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1 M3-4-5A16 Assessed Problems # 1

Exercise 1.1 (Poisson brackets for the Hopf map)

Figure 1: The Hopf map.

In coordinates (a1, a2) ∈ C2, the Hopf map C2/S1 → S3 → S2 is obtained by transforming to the
four quadratic S1-invariant quantities

(a1, a2)→ Qjk = aja
∗
k , with j, k = 1, 2 .

Let the C2 coordinates be expressed as

aj = qj + ipj

in terms of canonically conjugate variables satisfying the fundamental Poisson brackets

{qk, pm} = δkm with k,m = 1, 2.

(A) Compute the Poisson brackets {aj , a∗k} for j, k = 1, 2.

(B) Is the transformation (q, p)→ (a, a∗) canonical? Explain why or why not.

(C) Compute the Poisson brackets among Qjk, with j, k = 1, 2.

(D) Make the linear change of variables,

X0 = Q11 +Q22 , X1 + iX2 = 2Q12 , X3 = Q11 −Q22 ,

and compute the Poisson brackets among (X0, X1, X2, X3).

(E) Express the Poisson bracket {F (X), H(X)} in vector form among functions F and H of X =
(X1, X2, X3).

(F) Show that the quadratic invariants (X0, X1, X2, X3) themselves satisfy a quadratic relation.

How is this relevant to the Hopf map?

Is there a momentum map involved?

Hint: What Lie group acts on C2 ?
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Exercise 1.2 (Motion on a sphere)

Figure 2: Motion on a sphere.

Motion on a sphere: Part 1, the constraint

Consider Hamilton’s principle for the following constrained Lagrangian on TR3,

L(q, q̇) =
1

2
‖q̇‖2 − µ

2

(
1− ‖q‖2

)
.

Here the quantity µ is called a Lagrange multiplier and must be determined as part of the solution.

Provide a geometric mechanics description of the dynamical system governed by this Lagrangian.
In particular, compute the following for it.

1. Fibre derivative

2. Euler-Lagrange equations

3. Hamiltonian and canonical equations

4. Discussion of solutions

Motion on a sphere: Part 2, the penalty
Provide the same kind of geometric mechanics description of the dynamical system governed by

the Lagrangian

Lε(q, q̇) =
1

2
‖q̇‖2 − 1

4ε
(1− ‖q‖2)2

for a particle with coordinates q ∈ R3 and constants ε > 0. For this, let γε(t) be the curve in R3

obtained by solving the Euler-Lagrange equations for Lε with the initial conditions q0 = γε(0), v0 =
γ̇ε(0). Show that

lim
ε→0

γε(t) = γ0(t)

traverses a great circle on the two-sphere S2, provided that q0 has unit length and that q0 · v0 = 0.
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Exercise 1.3 (The free particle in H2: #1)

Figure 3: Geodesics on the Lobachevsky half-plane.

In Appendix I of Arnold’s book, Mathematical Methods of Classical Mechanics, page 303, we read.

EXAMPLE. We consider the upper half-plane y > 0 of the plane of complex numbers
z = x+ iy with the metric

ds2 =
dx2 + dy2

y2
.

It is easy to compute that the geodesics of this two-dimensional riemannian manifold are
circles and straight lines perpendicular to the x-axis. Linear fractional transformations
with real coefficients

z → az + b

cz + d
(1)

are isometric transformations of our manifold (H2), which is called the Lobachevsky plane.1

Consider a free particle of mass m moving on H2. Its Lagrangian is the kinetic energy corresponding
to the Lobachevsky metric Namely,

L =
m

2

(
ẋ2 + ẏ2

y2

)
. (2)

(A) (1) Write the fibre derivatives of the Lagrangian (2) and

(2) compute its Euler-Lagrange equations.

These equations represent geodesic motion on H2.

(3) Evaluate the Christoffel symbols.

(B) (1) List the Lie symmetries of the Lagrangian in (2) and

(2) show that the quantities

u =
ẋ

y
and v =

ẏ

y
(3)

are invariant under a subgroup of these symmetry transformations.

(3) Specify the subgroup in terms of the representation (1).

(C) (1) Use the invariant quantities (u, v) in (3) as new variables in Hamilton’s principle.

(2) Find the corresponding conserved Noether quantities.

1These isometric transformations of H2 have deep significance in physics. They correspond to the most general Lorentz
transformation of space-time.
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(D) Transform the Euler-Lagrange equations from x and y to the variables u and v that are invariant
under the symmetries of the Lagrangian.

Then:

(1) Show that the resulting system conserves the kinetic energy expressed in these variables.

(2) Discuss its integral curves and critical points in the uv plane.

(3) Show that the u and v equations can be integrated explicitly in terms of sech and tanh.

(E) (1) Legendre transform the system to the Hamiltonian side and

(2) find the Poisson brackets for the variables u and v.

Exercise 1.4 (The free particle in H2: #2)

Figure 4: Geodesics on the Lobachevsky half-plane.

Consider the following pair of differential equations for (u, v) ∈ R2,

u̇ = uv , u̇ = −u2 . (4)

These equations have discrete symmetries under combined reflection and time reversal, (u, t) →
(−u,−t) and (v, t)→ (−v,−t). (This is called PT symmetry in the (u, v) plane.)

(A) Find 2× 2 real matrices L and B for which the system (4) may be written as a Lax pair, namely,
as

dL

dt
= [L,B] .

Explain what the Lax pair relation means and determine a constant of the motion from it.

(B) Write the system (4) as a double matrix commutator, dL
dt = [L, [L,N ] ]. In particular, find N

explicitly and explains what this means for the solutions.

(C) Explain why the solution behaviour found in the previous part is consistent with the behaviour
predicted by the double bracket relation.
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Exercise 1.5 (Nambu Poisson brackets on R3)

Figure 5: Motion along intersections of surfaces in R3.

(A) Show that for smooth functions c, f, h : R3 → R, the R3-bracket defined by

{f, h} = −∇c · ∇f ×∇h

satisfies the defining properties of a Poisson bracket. Is it also a derivation satisfying the Leibnitz
relation for a product of functions on R3? If so, why?

(B) How is the R3-bracket related to the canonical Poisson bracket in the plane?

(C) The Casimirs (or distinguished functions, as Lie called them) of a Poisson bracket satisfy

{c, h}(x) = 0 , for all h(x)

Part 5 verifies that the R3-bracket satisfies the defining properties of a Poisson bracket. What are
the Casimirs for the R3 bracket?

(D) Write the motion equation for the R3-bracket

ẋ = {x, h}

in vector form using gradients and cross products. Show that the corresponding Hamiltonian
vector field Xh = { · , h} has zero divergence.

(E) Show that under the R3-bracket, the Hamiltonian vector fields Xf = { · , f}, Xh = { · , h} satisfy
the following anti-homomorphism that relates the commutation of vector fields to the R3-bracket
operation between smooth functions on R3,

[Xf , Xh] = −X{f,h}.

Hint: commutation of divergenceless vector fields does satisfy the Jacobi identity.

(F) Show that the motion equation for the R3-bracket is invariant under a certain linear combination
of the functions c and h. Interpret this invariance geometrically.


