1 M3-4-5A16 Assessed Problems # 1

Exercise 1.1 (Poisson brackets for the Hopf map)

Figure 1: The Hopf map.

In coordinates $(a_1, a_2) \in \mathbb{C}^2$, the Hopf map $\mathbb{C}^2/S^1 \to S^3 \to S^2$ is obtained by transforming to the four quadratic S^1 -invariant quantities

$$(a_1, a_2) \to Q_{jk} = a_j a_k^*, \text{ with } j, k = 1, 2.$$

Let the \mathbb{C}^2 coordinates be expressed as

$$a_i = q_i + ip_i$$

in terms of canonically conjugate variables satisfying the fundamental Poisson brackets

$$\{q_k, p_m\} = \delta_{km}$$
 with $k, m = 1, 2$.

- (A) Compute the Poisson brackets $\{a_j, a_k^*\}$ for j, k = 1, 2.
- (B) Is the transformation $(q, p) \to (a, a^*)$ canonical? Explain why or why not.
- (C) Compute the Poisson brackets among Q_{jk} , with j, k = 1, 2.
- (D) Make the linear change of variables,

$$X_0 = Q_{11} + Q_{22}$$
, $X_1 + iX_2 = 2Q_{12}$, $X_3 = Q_{11} - Q_{22}$,

and compute the Poisson brackets among (X_0, X_1, X_2, X_3) .

- (E) Express the Poisson bracket $\{F(\mathbf{X}), H(\mathbf{X})\}$ in vector form among functions F and H of $\mathbf{X} = (X_1, X_2, X_3)$.
- (F) Show that the quadratic invariants (X_0, X_1, X_2, X_3) themselves satisfy a quadratic relation. How is this relevant to the Hopf map?

Is there a momentum map involved?

Hint: What Lie group acts on \mathbb{C}^2 ?

Exercise 1.2 (Motion on a sphere)

Figure 2: Motion on a sphere.

Motion on a sphere: Part 1, the constraint

Consider Hamilton's principle for the following constrained Lagrangian on $T\mathbb{R}^3$,

$$L(\mathbf{q}, \dot{\mathbf{q}}) = \frac{1}{2} ||\dot{\mathbf{q}}||^2 - \frac{\mu}{2} (1 - ||\mathbf{q}||^2).$$

Here the quantity μ is called a **Lagrange multiplier** and must be determined as part of the solution.

Provide a geometric mechanics description of the dynamical system governed by this Lagrangian. In particular, compute the following for it.

- 1. Fibre derivative
- 2. Euler-Lagrange equations
- 3. Hamiltonian and canonical equations
- 4. Discussion of solutions

Motion on a sphere: Part 2, the penalty

Provide the same kind of geometric mechanics description of the dynamical system governed by the Lagrangian

$$L_{\epsilon}(\mathbf{q}, \dot{\mathbf{q}}) = \frac{1}{2} ||\dot{\mathbf{q}}||^2 - \frac{1}{4\epsilon} (1 - ||\mathbf{q}||^2)^2$$

for a particle with coordinates $\mathbf{q} \in \mathbb{R}^3$ and constants $\epsilon > 0$. For this, let $\gamma_{\epsilon}(t)$ be the curve in \mathbb{R}^3 obtained by solving the Euler-Lagrange equations for L_{ϵ} with the initial conditions $\mathbf{q}_0 = \gamma_{\epsilon}(0)$, $\mathbf{v}_0 = \dot{\gamma}_{\epsilon}(0)$. Show that

$$\lim_{\epsilon \to 0} \gamma_{\epsilon}(t) = \gamma_0(t)$$

traverses a great circle on the two-sphere S^2 , provided that \mathbf{q}_0 has unit length and that $\mathbf{q}_0 \cdot \mathbf{v}_0 = 0$.

Exercise 1.3 (The free particle in \mathbb{H}^2 : #1)

Figure 3: Geodesics on the Lobachevsky half-plane.

In Appendix I of Arnold's book, Mathematical Methods of Classical Mechanics, page 303, we read.

EXAMPLE. We consider the upper half-plane y > 0 of the plane of complex numbers z = x + iy with the metric

$$ds^2 = \frac{dx^2 + dy^2}{y^2} \,.$$

It is easy to compute that the geodesics of this two-dimensional riemannian manifold are circles and straight lines perpendicular to the x-axis. Linear fractional transformations with real coefficients

$$z \to \frac{az+b}{cz+d} \tag{1}$$

are isometric transformations of our manifold (\mathbb{H}^2), which is called the *Lobachevsky plane*.¹

Consider a free particle of mass m moving on \mathbb{H}^2 . Its Lagrangian is the kinetic energy corresponding to the Lobachevsky metric Namely,

$$L = \frac{m}{2} \left(\frac{\dot{x}^2 + \dot{y}^2}{y^2} \right). \tag{2}$$

- (A) (1) Write the fibre derivatives of the Lagrangian (2) and
 - (2) compute its Euler-Lagrange equations.

These equations represent geodesic motion on \mathbb{H}^2 .

- (3) Evaluate the Christoffel symbols.
- (B) (1) List the Lie symmetries of the Lagrangian in (2) and
 - (2) show that the quantities

$$u = \frac{\dot{x}}{y}$$
 and $v = \frac{\dot{y}}{y}$ (3)

are invariant under a subgroup of these symmetry transformations.

- (3) Specify the subgroup in terms of the representation (1).
- (C) (1) Use the invariant quantities (u, v) in (3) as new variables in Hamilton's principle.
 - (2) Find the corresponding conserved Noether quantities.

¹These isometric transformations of \mathbb{H}^2 have deep significance in physics. They correspond to the most general Lorentz transformation of space-time.

(D) Transform the Euler-Lagrange equations from x and y to the variables u and v that are invariant under the symmetries of the Lagrangian.

Then:

- (1) Show that the resulting system conserves the kinetic energy expressed in these variables.
- (2) Discuss its integral curves and critical points in the uv plane.
- (3) Show that the u and v equations can be integrated explicitly in terms of sech and tanh.
- (E) (1) Legendre transform the system to the Hamiltonian side and
 - (2) find the Poisson brackets for the variables u and v.

Exercise 1.4 (The free particle in \mathbb{H}^2 : #2)

Figure 4: Geodesics on the Lobachevsky half-plane.

Consider the following pair of differential equations for $(u, v) \in \mathbb{R}^2$,

$$\dot{u} = uv, \qquad \dot{u} = -u^2. \tag{4}$$

These equations have discrete symmetries under combined reflection and time reversal, $(u,t) \rightarrow (-u,-t)$ and $(v,t) \rightarrow (-v,-t)$. (This is called PT symmetry in the (u,v) plane.)

(A) Find 2×2 real matrices L and B for which the system (4) may be written as a Lax pair, namely, as

$$\frac{dL}{dt} = [L, B].$$

Explain what the Lax pair relation means and determine a constant of the motion from it.

- (B) Write the system (4) as a double matrix commutator, $\frac{dL}{dt} = [L, [L, N]]$. In particular, find N explicitly and explains what this means for the solutions.
- (C) Explain why the solution behaviour found in the previous part is consistent with the behaviour predicted by the double bracket relation.

Exercise 1.5 (Nambu Poisson brackets on \mathbb{R}^3)

Figure 5: Motion along intersections of surfaces in \mathbb{R}^3 .

(A) Show that for smooth functions $c, f, h : \mathbb{R}^3 \to \mathbb{R}$, the \mathbb{R}^3 -bracket defined by

$$\{f, h\} = -\nabla c \cdot \nabla f \times \nabla h$$

satisfies the defining properties of a Poisson bracket. Is it also a derivation satisfying the Leibnitz relation for a product of functions on \mathbb{R}^3 ? If so, why?

- (B) How is the \mathbb{R}^3 -bracket related to the canonical Poisson bracket in the plane?
- (C) The Casimirs (or distinguished functions, as Lie called them) of a Poisson bracket satisfy

$$\{c, h\}(\mathbf{x}) = 0$$
, for all $h(\mathbf{x})$

Part 5 verifies that the \mathbb{R}^3 -bracket satisfies the defining properties of a Poisson bracket. What are the Casimirs for the \mathbb{R}^3 bracket?

(D) Write the motion equation for the \mathbb{R}^3 -bracket

$$\mathbf{\dot{x}} = \{\mathbf{x}, h\}$$

in vector form using gradients and cross products. Show that the corresponding Hamiltonian vector field $X_h = \{\cdot, h\}$ has zero divergence.

(E) Show that under the \mathbb{R}^3 -bracket, the Hamiltonian vector fields $X_f = \{\cdot, f\}$, $X_h = \{\cdot, h\}$ satisfy the following anti-homomorphism that relates the commutation of vector fields to the \mathbb{R}^3 -bracket operation between smooth functions on \mathbb{R}^3 ,

$$[X_f, X_h] = -X_{\{f,h\}}.$$

Hint: commutation of divergenceless vector fields does satisfy the Jacobi identity.

(F) Show that the motion equation for the \mathbb{R}^3 -bracket is invariant under a certain linear combination of the functions c and h. Interpret this invariance geometrically.