vorticity by the physics of fluid flow. Thus, we have the
following.

Corollary 63. A flux of total vorticity curl v into the domain is a source of helicity.

Exercise. Use Cartan’s formula in (57) to compute £u(v ∧ dv) in Equation (90). F

Exercise. Compute the helicity for the one-form v = v · dx in the Clebsch representation
(79). What does this mean for the linkage of the vortex lines that admit the Clebsch
representation? F

Theorem 64 (Diffeomorphisms preserve helicity). The helicity Λ[ξ] of any divergenceless vector
field ξ is preserved under the action on ξ of any volume-preserving diffeomorphism of the manifold
M [ArKh1998].
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Remark 65 (Helicity is a topological invariant).
The helicity Λ[ξ] is a topological invariant, not a dynamical invariant, because its invariance is
independent of which diffeomorphism acts on ξ. This means the invariance of helicity is independent
of which Hamiltonian flow produces the diffeomorphism. This is the hallmark of a Casimir function.
Although it is defined above with the help of a metric, every volume-preserving diffeomorphism
carries a divergenceless vector field ξ into another such field with the same helicity. However,
independently of any metric properties, the action of diffeomorphisms does not create or destroy
linkages of the characteristic curves of divergenceless vector fields.

7.7 Ertel theorem for potential vorticity

Euler–Boussinesq equations The Euler–Boussinesq equations for the incompressible motion of an ideal
flow of a stratified fluid and velocity u satisfying div u = 0 in a rotating frame with Coriolis
parameter curl R = 2Ω are given by

∂t u + u · ∇u︸ ︷︷ ︸
acceleration

= − gb∇z︸ ︷︷ ︸
buoyancy

+ u× 2Ω︸ ︷︷ ︸
Coriolis

− ∇p︸ ︷︷ ︸
pressure

(93)

where −g∇z is the constant downward acceleration of gravity and b is the buoyancy, a scalar
function of space and time which satisfies the advection relation,

∂t b + u · ∇b = 0 . (94)
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As for Euler’s equations without buoyancy, requiring preservation of the divergence-free (volume-
preserving) constraint ∇ · u = 0 results in a Poisson equation for pressure p,

− ∆

(
p +

1

2
|u|2
)

= div(−u× curl v) + g∂zb , (95)

which satisfies a Neumann boundary condition because the velocity u must be tangent to the
boundary. where we denote

v ≡ u + R , ω = curl v = curl u + 2Ω , (96)

The Newton’s law form of the Euler–Boussinesq equations (93) may be rearranged as

∂t v − u× curl v + gb∇z +∇
(
p +

1

2
|u|2
)

= 0 , (97)

where v ≡ u + R and ∇ · u = 0.

Exercise. Prove that the Euler–Boussinesq equations in (93) emerge as Euler-Poincaré
equations from Hamilton’s variational principle for the following action integral.

0 = δS = δ

∫ T

0

1

2
D|u|2 + Du ·R−Dbz − p(D − 1) d3x dt

F
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Theorem 66. [The Kelvin/Stokes’ theorem for vorticity of a stratified, rotating
fluid]

d

dt

∮
c(u)

v · dx =
d

dt

∫∫
S(u)

curl v · dS

=

∫∫
S(u)

(
∂

∂t
+ £u

)
(curl v · dS)

=

∫∫
S(u)

(
∂tω − curl (u× ω)

)
· dS

=

∫∫
S(u)

(
− g∇b×∇z

)
· dS ,

(98)

where the surface S(u) is bounded by an arbitrary circuit ∂S = c(u) moving with the fluid. Thus,
non-alignment of the gradient of buoyancy ∇b with the vertical ∇z creates circulation. Compare
this result with equation (71) in the absence of stratification.

Geometrically, equation (97) may be written as(
∂t + £u

)
v + gbdz + d$ = 0 , (99)

where $ is defined in (88). In addition, the buoyancy satisfies(
∂t + £u

)
b = 0 , with £u d

3x = 0 . (100)
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The fluid velocity vector field is denoted as u = u · ∇ and the circulation one-form as v = v · dx.
The exterior derivatives of the two equations in (99) are written as(

∂t + £u

)
dv = −gdb ∧ dz and

(
∂t + £u

)
db = 0 . (101)

Consequently, one finds from the product rule for Lie derivatives (43) that(
∂t + £u

)
(dv ∧ db) = 0 or ∂t q + u · ∇q = 0 , (102)

in which the quantity
q = ∇b · curl v , (103)

is called potential vorticity and is abbreviated as PV. The potential vorticity is an important
diagnostic for many processes in geophysical fluid dynamics. Conservation of PV on fluid parcels is
called Ertel’s theorem.

Remark 67 (Ertel’s theorem for the vorticity vector field).
Writing the vorticity vector field ω = ω · ∇, we have(

∂t + £u

)
ω = ∂tω + [u, ω] = g∇z ×∇b · ∇ .

Thus, conservation of the potential vorticity may also be proved by the product rule, as(
∂t + £u

)
q =

(
∂t + £u

)
(ω · ∇b) =

(
∂t + £u

)
(ωb) =

((
∂t + £u

)
ω
)
b + ω

(
∂t + £u

)
b = 0 .
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Remark 68 (Material derivative formulation).
Denoting

D

Dt
= ∂t + £u and ω = ω · ∇

provides an intuitive expression of the Ertel theorem (102) that helps understand it in terms of the
time derivative D

Dt following the flow of the fluid particles. Namely, it suggests writing in vector
form

D

Dt
(ω · ∇) = g∇z ×∇b · ∇ and

Db

Dt
= 0 ,

so that the product rule for derivatives yields conservation of PV on fluid parcels, as

Dq

Dt
=
D

Dt
(ω · ∇b) =

( D
Dt

(ω · ∇)
)
b + (ω · ∇)

Db

Dt
= g∇z ×∇b · ∇b + (ω · ∇)

Db

Dt
= 0 .

Remark 69 (The conserved quantities associated with Ertel’s theorem).
The constancy of the scalar quantities b and q on fluid parcels implies conservation of the spatially
integrated quantity,

CΦ =

∫
D

Φ(b, q) d 3x , (104)

for any smooth function Φ for which the integral exists.
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Proof.

d

dt
CΦ =

∫
D

Φb∂tb + Φq∂tq d
3x = −

∫
D

Φbu · ∇b + Φqu · ∇q d 3x

= −
∫
D

u · ∇Φ(b, q) d 3x = −
∫
D

∇ ·
(
u Φ(b, q)

)
d 3x = −

∮
∂D

Φ(b, q) u · n̂ d S = 0 ,

when the normal component of the velocity u · n̂ vanishes at the boundary ∂D.

Remark 70 (Energy conservation).
In addition to CΦ, the Euler–Boussinesq fluid equations (97) also conserve the total energy

E =

∫
D

1

2
|u|2 + bz d 3x , (105)

which is the sum of the kinetic and potential energies.

We do not develop the Hamiltonian formulation of the three-dimensional stratified rotating fluid
equations studied here. However, one may imagine that the conserved quantity CΦ with the arbitrary
function Φ would play an important role. For more explanation in the framework of Geometric
Mechanics, see [Ho2011GM] and references therein.

These issues will be discussed in Spring term in M3-4-5A34, Geometry, Mechanics and Symmetry.
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7.8 Rotating shallow water (RSW) equations

Consider dynamics of rotating shallow water (RSW) on a two dimensional domain with horizontal
planar coordinates x = (x, y). This RSW motion is governed by the following nondimensional
equations for variables depending on (x, t) comprising the horizontal fluid velocity vector u = (u, v)

and the total depth η,

ε
d

dt
u + f (x)ẑ× u +∇h = 0 ,

∂η

∂t
+∇ · (ηu) = 0 , (106)

with notation
d

dt
:=

(
∂

∂t
+ u · ∇

)
and h :=

(
η −B
εF

)
,

where ε � 1 and F = O(1) are nondimensional constants. These equations include spatially
variable Coriolis parameter f (x)ẑ = curlR(x) and mean depth B = B(x).

Exercise.

(i) Show that the RSW equations in (106) follow as Euler-Poincaré equations(
∂t + £u

)1

η

δl

δu
=

1

η

δl

δη
� η and

(
∂t + £u

)(
η d2x

)
= 0 ,

from Hamilton’s variational principle for the following action integral.

0 = δS with S =

∫ T

0

l(u, η)dt and l(u, η) =

∫
ε

2
η|u|2 + ηu ·R(x)− (η −B(x))2

2εF
d2x .
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in which η(x, t) d2x is an advected quantity. Recall that � : V ∗ × V → X∗ is defined
by 〈 δ`δa � a , v〉 := 〈 δ`δa , −£va〉 for vector field v ∈ X and L2 pairing 〈 · , · 〉.

(ii) Use the Euler-Poincaré equations to show that the RSW equations satisfy Kelvin’s
circulation theorem

d

dt

∮
ct

v · dx = 0 ,

with v = εu + R(x).
(iii) Use the Euler-Poincaré equations to show that the RSW equations satisfy(

∂t + £u

)
d
(
v · dx

)
= 0 ,

with v = εu + R(x).
(iv) Show that d(v · dx) = ω d2x, with ω := ẑ · curlv.
(v) Use (∂t +£u)(ω d

2x) = 0 obtained in the previous two parts to derive conservation of
potential vorticity on fluid particles.

F

Answer.

1. The Euler-Poincaré equations are(
∂t + £u

)1

η

δl

δu
=

1

η

δl

δη
� η and

(
∂t + £u

)(
η d2x

)
= 0 ,
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where η−1 δl
δu = (εu + R(x)) · dx =: v · dx and η−1 δl

δη � η = d( ε2|u|
2 + u ·R− h). Thus,(

∂t + £u

)
(v · dx) = d

(ε
2
|u|2 + u ·R− h

)
with v = εu + R(x).

2. Integrating the previous equation around a loop moving with the fluid produces
d

dt

∮
ct

v · dx =

∮
ct

d
(ε

2
|u|2 + u ·R− h

)
= 0 ,

with v = εu + R(x).

3. The differential of the Euler-Poincaré equation yields with ω := ẑ · curlv(
∂t + £u

)
(ωd2x) =

(
∂t + £u

)
d(v · dx) = d2

(ε
2
|u|2 + u ·R− h

)
= 0

upon commuting the differential d with the Lie derivative and using d2 = 0.

4. By direct computation,

d(v ·dx) = vi,jdx
j∧dxi = v1,2dx

2∧dx1 +v2,1dx
1∧dx2 = (v2,1−v1,2) d2x = ẑ ·curlv d2x = ω d2x

5. We have (∂t+£u)(ωd
2x) and (∂t+£u)(ηd

2x). Therefore, by the product rule for the evolutionary
operator (∂t + £u) we have

0 = (∂t + £u)
(ω
η

(ηd2x)
)

=
(

(∂t + £u)
ω

η

)
(ηd2x) +

ω

η
(∂t + £u)(ηd

2x)
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Since the second term vanishes via the continuity equation, (∂t+£u)(ηd
2x), the first term yields

0 = (∂t + £u)
ω

η
=

(
∂

∂t
+ u · ∇

)
ω

η
. Hence,

dq

dt
= 0 , with q := ω/η .

This is conservation of potential vorticity on fluid particles.

N
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