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Lecture 1, Thurs 4 Oct 2012: Introduction to the Course and to Smooth Manifolds

Figure 1: Geometric Mechanics has involved many great mathematicians!
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1 What is Geometric Mechanics?

Text for the course M3-4-5 A16:
Geometric Mechanics I: Dynamics and Symmetry, by Darryl D Holm
World Scientific: Imperial College Press, Singapore, Second edition (2011).
ISBN 978-1-84816-195-5

1.1 Geometric Mechanics is a framework for many modern applications

Interplanetary missions
Variational integrators
Swimming fish
Bifurcations with symmetry
Lagrangian coherent structures
Euler-Poincaré theory
Multisymplectic formulation
Nonlinear stability
Under Water Vehicles
Geometric optimal control
Computational anatomy
Reduction by stages

Molecular oscillations
Astroid pairs
Satellites with tethers
Molecular strands
Elasticity
Image registration
Robotics
Peakons
Solitons
Fluid dynamics
Turbulence models
Complex fluids

Liquid crystals
Superfluids
Plasmas
Magnetohydrodynamics
Geophysical Fluid Dynamics
Global warming
General relativity
Field theory (GIMMSY!)
Lie groupoids and algebroids
Snakeboards
Swarming motion
Telecommunications

1.2 What are the next directions for GM?

Information geometry?
Nanoscience?
DNA folding?

Hybrid fluids/kinetic?
Information communication?
Salsa dancing robots?

Geometric quantum mechanics?
Data assimilation?
Things that don’t yet have names!

The rest of this handout introduces a few key concepts that will be studied further in the course.
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2 Motion on smooth manifolds

2.1 Variational principles

smooth manifold
tangent space
tangent bundle
tangent lift
kinetic energy

Riemannian metric
geodesic
Lagrangian
Hamilton’s principle
variational derivative

Legendre transformation
momentum
fibre derivative
pairing

• Let M be a smooth manifold dimM = n. That is, M is a smooth space that is locally Rn (e.g., Riemann’s map S2 → R2).

Figure 2: A manifold is defined by the disjoint union (or, atlas) of local charts, each of which is isomorphic to RdimM .
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Figure 3: The circle S1 is an example of a manifold that can be covered with two charts that are each locally R1.

-

θ

θ/2
-1 1

θ/2

Figure 4: The Riemann map shows that the unit sphere S2 is a manifold that can be covered with two charts that are each locally R2.

Remark. There is much more than this to say about manifolds, but it must wait until the next term.
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2.2 Curves on manifolds, tangent spaces, & Hamilton’s principle

• The tangent space TqM contains velocity vq = q̇(t) ∈ TqM , tangent to curve q(t) ∈ M at point q. The coordinates are
(q, vq) ∈ TMq. Note, dimTqM = 2n and subscript q reminds us that vq is an element of the tangent space at the point q and that
on manifolds we must keep track of base points.

Figure 5: This is a sketch of the tangent bundle TS1 of the circle S1.

The union of tangent spaces TM := ∪q∈MTqM is also called the tangent bundle of the manifold M .

The curve q(t) describes the motion on manifold M . The curve q̇(t) ∈ TqM is called the tangent lift of the curve q(t) ∈M .
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• Define kinetic energy KE : TM → R, via a Riemannian metric gq( · , · ) : TM ×TM → R. Explicitly, KE = 1
2
gq(q̇, q̇) =: 1

2
‖q̇‖2.

• Choose the Lagrangian L : TM → R. (For example, one could choose L to be KE.)

• Hamilton’s principle is δS = 0 with S =
∫ b
a
L(q, q̇)dt, for a family of curves q(t, ε) parameterised smoothly by (t, ε) ∈ R × R.

The linearisation

δS :=
d

dε

∣∣∣∣
ε=0

∫ b

a

L(q(t, ε), q̇(t, ε))dt with δq(t) :=
dq(t, ε)

dε

∣∣∣∣
ε=0

defines the variational derivative δS of S near the identity ε = 0. The variations in q are assumed to vanish at endpoints in
time, so that q(a, ε) = q(a) and q(b, ε) = q(b).

a

b

q
1

q
2

Figure 6: This is a sketch of variations of a family of curves on a manifold.
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3 Euler–Lagrange equation

Theorem 1 (Hamilton 1835, Euler 1750, Lagrange 1756). Hamilton’s principle δS = 0 with
S =

∫ b
a L(q, q̇)dt implies the Euler–Lagrange (EL) equation:

d

dt

∂L(q, q̇)

∂q̇
=
∂L(q, q̇)

∂q
, for any L(q, q̇) .

Proof

δS = δ

∫ b

a

L(q, q̇)dt =

∫ b

a

δL(q, q̇)dt =

∫ b

a

〈
∂L

∂q̇
, δq̇

〉
+

〈
∂L

∂q
, δq

〉
dt

=

∫ b

a

〈
− d

dt

∂L

∂q̇
+
∂L

∂q︸ ︷︷ ︸
EL equation

, δq

〉
dt +

〈
∂L

∂q̇
, δq

〉 ∣∣∣∣b
a︸ ︷︷ ︸

Endpoint term

�
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3.1 Hamilton’s principle

Ten examples for Simple Mechanical Systems: L(q, q̇) = T (q̇)− V (q) = KE − PE. For example,

1. Planar isotropic oscillator, (x, ẋ) ∈ TR2: L = m
2
|ẋ|2 − k

2
|x|2 =⇒ ẍ = −ω2x with ω2 = k/m

2. Planar anisotropic oscillator, (x, ẋ) ∈ TR2: L = m
2
|ẋ|2 − k1

2
x2

1 − k2
2
x2

2 =⇒ ẍi = −ω2
i xi with ω2

i = ki/m i = 1, 2

3. Planar pendulum in polar coordinates, (θ, θ̇) ∈ TS1: L = m
2
R2θ̇2−mgR(1− cos θ) =⇒ θ̈ = −ω2 sin θ with ω2 = g/R

4. Planar pendulum, (x, ẋ) ∈ TR2, constrained to TS1 = {x, ẋ ∈ TR2| 1−|x|2 = 0 & x·ẋ = 0}: L = m
2
|ẋ|2−mg ê3 ·x+µ(1−|x|2)

5. Charged particle in a magnetic field, (x, ẋ) ∈ TR2: L = m
2
|ẋ|2 + e

c
ẋ ·A(x) =⇒ ẍ = e

mc
ẋ×B with B = curl A

6. Kepler problem, (r, ṙ, θ, θ̇) ∈ TR+ × TS1: L = m
2

(
ṙ2 + r2θ̇2

)
+ GMm

r
=⇒ r̈ = −GM

r2
+ J2

r3
with J = r2θ̇ = const

7. Free motion on a sphere, (x, ẋ) ∈ TR3, constrained to S2 = {x ∈ R3 : |x| = 1}: L = 1
2
|ẋ|2 + µ(1− |x|2)

8. Spherical pendulum, (x, ẋ) ∈ TR3, constrained to S2 = {x ∈ R3 : |x| = 1}: L = m
2
|ẋ|2 −mg ê3 · x + µ(1− |x|2)

9. Rotating rigid body, Ω̂ = O−1Ȯ ∈ T (SO(3) ' so(3) ` = 1
2
Ω · IΩ with Ω× = Ω̂ , that is, − εijkΩk = Ω̂ij

10. Heavy top (Ω̂ = O−1Ȯ,Γ = O−1ê3) ∈ T (SO(3)sR3) ' so(3)sR3: ` = 1
2
Ω · IΩ−mgΓ · χ with Ω× = Ω̂
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3.2 Lie group symmetries and Noether’s theorem

• Introduction of Lie group symmetries:

– A group is a set of elements with an associative binary product that has a unique inverse and identity element.

– A Lie group G is a group whose transformations depends smoothly on a set of parameters in Rdim(G).
A Lie group is also a smooth manifold, so it is an ideal arena for geometric mechanics, e.g., rigid body motion on SO(3).

• Noether’s theorem: Suppose q(t, ε) = qε(t) is a group of transformations of q(t) that depends smoothly on a set of parameters
ε. Its linearisation is computed from a Taylor series as

q(t)→ qε(t) = q(t) + ε
dq(t, ε)

dε

∣∣∣∣
ε=0

+O(ε2) = q(t) + εδq(t) +O(ε2),

where the linear term
δq(t) :=

dq(t, ε)

dε

∣∣∣∣
ε=0

is called the infinitesimal transformation

Suppose also that the Lagrangian L(q, q̇) in Hamilton’s principle δS = 0 with S =
∫ b
a
L(q, q̇)dt is invariant under these infinitesimal

transformations, so that δS = 0 as a consequence of this invariance. Then the endpoint term above 〈∂L
∂q̇
, δq〉

∣∣b
a
is a constant of the

motion. That is, the quantity 〈∂L
∂q̇
, δq〉 is a constant, whenever q(t) is a solution of the EL equations for this invariant Lagrangian.

This proves the following.

Theorem 2 (Noether, 1918).
To each Lie symmetry of the Lagrangian there corresponds a conservation law.

Example: Ignorable coordinates : For L(q, q̇, ϕ̇) invariant under ϕ→ ϕ+ ε, δϕ = ε, we have d
dt

〈
∂L
∂ϕ̇ , ε

〉
=
〈
∂L
∂ϕ , ε

〉
= 0.
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3.3 Noether theorem with gauge symmetry

• Exercise: Suppose the Lagrangian is not invariant under the infinitesimal transformation δq, but instead changes by a total time
derivative,

L(q, q̇)→ L(q, q̇) + ε
d

dt
Λ(q, q̇) under q(t)→ q ′(t) = q(t) + εδq(t) .

What is the change in the statement of Noether’s theorem for this case?

• Answer:

δS = δ

∫ b

a

L(q, q̇) dt =

∫ b

a

δL(q, q̇) dt+

∫ b

a

d

dt
Λ(q, q̇) dt

=

∫ b

a

〈
∂L

∂q̇
, δq̇

〉
+

〈
∂L

∂q
, δq

〉
dt+ Λ(q, q̇)

∣∣b
a

=

∫ b

a

〈
− d

dt

∂L

∂q̇
+
∂L

∂q︸ ︷︷ ︸
EL equation

, δq

〉
dt +

[〈
∂L

∂q̇
, δq

〉
+ Λ(q, q̇)

]b
a︸ ︷︷ ︸

Total endpoint term

That is, the sum 〈∂L
∂q̇
, δq〉+ Λ(q, q̇) is a constant, whenever q(t) is a solution of the EL equations for Lagrangian L. In this case, the

infinitesimal transformation δq is called a gauge symmetry , since it does not alter the EL equations of motion, even though it
does alter the Lagrangian and thus change the form of the associated Noether conservation law.

Example: This sort of gauge transformation arises, for example, in Maxwell’s equations for electromagnetism. For example, the
magnetic field B = curl A is invariant under the gauge transformation A→ A +∇φ, since curl∇φ = 0.

Of course, in Maxwell’s equations, we have space-time dependence φ : R3,1 → R, but the same principle applies, since Hamilton’s
principle applies on manifolds in any coordinate system.
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3.4 HP for geodesics (covariant derivatives)

• Geodesics: When L = KE = 1
2
gq(q̇, q̇) =: 1

2
‖q̇‖2, the solution q(t) of the EL equations that passes from point q(a) to q(b) is called

the geodesic path with respect to the metric gq : TM ×TM → R. The geodesic represents the path of shortest distance q(a)→ q(b)
measured by

ds :=
√
dqagab(q)dqb =

√
gq(q̇, q̇)dt

• Exercise: Compute the EL equations for a geodesic with respect to the metric gq : TM × TM → R. That is, compute the EL
equations for L = KE.

• Answer: The KE Lagrangian is

L(q, q̇) =
1

2
q̇bgbc(q)q̇

c .

Its partial derivatives are given by

∂L

∂q̇a
= gac(q)q̇

c and
∂L

∂qa
=

1

2

∂gbc(q)

∂qa
q̇bq̇c .

Consequently, its Euler–Lagrange equations are

d

dt

∂L

∂q̇a
− ∂L

∂qa
= gae(q)q̈

e +
∂gae(q)

∂qb
q̇bq̇e − 1

2

∂gbe(q)

∂qa
q̇bq̇e = 0 .

Symmetrising the coefficient of the middle term and contracting with co-metric gca satisfying gcagae = δce yields

q̈ c + Γcbe(q)q̇
bq̇e = 0 , (1)

with

Γcbe(q) =
1

2
gca
[
∂gae(q)

∂qb
+
∂gab(q)

∂qe
− ∂gbe(q)

∂qa

]
, (2)

in which the Γcbe are called the Christoffel symbols for the Riemannian metric gab.
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These Euler–Lagrange equations are the geodesic equations of a free particle moving in a Riemannian space. They are often
written as

q̈ +∇q̇ q̇ = 0,

in terms of the covariant derivative ∇q̇.
The covariant derivative also arises when U(1) gauge symmetry is locally broken, but that will be deferred to another lecture.

• Alternative viewpoints, IVP vs BVP: In mechanics the point q(b) is determined at time t = b from the solution q(t) to the
initial value problem (IVP) for EL equations with q and q̇ specified at the initial time, e.g., at t = a.
It is also possible to re-phrase this as a boundary value problem (BVP) in time, by specifying endpoint positions q(a) and q(b)
instead of the initial values of q and q̇. Variational BVPs (sometimes called optimal control problems) are not treated in this course.

3.5 Example - The isoperimetric problem (what Lagrange wrote to Euler about).

This problem is to find the curve between two points (x1, y1) and (x2, y2), of specified length, that maximises the area integral∫ x2
x1
y(x)dx.

In this example the length of the curve is

L[y] =

∫ x2

x1

√
1 + y′2dx,

which takes the specified value l = const. The area is

A[y] =

∫∫
dx ∧ dy =

∫ x2

x1

y(x)dx.

We look for extrema of the modified functional

S[y] =

∫ x2

x1

ydx− λ
∫ x2

x1

(
√

1 + y′2dx− l ),

where λ is a scalar constant (Lagrange multiplier), to be determined. The Euler-Lagrange equation is

λ
d

dx

(
y′√

1 + y′2

)
+ 1 = 0 . (3)
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Hence, a first integration yields y′√
1+y′2

= −(x− x0)/λ, giving the parametric solution, after solving for y′2,

x = x0 ± λ sin(θ), y = y0 ± λ cos(θ), (4)

so (x− x0)2 + (y − y0)2 = λ2 and the extremum is the arc of a circle of radius λ.

The variational problem satisfied by a soap bubble is analogous to the isoperimetric problem. For the soap bubble, the surface
area is extremised, holding the volume integral constant. The Lagrange multiplier is the pressure, p.

• Legendre transform: LT : (q, q̇) ∈ TM → (q, p) ∈ T ∗M defines momentum p as the fibre derivative of L, namely

p :=
∂L(q, q̇)

∂q̇
∈ T ∗M (fibre derivative) .

The LT is invertible for q̇ = f(q, p), provided the Hessian ∂2L(q, q̇)/∂q̇∂q̇ has nonzero determinant. Note, dimT ∗M = 2n.

• In terms of the LT, the Hamiltonian H : T ∗M → R is defined by

H(q, p) =
〈
p, q̇
〉
− L(q, q̇)

in which the expression 〈p, q̇〉 in this calculation identifies a pairing 〈 · , · 〉 : T ∗M × TM → R.
Taking the differential of this definition yields

dH =
〈
Hp, dp

〉
+
〈
Hq, dq

〉
=
〈
dp, q̇

〉
+
〈
p− Lq̇, dq̇

〉
−
〈
Lq, dq

〉
from which Hamilton’s principle δS = 0 for S =

∫ b
a
〈p, q̇〉−H(q, p) dt produces Hamilton’s canonical equations on phase space T ∗M ,

Hp = q̇ and Hq = −Lq = − ṗ .
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• Hamilton’s principle δS = 0 for S =
∫ b
a 〈p, q̇〉 − H(q, p) dt produces Hamilton’s canonical

equations on phase space T ∗M ,

Hp = q̇ and Hq = −Lq = − ṗ .

Exercise: Verify the previous statement. That is, compute the results of the
Phase-space form of Hamilton’s principle on T ∗M , given by δS = 0

with S =
∫ b
a 〈p, q̇〉 −H(q, p) dt.

• Answer: One computes

δS = δ

∫ b

a

〈p, q̇〉 −H(q, p) dt =

∫ b

a

δ〈p, q̇〉 − δH(q, p) dt

=

∫ b

a

〈
δp , q̇ −Hp

〉
−
〈
ṗ + Hq, δq

〉
dt +

〈
p, δq

〉∣∣∣b
a︸ ︷︷ ︸

Endpoint term

Remark: We will return to the endpoint term in formulating Noether’s theorem on phase
space, that is, on T ∗M .
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4 Hamilton’s equations

4.1 Legendre transform in simple mechanical systems

• Legendre transform: H(q, p) = 〈p, q̇〉 − L(q, q̇) = T (p) + V (q) = KE + PE.

For example,

1. Planar isotropic oscillator, (x,p) ∈ T ∗R2: H = 1
2m
|p|2 + k

2
|x|2

2. Planar anisotropic oscillator, (x,p) ∈ T ∗R2: H = 1
2m
|p|2 + k1

2
x2

1 + k2
2
x2

2

3. Planar pendulum in polar coordinates, (θ, pθ) ∈ T ∗S1: H = 1
2mR2p

2
θ +mgR(1− cos θ)

4. Planar pendulum, (x,p) ∈ T ∗R2, constrained to S1 = {x ∈ R2 : 1− |x|2 = 0}: H = 1
2m
|p|2 +mg ê2 · x− µ(1− |x|2)

5. Charged particle in a magnetic field, (x,p) ∈ T ∗R2: H = 1
2m
|p− e

c
A(x)|2 p := ∂L/∂q̇ = mẋ + e

c
A(x) ∈ T ∗M

6. Kepler problem, (r, pr, θ, pθ) ∈ T ∗R+ × T ∗S1: H = p2r
2m

+
p2θ

2mr2
− GMm

r
with pθ = r2θ̇ = const

7. Free motion on a sphere, (x,p) ∈ T ∗R3, constrained to S2 = {x ∈ R3 : 1− |x|2 = 0}: H = 1
2m
|p|2 − µ(1− |x|2)

8. Spherical pendulum, (x,p) ∈ T ∗R3, constrained to S2 = {x ∈ R3 : 1− |x|2 = 0}: H = 1
2m
|p|2 +mg ê3 · x− µ(1− |x|2)

9. Rotating rigid body, Π ∈ T ∗(SO(3) ' so(3)∗ ' R3 H = 1
2
Π · I−1Π with Π = ∂`

∂Ω
= IΩ

10. Heavy top (Π,Γ =∈ T ∗(SO(3)sR3) ' so(3)∗sR3 ' R3sR3: H = 1
2
Π · I−1Π +mgΓ · χ
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4.2 Canonical Poisson bracket

• The Hamiltonian dynamics of a phase-space function is given by

d

dt
F (q, p) =

∂F

∂q

∂H

∂p
− ∂F

∂p

∂H

∂q
:= {F, H}

The operation {F, H} is called the canonical Poisson bracket of F with H on the phase space T ∗M .

The canonical Poisson bracket operation {· , ·} is a map among smooth real functions F(T ∗M) : T ∗M → R

{· , ·} : F(T ∗M)×F(T ∗M)→ F(T ∗M) , (5)

so that Hamiltonian dynamics on phase space T ∗M is given by Ḟ = {F , H} for any F ∈ F(T ∗M).

Definition 3 (Poisson bracket). A Poisson bracket operation {· , ·} is defined by its properties listed below:

– It is bilinear.
– It is skew-symmetric, {F , H} = −{H , F}.
– It satisfies the Leibniz rule (product rule),

{FG , H} = {F , H}G+ F{G , H} ,

for the product of any two functions F and G on M .
– It satisfies the Jacobi identity,

{F , {G , H}}+ {G , {H , F}}+ {H , {F , G}} = 0 , (6)

for any three functions F , G and H on M .

Remark. The Leibniz rule associates Poisson brackets with differential operators on smooth functions F ∈ F(T ∗M).

The differential operator or Hamiltonian vector field generated by the canonical Poisson bracket with F is

XF := { · , F } =
∂F

∂p

∂

∂q
− ∂F

∂q

∂

∂p
.
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• Exercise: What is Noether’s theorem for Hamilton’s principle in phase-space, on T ∗M ?

• Answer: For an infinitesimal transformation (δq , δp) that induces δL = δ
(
〈p, q̇〉 −H(q, p)

)
we have

δS = δ

∫ b

a

〈
p, q̇
〉
−H(q, p) dt =

∫ b

a

δ
〈
p, q̇
〉
− δH(q, p) =

∫ b

a

〈
δp , q̇ −Hp

〉
−
〈
ṗ+Hq, δq

〉
dt+

〈
p, δq

〉∣∣∣b
a︸ ︷︷ ︸

Endpoint

4.3 Cotangent lift and Noether’s theorem on the Hamiltonian side

• Suppose the variations due to the infinitesimal transformations onM take the form δq = ξM(q). Then the corresponding Hamiltonian
for these infinitesimal transformations is

Jξ :=
〈
p, ξM(q)

〉
so that δq =

∂Jξ

∂p
= ξM(q) and δp = − ∂J

ξ

∂q
= − ξ′M(q)Tp

The last expression is called the cotangent lift to T ∗qM of the infinitesimal transformation q → qε = q + εξM(q) on M .

The cotangent lift specifies the infinitesimal transformation of p ∈ T ∗qM , given the infinitesimal transformation of q ∈M .

q → qε = q + εξM(q) on M =⇒ (q, p)→ (qε, pε) = (q + εξM(q), p− εξ′M(q)Tp) on TqM .

The time derivative of Jξ(q, p) is given by

d

dt
Jξ(q, p) =

∂Jξ

∂q

∂H

∂p
− ∂Jξ

∂p

∂H

∂q
= − ∂H

∂p
δp− ∂H

∂q
δq = − δH.

In the last step we recalled the (gauge) symmetry of H. This calculation proves the following.

Corollary 4. Noether’s theorem for gauge symmetry on the Hamiltonian side implies conservation of Jξ.
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The differential operator or Hamiltonian vector field generated by the canonical Poisson bracket with Jξ is

XJξ := { · , Jξ } =
∂Jξ

∂p

∂

∂q
− ∂Jξ

∂q

∂

∂p
= ξM(q)

∂

∂q
− ξ ′(q)Tp ∂

∂p
= δq

∂

∂q
+ δp

∂

∂p
.

4.4 Example: Angular momentum

Let G×M →M with G = SO(3) and M = R3. That is, SO(3)× R3 → R3.

Let q(ε) = O(ε)q(0) with O ∈ SO(3), so that OTO = Id and q ∈ R3. Then the infinitesimal transformation is

δq := q′(ε)
∣∣
ε=0

=
[
O′(ε)q(0)

]
ε=0

=
[
O′(ε)O−1(ε)q(ε)

]
ε=0

:= ξ̂q = ξ × q.

The Hamiltonian
Jξ(q, p) = q × p · ξ = p · ξM(q) = p · ξ × q

generates infinitesimal SO(3) rotations around the vector ξ ∈ so(3) ' R3, as we compute

δq =
{
q, Jξ(q, p)

}
= ξ × q(t), δp =

{
p, Jξ(q, p)

}
= ξ × p(t),

using the canonical Poisson bracket
{
· , ·

}
. Thus, the cotangent lift of an infinitesimal rotation of q given by ξM(q) = ξ×q is an

infinitesimal rotation of p given by − ξ′M(q)Tp = ξ×p. These equations imply the following variation for J(q, p) = q×p ∈ so(3)∗ ' R3

δJ = ξ × J(t) for ξ ∈ so(3) ' R3 and J ∈ so(3)∗ ' R3 ,

as obtained by using the product rule and the Jacobi identity for the cross product of vectors in R3.

The quantity J(q, p) = q × p ∈ so(3)∗ ' R3 is called the angular momentum .

The map J(q, p) = q × p : T ∗qM → so(3)∗ ' R3 is the cotangent lift momentum map for the action of the Lie group of spatial
rotations G = SO(3) on the manifold M = R3.
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4.5 An angular momentum map that generalises the notion of Poisson brackets for SO(3).

• Exercise: Show for vectors ξ, η ∈ R3 that for angular momentum{
Jξ, Jη

}
= Jξ×η.

• Answer: The proof follows by a direct calculation using Jacobi’s identity for vector cross products:{
Jξ, Jη

}
=
{
J · ξ, J · η

}
=
{
q × p · ξ, q × p · η

}
can

= (q × p) · (ξ × η) = J · (ξ × η) = Jξ×η.

Hence, for functions of the angular momentum map J we have{
Jk, Jl

}
= εkl

mJm and
{
F (J), H(J)

}
= J · ∂F

∂J
× ∂H

∂J
so that

dJ

dt
=
{
J, H(J)

}
= − J × ∂H

∂J
.

Thus, the angular momentum map J(q, p) : T ∗R3 → R3 is Poisson, which means that {F ◦ J ,H ◦ J } = {F, H} ◦ J .

Upon denoting x ∈ R3 the Poisson bracket becomes {F, H} = ∇C · ∇F × ∇H with motion equation ẋ = −∇C × ∇H where
C(x) = 1

2
|x|2. This means the motion takes place on spheres along intersections of level sets of C and H.

-z = (q, p) ∈ T ∗R3 T ∗R3

dz
dt

= {z, H(z)}can dimT ∗R3 = 6

?

J(t) = q(t)× p(t)

-

dJ
dt

= {J, H(J)}LP = − J × ∂H
∂J

dim(S2) = 2

?

J ∈ R3 ' so(3)∗ R3 ' so(3)∗

J(0) = q(0)× p(0)
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4.6 An angular momentum map that generalises from SO(3) to other Lie groups.

For any Lie algebra g, the cotangent lift momentum map satisfies{
Jξ, Jη

}
= J [ξ, η],

where [ξ, η] = −[η, ξ] is the Lie bracket between ξ, η ∈ g, which we also denote as [ξ, η] =: ±adξη. (We’ll discuss the sign later.)

The corresponding Lie–Poisson bracket is{
F (J), H(J)

}
= ∓

〈
J ,

[
∂H

∂J
,
∂F

∂J

]〉
g∗×g

= ∓
〈
J , ad∂H/∂J

∂F

∂J

〉
g∗×g

= ∓
〈

ad∗∂H/∂JJ ,
∂F

∂J

〉
g∗×g

.

Consequently, for Lie-Poisson systems, the dynamics of the cotangent lift momentum map is governed by
dJ

dt
=
{
J, H(J)

}
= ∓ ad∗∂H/∂JJ .

This generalises the angular momentum map Exercise for SO(3) to arbitrary Lie groups and their Lie algebras.

The proof follows by a direct calculation using the Lie-Poisson bracket:{
Jξ, Jη

}
=
{〈
J , ξ

〉
,
〈
J , η

〉}
=
〈
J , [ξ , η]

〉
= J [ξ , η]

where we have used ξ = ξjej, η = ηkek and [ej, ek] = cjk
iei to compute

[ξ, η] = [ξjej, η
kek] = ξj[ej, ek]η

k = ξjηkcjk
iei = [ξ, η]iei .

Hence, for functions of the momentum map J we now have the result that{
Jk, Jl

}
= ckl

mJm and
{
F (J), H(J)

}
= ∓

〈
J , ad∂H/∂J

∂F

∂J

〉
g∗×g

so dJ/dt =
{
J, H(J)

}
= ∓ad∗∂H/∂JJ .

Thus, the momentum map J(q, p) : T ∗M → g∗ is Poisson, which means that {F ◦ J ,H ◦ J } = {F, H} ◦ J .

The Lagrangian counterpart of Lie–Poisson theory is Euler–Poincaré theory, from Poincaré [1901] that we will study next.
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5 Example: Motion under gravity of a particle on a sphere

g
Figure 7: This is a sketch of the spherical pendulum, described as motion under gravity of a particle on a sphere.

The Lagrangian for this type of motion would be the difference of kinetic minus potential energy for a particle of unit mass,

L(x, ẋ) =
1

2
|ẋ|2 − gê3 · x for (x, ẋ) ∈ TR3 .

The motion on the sphere comprises rotation, which may be written as the action of the rotation group on a vector in R3, by setting

x(t) = O(t)x0 , ẋ(t) = Ȯ(t)x0 for (O, Ȯ) ∈ TSO(3) , (7)
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where x0 = x(0) is the initial position of the particle. Relations (7) replace motion on the sphere S2 by motion on the group SO(3),
whose action SO(3)× R3 → R3 on vectors in R3 leaves their Euclidean lengths invariant and, thus, preserves the sphere,

|x(t)|2 = tr
[(
O(t)x0

)T (
O(t)x0

)]
= tr

(
xT0O

TOx0

)
= |x0|2 since OTO = O−1O = Id .

That is, the SO(3) rotations (7) of vectors in R3 are summoned for this problem, because they map the sphere into itself.1

The kinetic and potential energies of the particle on the sphere may be written on the group SO(3) by using the transformation (7).
In these terms, the kinetic energy is given by

|ẋ(t)|2 = tr
[(
Ȯ(t)x0

)T (
Ȯ(t)x0

)]
= tr

(
xT0 Ȯ

T Ȯx0

)
= tr

(
xT0 Ȯ

TOO−1Ȯx0

)
= tr

(
xT0 (OT Ȯ)T (O−1Ȯ)x0

)
= tr

(
xT0 Ω̂T Ω̂x0

)
on defining Ω̂ := O−1Ȯ and using OT = O−1

= |Ω̂x0|2

= |Ω× x0|2 by applying the hat map Ω̂ = Ω× ,

and the potential energy is given by

gê3 · x = g tr
(
êT3 x

)
= g tr

(
êT3Ox0

)
= g tr

(
OT ê3

)T
x0

= g tr
(
ΓTx0

)
with Γ := O−1ê3

= gΓ · x0

1 Exercises What about other such motions?
(1) Consider particle motion under gravity on a triaxial ellipsoid, or on a hyperboloid. What Lie groups are summoned in those cases?
(2) What if the particle had an electrical charge and the motion under gravity was taking place in a constant vertical magnetic field?
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We now substitute the transformed (constrained) Lagrangian into Hamilton’s principle,

0 = δS = δ

∫ b

a

(
1

2
|Ω̂x0|2 − gΓ · x0

)
dt = δ

∫ b

a

(
1

2
|Ω× x0|2 − gΓ · x0

)
dt

A computation with Ω̂ := O−1Ȯ , Ξ̂ := O−1δO and Γ := O−1ê3 yields the variational identities

δΩ̂ =
dΞ̂

dt
+ [Ω̂, Ξ̂] or δΩ = Ξ̇ + Ω×Ξ and δΓ := − Ξ̂Γ = −Ξ× Γ

Then we find

0 = δS =

∫ b

a

(
Ω× x0 · δΩ× x0 − g δΓ · x0

)
dt

=

∫ b

a

x0 × (Ω× x0)︸ ︷︷ ︸
=: Π

· δΩ− g x0 · δΓ dt

=

∫ b

a

Π ·
(
Ξ̇ + Ω×Ξ

)
+ g x0 ·Ξ× Γ dt

=

∫ b

a

(
− Π̇−Ω×Π + gΓ× x0

)
·Ξ dt+

[
Π ·Ξ

]b
a

This yields the Eulr-Poincaré equation for the body angular momentum Π,

Π̇ + Ω×Π = − gΓ× x0 with Π := x0 × (Ω× x0) = Ω|x0|2 − x0(x0 ·Ω) =: I(x0) Ω , (8)

where I is called the moment of inertia of the particle on the sphere. Finally, from its definition, Γ := O−1(t)ê3 satisfies

Γ̇ := − Ω̂Γ = −Ω× Γ . (9)

This system conserves the quantities

E :=
1

2
Π · I−1(x0)Π + gΓ · x0 , C1 := Γ ·Π = O−1ê3 ·Π = ê3 ·O(t)Π and C2 := |Γ|2 = 1 .

We could now Legendre transform and find the Hamiltonian structure, too.
But first we need a theorem about how motion on a sphere relates to rigid body motion.
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Theorem 5. When expressed on the Lie group SO(3), spherical motion maps isomorphically to the motion of a rigid body B, by
integration of Hamilton’s principle for a single particle mass element over the mass density distribution ρ(x0) of the entire body.

Proof. In rigid body motion, every particle in a body B is undergoing a rotation and the relative positions of any two particle mass
elements are fixed in the frame of the body’s motion. Therefore, it is not unexpected that the motion of the rigid body could be
expressed entirely on the rotation group.

The explicit isomorphism between motion of a particle on a sphere and rigid body motion results from applying the linear integral
operator ∫

B
ρ(x0)( · ) d3x0

to the transformed (constrained) Lagrangian in Hamilton’s principle,

` (Ω,Γ) =

∫
B
ρ(x0)

(
1

2
|Ω× x0|2 − gΓ · x0

)
d3x0 =

1

2
Ω · IΩ− gΓ · χ

where, as before, x0 is the initial position of any given particle and one introduces the following definitions

M =

∫
B
ρ(x0) d3x0 (mass) ,

χ = M−1

∫
B
ρ(x0)x0 d

3x0 (centre of mass) ,

I =

∫
B
ρ(x0)

(
|x0|2 Id− x0 ⊗ x0

)
d3x0 (moment of inertia) .
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5.1 Lie–Poisson brackets for the spherical pendulum

The Hamiltonian

H(Π,Γ) := Π ·Ω− `(Ω,Γ) =
1

2
Π · I−1Π + gΓ · x0 (10)

recovers equations (8) and (22) for the spherical pendulum in Poisson bracket form, as

Π̇ = {Π , H} = Π× I−1Π + Γ× g x0

= Π× ∂H

∂Π
+ Γ× ∂H

∂Γ
,

Γ̇ = {Γ , H} = Γ× I−1Π = Γ× ∂h

∂Π
.

(11)

In matrix form this is [
Π̇

Γ̇

]
=

[
Π× Γ×
Γ× 0

] [
I−1Π
g x0

]
=⇒

[
Π̇

Γ̇

]
=

[
Π× Γ×
Γ× 0

] [
∂H/∂Π
∂H/∂Γ

]
(12)

The proposed Poisson bracket for the spherical-pendulum is

d

dt
F (Π,Γ) =

[
∂F/∂Π
∂F/∂Γ

]T [
Π× Γ×
Γ× 0

] [
∂H/∂Π
∂H/∂Γ

]
= {F , H}(Π,Γ) = −Π · ∂F

∂Π
× ∂H

∂Π
− Γ ·

(
∂F

∂Π
× ∂H

∂Γ
− ∂H

∂Π
× ∂F

∂Γ

)
. (13)

For now, we simply assert that equation (13) defines a proper Poisson bracket. Later developments of the course will associate such
brackets to the invariance properties of the Lagrangian in Hamilton’s principle. This leads to the Euler-Poincaré theory which follows
from [Po1901].

For now, we only point out that the Lie algebra of the special Euclidean group SE(3) in three dimensions is se(3) = R3 × R3, which
possesses the Lie bracket [

(ξ,u), (η,v)
]

=
(
ξ × η, ξ × v − η × u

)
. (14)

If we identify the dual space se(3)∗ ' R3 × R3 with pairs (Π,Γ) and Lie algebra elements with pairs (ξ,u) = (∂F/∂Π, ∂F/∂Γ) and
(η,v) = (∂H/∂Π, ∂H/∂Γ); then we may write the Poisson bracket (13) as

{F , H}(Π,Γ) = −
〈

(Π,Γ) ,

[(
∂F

∂Π
,
∂F

∂Γ

)
,

(
∂H

∂Π
,
∂H

∂Γ

)]〉
= −Π ·

(
∂F

∂Π
× ∂H

∂Π

)
− Γ ·

(
∂F

∂Π
× ∂H

∂Γ
− ∂H

∂Π
× ∂F

∂Γ

)
. (15)

Being dual to a Lie algebra means being a linear functional of a set whose bracket satisfies the Jacobi identity. From this duality, the
Poisson bracket (15) will also satisfy the Jacobi identity.
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5.2 The elastic spherical pendulum

The Lagrangian for this type of motion would be the difference of kinetic minus potential energy for a particle of unit mass,

L(x, ẋ) =
m

2
|ẋ|2 −mg ê3 · x−

k

2

(
|x| − |x0|

)2 for (x, ẋ) ∈ TR3 , (16)

for constants m, k and g. The motion comprises rotation and stretching, which may be written as the action of the scale-rotation group
on a vector in R3, by setting

x(t) = R(t)O(t)x0 , so that ẋ(t) = Ṙ(t)O(t)x0 +R(t)Ȯ(t)x0 for (O, Ȯ) ∈ TSO(3) and (R, Ṙ) ∈ TR , (17)

where x0 = x(0) is the initial position of the particle, for R(0) = 1. Relations (17) encode the motion as taking place on the scale-rotation
group SO(3)× R, whose action (SO(3)× R)× R3 → R3 on vectors in R3 rotates them and scales their Euclidean lengths,

|x(t)|2 = tr
[(
R(t)O(t)x0

)T (
R(t)O(t)x0

)]
= R2(t)tr

(
xT0O

TOx0

)
= R2(t)|x0|2 since OTO = O−1O = Id .

That is, this problem summons the scale-rotation group SO(3)× R acting on vectors in R3.

As for the spherical pendulum, we define

Ω̂ := O−1Ȯ = Ω× , Γ := O−1ê3 and note that Γ̇ := − Ω̂Γ = −Ω× Γ .

Consequently, our Lagrangian (16) for the spring-pendulum, or swinging spring, can be written as

`(Ω,Γ, R, Ṙ) =
m

2
Ṙ2|x0|2 +

m

2
R2|Ω̂x0|2 −mgRΓ · x0 −

k

2

(
|x| − |x0|

)2

=
m

2
Ṙ2|x0|2 +

m

2
R2|Ω× x0|2 −mgRΓ · x0 −

k

2

(
R− 1

)2|x0|2

=
m

2
Ṙ2|x0|2 +

m

2
R2Ω · I(x0)Ω−mgRΓ · x0 −

k

2

(
R− 1

)2|x0|2

with I(x0) = |x0|2 Id− x0 ⊗ x0.
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As before, a computation with Ω̂ := O−1Ȯ = Ω× , Ξ̂ := O−1δO = Ξ× and Γ := O−1ê3 yields the variational identities

δΩ̂ =
dΞ̂

dt
+ [Ω̂, Ξ̂] or δΩ = Ξ̇ + Ω×Ξ and δΓ := − Ξ̂Γ = −Ξ× Γ . (18)

Then we find by following the calculation for the spherical pendulum, modulo terms involving R that
d

dt

δ`

δΩ
=

δ`

δΩ
×Ω +

δ`

δΓ
× Γ and

d

dt

δ`

δṘ
=

δ`

δR
for

δ`

δΩ
=: Π = mR2IΩ and

δ`

δṘ
= mṘ|x0|2 . (19)

Namely, this Hamilton’s principle yields three types of equations :

1. the Euler–Poincaré equation for the body angular momentum Π(t),

Π̇ + Ω×Π = mgRx0 × Γ with Π :=
δ`

δΩ
=: mR2(t)I(x0) Ω , (20)

with gravitational torque scaled by the factor R(t),

2. the Euler–Lagrange equation for the scale factor of the pendulum length, R(t),

|x0|2R̈ = R|Ω× x0|2 − gΓ · x0 −
k

m

(
R− 1

)
|x0|2 , (21)

with the effects of centrifugal, gravitational and spring restoring forces, and

3. the auxiliary equation for Γ

Γ̇ = −Ω× Γ , (22)

obtained from its definition.

The system (20)–(22) conserves the total energy and the vertical component of spatial angular momentum. Namely, it conserves the
quantities

E :=
m

2
Ṙ2|x0|2 +

m

2
Π · I−1(x0)Π +mgΓ · x0 +

k

2

(
R− 1

)2|x0|2 ,

C1 := Γ ·Π = O−1ê3 ·Π = ê3 ·O(t)Π and C2 := |Γ|2 = 1 .

(23)
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6 Spherical pendulum as a constrained system

6.1 Formulation

A spherical pendulum of unit length swings from a fixed point of support under the constant acceleration of gravity g (Figure 8). This
motion is equivalent to a particle of unit mass moving on the surface of the unit sphere S2 under the influence of the gravitational (linear)
potential V (z) with z = ê3 ·x. The only forces acting on the mass are the reaction from the sphere and gravity. This system is treated as
an enhanced coursework example by using spherical polar coordinates and the traditional methods of Newton, Lagrange and Hamilton.
The present section treats this problem more geometrically.

In this section, the equations of motion for the spherical pendulum will be derived according to the approaches of Lagrange and
Hamilton on the tangent bundle TS2 of S2 ∈ R3:

TS2 =
{

(x, ẋ) ∈ TR3 ' R6
∣∣ 1− |x|2 = 0, x · ẋ = 0

}
. (24)

After the Legendre transformation to the Hamiltonian side, the canonical equations will be transformed to quadratic variables
that are invariant under S1 rotations about the vertical axis. This is the quotient map for the spherical pendulum.

Then the Nambu bracket in R3 will be found in these S1 quadratic invariant variables and the equations will be reduced to
the orbit manifold, which is the zero level set of a distinguished function called the Casimir function for this bracket. On
the intersections of the Hamiltonian with the orbit manifold, the reduced equations for the spherical pendulum will simplify to the
equations of a quadratically nonlinear oscillator.

The solution for the motion of the spherical pendulum will be finished by finding expressions for its geometrical and dynamical
phases.

The constrained Lagrangian We begin with the Lagrangian L(x, ẋ) : TR3 → R given by

L(x, ẋ) = 1
2
|ẋ|2 − gê3 · x− 1

2
µ(1− |x|2), (25)

in which the Lagrange multiplier µ constrains the motion to remain on the sphere S2 by enforcing (1 − |x|2) = 0 when it is varied in
Hamilton’s principle. The corresponding Euler–Lagrange equation is

ẍ = −gê3 + µx . (26)
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g
Figure 8: Spherical pendulum moving under gravity on TS2 in R3.
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Equation (26) preserves both of the TS2 relations 1− |x|2 = 0 and x · ẋ = 0, provided the Lagrange multiplier is given by

µ = gê3 · x− |ẋ|2 . (27)

Remark 6. In Newtonian mechanics, the motion equation obtained by substituting (27) into (26) may be interpreted as

ẍ = F · (Id− x⊗ x)− |ẋ|2x ,

where F = −gê3 is the force exerted by gravity on the particle,

T = F · (Id− x⊗ x)

is its component tangential to the sphere and, finally, −|ẋ|2x is the centripetal force for the motion to remain on the sphere.

S1 symmetry and Noether’s theorem The Lagrangian in (25) is invariant under S1 rotations about the vertical axis, whose
infinitesimal generator is δx = ê3 × x. Noether’s theorem tell us that each smooth symmetry of the Lagrangian in which an action
principle implies a conservation law for its Euler–Lagrange equations. It implies in this case that Equation (26) conserves

J3(x, ẋ) = ẋ · δx = x× ẋ · ê3 , (28)

which is the angular momentum about the vertical axis.

Legendre transform and canonical equations The fibre derivative of the Lagrangian L in (25) is

y =
∂L

∂ẋ
= ẋ . (29)

The variable y will be the momentum canonically conjugate to the radial position x, after the Legendre transform to the corresponding
Hamiltonian,

H(x,y) = 1
2
|y|2 + gê3 · x + 1

2
(gê3 · x− |y|2)(1− |x|2) , (30)

whose canonical equations on (1− |x|2) = 0 are

ẋ = y and ẏ = −gê3 + (gê3 · x− |y|2)x . (31)
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This Hamiltonian system on T ∗R3 admits TS2 as an invariant manifold, provided the initial conditions satisfy the defining relations for
TS2 in (24). On TS2, Equations (31) conserve the energy

E(x,y) = 1
2
|y|2 + gê3 · x (32)

and the vertical angular momentum
J3(x,y) = x× y · ê3 .

Under the (x,y) canonical Poisson bracket, the angular momentum component J3 generates the Hamiltonian vector field

XJ3 = { · , J3} =
∂J3

∂y
· ∂
∂x
− ∂J3

∂x
· ∂
∂y

= ê3 × x · ∂
∂x

+ ê3 × y · ∂
∂y

, (33)

for infinitesimal rotations about the vertical axis ê3. Because of the S1 symmetry of the Hamiltonian in (30) under these rotations, we
have the conservation law,

J̇3 = {J3, H} = XJ3H = 0 .

6.2 Lie symmetry reduction

Algebra of invariants To take advantage of the S1 symmetry of the spherical pendulum, we transform to S1-invariant quantities. A
convenient choice of basis for the algebra of polynomials in (x,y) that are S1-invariant under rotations about the third axis is chosen as

σ1 = x3 σ3 = y2
1 + y2

2 + y2
3 σ5 = x1y1 + x2y2

σ2 = y3 σ4 = x2
1 + x2

2 σ6 = x1y2 − x2y1
.

Quotient map The transformation defined by

π : (x,y)→ {σj(x,y), j = 1, . . . , 6} (34)

is the quotient map TR3 → R6 for the spherical pendulum. Each of the fibres of the quotient map π is an S1 orbit generated by the
Hamiltonian vector field XJ3 in (33).
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The six S1 invariants that define the quotient map in (34) for the spherical pendulum satisfy the cubic algebraic relation

σ2
5 + σ2

6 = σ4(σ3 − σ2
2) . (35)

They also satisfy the positivity conditions
σ4 ≥ 0, σ3 ≥ σ2

2. (36)

In these variables, the defining relations (24) for TS2 become

σ4 + σ2
1 = 1 and σ5 + σ1σ2 = 0 . (37)

Perhaps not unexpectedly, since TS2 is invariant under the S1 rotations, it is also expressible in terms of S1 invariants. The three relations
in Equations (35)–(37) will define the orbit manifold for the spherical pendulum in R6.

Reduced space and orbit manifold in R3 On TS2, the variables σj(x,y), j = 1, . . . , 6 satisfying (37) allow the elimination of σ4

and σ5 to satisfy the algebraic relation
σ2

1σ
2
2 + σ2

6 = (σ3 − σ2
2)(1− σ2

1) ,

which on expansion simplifies to
σ2

2 + σ2
6 = σ3(1− σ2

1) , (38)

where σ3 ≥ 0 and (1− σ2
1) ≥ 0. Restoring σ6 = J3, we may write the previous equation as

C(σ1, σ2, σ3; J2
3 ) = σ3(1− σ2

1)− σ2
2 − J2

3 = 0 . (39)

This is the orbit manifold for the spherical pendulum in R3. The motion takes place on the following family of surfaces depending on
(σ1, σ2, σ3) ∈ R3 and parameterised by the conserved value of J2

3 ,

σ3 =
σ2

2 + J2
3

1− σ2
1

. (40)

The orbit manifold for the spherical pendulum is a graph of σ3 over (σ1, σ2) ∈ R2, provided 1− σ2
1 6= 0. The two solutions of 1− σ2

1 = 0
correspond to the north and south poles of the sphere. In the case J2

3 = 0, the spherical pendulum is restricted to the planar pendulum.
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Figure 9: The dynamics of the spherical pendulum in the space of S1 invariants (σ1, σ2, σ3) is recovered by taking the union in R3 of the intersections of level
sets of two families of surfaces. These surfaces are the roughly cylindrical level sets of angular momentum about the vertical axis given in (40) and the (planar)
level sets of the Hamiltonian in (41). (Only one member of each family is shown in the figure here, although the curves show a few of the other intersections.) On
each planar level set of the Hamiltonian, the dynamics reduces to that of a quadratically nonlinear oscillator for the vertical coordinate (σ1) given in Equation
(47).
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Reduced Poisson bracket in R3 When evaluated on TS2, the Hamiltonian for the spherical pendulum is expressed in these S1-
invariant variables by the linear relation

H = 1
2
σ3 + gσ1 , (41)

whose level surfaces are planes in R3. The motion in R3 takes place on the intersections of these Hamiltonian planes with the level sets
of J2

3 given by C = 0 in Equation (39). Consequently, in R3-vector form, the motion is governed by the cross-product formula

σ̇ =
∂C

∂σ
× ∂H

∂σ
. (42)

In components, this evolution is expressed as

σ̇i = {σi, H} = εijk
∂C

∂σj

∂H

∂σk
with i, j, k = 1, 2, 3. (43)

The motion may be expressed in Hamiltonian form by introducing the following bracket operation, defined for a function F of the
S1-invariant vector σ = (σ1, σ2, σ3) ∈ R3,

{F,H} = − ∂C
∂σ
· ∂F
∂σ
× ∂H

∂σ
= − εijk

∂C

∂σi

∂F

∂σj

∂H

∂σk
. (44)

This is an example of the Nambu R3 bracket. The proof that this bracket satisfies the defining relations to be a Poisson bracket was
assigned in a homework. In the present case, the distinguished function C(σ1, σ2, σ3; J2

3 ) in (39) defines a level set of the squared vertical
angular momentum J2

3 in R3 given by C = 0. The distinguished function C is a Casimir function for the Nambu bracket in R3. That
is, the Nambu bracket in (44) with C obeys {C,H} = 0 for any Hamiltonian H(σ1, σ2, σ3) : R3 → R. Consequently, the motion governed
by this R3 bracket takes place on level sets of J2

3 given by C = 0.

Poisson map Introducing the Nambu bracket in (44) ensures that the quotient map for the spherical pendulum π : TR3 → R6 in (34)
is a Poisson map. That is, the subspace obtained by using the relations (37) to restrict to the invariant manifold TS2 produces a set
of Poisson brackets {σi, σj} for i, j = 1, 2, 3 that close amongst themselves. Namely,

{σi, σj} = εijk
∂C

∂σk
, (45)

with C given in (39). These brackets may be expressed in tabular form, as
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{ · , · } σ1 σ2 σ3

σ1

σ2

σ3

0 1− σ2
1 2σ2

−1 + σ2
1 0 − 2σ1σ3

− 2σ2 2σ1σ3 0

.

In addition, {σi, σ6} = 0 for i = 1, 2, 3, since σ6 = J3 and the {σi
∣∣ i = 1, 2, 3} are all S1-invariant under XJ3 in (33).

Reduced motion: Restriction in R3 to Hamiltonian planes The individual components of the equations of motion may be
obtained from (43) as

σ̇1 = −σ2 , σ̇2 = σ1σ3 + g(1− σ2
1) , σ̇3 = 2gσ2 . (46)

Substituting σ3 = 2(H − gσ1) from Equation (41) and setting the acceleration of gravity to be unity g = 1 yields

σ̈1 = 3σ2
1 − 2Hσ1 − 1 (47)

which has equilibria at σ±1 = 1
3
(H ±

√
H2 + 3) and conserves the energy integral

1
2
σ̇2

1 + V (σ1) = E (48)

with the potential V (σ1) parameterised by H in (41) and given by

V (σ1) = −σ3
1 +Hσ2

1 + σ1 . (49)

Equation (48) is an energy equation for a particle of unit mass, with position σ1 and energy E, moving in a cubic potential field V (σ1).
For H = 0, its equilibria in the (σ1, σ̇1) phase plane are at (σ1, σ̇1) = (±

√
3/3, 0), as sketched in Figure 10.

Each curve in the lower panel of Figure 10 represents the intersection in the reduced phase space with S1-invariant coordinates
(σ1, σ2, σ3) ∈ R3 of one of the Hamiltonian planes (41) with a level set of J2

3 given by C = 0 in Equation (39). The critical points of the
potential are relative equilibria, corresponding to S1-periodic solutions. The case H = 0 includes the homoclinic trajectory, for which the
level set E = 0 in (48) starts and ends with zero velocity at the north pole of the unit sphere. A discussion of the properties of motion
in a cubic potential and the details of how to compute its homoclinic trajectory was assigned as a homework.
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Figure 10: The upper panel shows a sketch of the cubic potential V (σ1) in Equation (49) for the case H = 0. For H = 0, the potential
has three zeros located at σ1 = 0,±1 and two critical points (relative equilibria) at σ1 = −

√
3/3 (centre) and σ1 = +

√
3/3 (saddle).

The lower panel shows a sketch of its fish-shaped saddle-centre configuration in the (σ1, σ̇1) phase plane, comprising several level sets of
E(σ1, σ̇1) from Equation (48) for H = 0.
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6.3 Geometric phase for the spherical pendulum

We write the Nambu bracket (44) for the spherical pendulum as a differential form in R3,

{F,H} d3σ = dC ∧ dF ∧ dH , (50)

with oriented volume element d3σ = dσ1 ∧ dσ2 ∧ dσ3. Hence, on a level set of H we have the canonical Poisson bracket

{f, h}dσ1 ∧ dσ2 = df ∧ dh =

(
∂f

∂σ1

∂h

∂σ2

− ∂f

∂σ2

∂h

∂σ1

)
dσ1 ∧ dσ2 (51)

and we recover Equation (47) in canonical form with Hamiltonian

h(σ1, σ2) = −
(

1
2
σ2

2 − σ3
1 +Hσ2

1 + σ1

)
= −

(
1
2
σ2

2 + V (σ1)
)
, (52)

which, not unexpectedly, is also the conserved energy integral in (48) for motion on level sets of H.
For the S1 reduction considered in the present case, the canonical one-form is

pidqi = σ2 dσ1 +Hdψ , (53)

where σ1 and σ2 are the symplectic coordinates for the level surface of H on which the reduced motion takes place and ψ ∈ S1 is
canonically conjugate to H.

Our goal is to finish the solution for the spherical pendulum motion by reconstructing the phase ψ ∈ S1 from the symmetry-reduced
motion in (σ1, σ2, σ3) ∈ R3 on a level set of H. Rearranging Equation (53) gives

Hdψ = −σ2 dσ1 + pidqi . (54)

Thus, the phase change around a closed periodic orbit on a level set of H in the (σ1, σ2, ψ,H) phase space decomposes into the sum of
the following two parts: ∮

H dψ = H ∆ψ = −
∮
σ2 dσ1︸ ︷︷ ︸

geometric

+

∮
pidqi︸ ︷︷ ︸

dynamic

. (55)

On writing this decomposition of the phase as

∆ψ = ∆ψgeom + ∆ψdyn , (56)
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one sees from (46) that

H∆ψgeom =

∮
σ2

2 dt =

∫∫
dσ1 ∧ dσ2 (57)

is the area enclosed by the periodic orbit on a level set of H. Thus the name geometric phase for ∆ψgeom, because this part of the
phase equals the geometric area of the periodic orbit. The rest of the phase is given by

H∆ψdyn =

∮
pi dqi =

∫ T

0

(σ2σ̇1 +Hψ̇) dt . (58)

Hence, from the canonical equations σ̇1 = ∂h/∂σ2 and ψ̇ = ∂h/∂H with Hamiltonian h in (52), we have

∆ψdyn =
1

H

∫ T

0

(
σ2
∂h

∂σ2

+H
∂h

∂H

)
dt

=
2T

H

(
h+

〈
V (σ1)

〉
− 1

2
H
〈
σ2

1

〉)
=

2T

H

(
h+

〈
V (σ1)

〉)
− T

〈
σ2

1

〉
, (59)

where T is the period of the orbit around which the integration is performed and the angle brackets 〈 · 〉 denote time average.
The second summand ∆ψdyn in (56) depends on the Hamiltonian h = E, the orbital period T , the value of the level set H and the

time averages of the potential energy and σ2
1 over the orbit. Thus, ∆ψdyn deserves the name dynamic phase, since it depends on several

aspects of the dynamics along the orbit, not just its area.
This finishes the solution for the periodic motion of the spherical pendulum up to quadratures for the phase. The remaining homoclinic

trajectory is determined as in Section ??.
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7 Mechanics on Lie groups

7.1 This is a topic invented by H. Poincaré in 1901.

Figure 11: This is the first page of Poincaré’s short paper, C.R. Acad. Sci. 132 (1901) 369-371 [Po1901].
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Keywords for mechanics on Lie groups:

group
Lie group, G
identity element, e
Lie algebra, g
tangent vectors

conjugation map
Lie algebra bracket,
[ · , · ] : g× g→ g
Jacobi identity
basis vectors, ek ∈ g

structure constants
reduced Lagrangian
dual Lie algebra, g∗
dual basis, ek ∈ g∗

pairing, g∗ × g→ R

• Recall that a group is a set of elements with an associative binary product that has a unique inverse and identity element.

• A Lie group G is a group that depends smoothly on a set of parameters in Rdim(G).

A Lie group is also a smooth manifold, so it is an interesting arena for geometric mechanics.

• Choose the manifold M for mechanics as discussed above to be the Lie group G and denote the identity element as the point e.
The identity element e satisfies eg = g = ge for all g ∈ G, where the group product denoted by concatenation.

• The Lie algebra g of the Lie group G is defined as the space of tangent vectors g ∼= TeG at the identity e of the group.

The Lie algebra has a bracket operation [ · , · ] : g× g → g, which it inherits from linearisation at the identity e of the conjugation
map h · g = hgh−1 for g, h ∈ G. For this, one begins with the conjugation map h(t) · g(s) = h(t)g(s)h(t)−1 for curves g(s), h(t) ∈ G,
with g(0) = e = h(0). One linearises at the identity, first in s to get the operation Ad : G × g → g and then in t to get the
operation ad : g × g → g, which yields the Lie bracket. The bracket operation is antisymmetric [a, b] = −[b, a] and satisfies the
Jacobi condition for a, b, c ∈ g,

[a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0 .

The bracket operation among the basis vectors ek ∈ g with k = 1, 2, . . . , dim(g) defines the Lie algebra by its structure constants
cij

k in (summing over repeated indices)
[ei , ej] = cij

kek .

The requirement of skew-symmetry and the Jacobi condition put constraints on the structure constants. These constraints are

– skew-symmetry
ckji = − ckij , (60)
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– Jacobi identity
ckijc

m
lk + cklic

m
jk + ckjlc

m
ik = 0 . (61)

Conversely, any set of constants ckij that satisfy relations (60)–(61) defines a Lie algebra g.

Exercise:

Prove that the Jacobi condition requires the relation (61).

Hint: the Jacobi condition involves summing three terms of the form

[ el , [ ei , ej ] ] = ckij[ el , ek] = ckijc
m
lk em .

7.2 Understanding H. Poincaré’s contribution [Po1901].

To understand [Po1901], let’s introduce two more definitions.

1. Define a reduced Lagrangian l : g → R and an associated variational principle δS = 0 with S =
∫ b
a
l(ξ)dt where ξ = ξkek ∈ g

has components ξk in the set of basis vectors ek.

2. Define the dual Lie algebra g∗ by using the fibre derivative of the Lagrangian l : g→ R to define a pairing as

µ :=
∂l(ξ)

∂ξ
∈ g∗ , written in components as µi :=

∂l(ξ)

∂ξi
, with a basis µ = µje

j , and pairing 〈 ej, ei 〉 = δji .

In particular, the relation dl = 〈µ, dξ〉 defines a natural pairing 〈 · , · 〉 : g∗ × g→ R.

The natural dual basis for g∗ satisfies 〈ej, ek〉 = δjk in this pairing and an element µ ∈ g∗ has components in this dual basis given
by µ = µke

k, again with with k = 1, 2, . . . , dim(g).
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• Exercise:

(a) Show that Hamilton’s principle δS = 0 with S =
∫ b
a
l(ξ) dt implies the Euler-Poincaré (EP) equations:

d

dt
µi = − cijkξjµk , with µk =

∂l(ξ)

∂ξk
,

for variations given by δξ = η̇ + [ξ, η] with ξ, η ∈ g.

Note: [ej, ek] = cjk
iei, so

[ξ, η] = [ξjej, η
kek] = ξj[ej, ek]η

k = ξjηkcjk
iei = [ξ, η]iei .

• Answer:

δS = δ

∫ b

a

l(ξ)dt =

∫ b

a

〈
∂l

∂ξ
, δξ

〉
dt =

∫ b

a

〈
∂l

∂ξ
, η̇ + [ξ, η]

〉
dt

=

∫ b

a

〈
∂l

∂ξn
en, η̇iei + ξjηkcjk

iei

〉
dt since

〈
en, ei

〉
= δni

=

∫ b

a

(
− d

dt

∂l

∂ξi
+

∂l

∂ξk
ξjcji

k

)
ηi dt+

[
∂l

∂ξi
ηi
]b
a

where, in the last step, we integrated by parts and relabelled indices. Hence, when ηi vanishes at the endpoints in time, but is

otherwise arbitrary, we recover the EP equations as

d

dt

∂l

∂ξi
+

∂l

∂ξk
ξjcij

k = 0 ,

where we have used the antisymmetry of the structure constant cijk = − cjik.

These are the equations introduced by Poincaré in [Po1901], which we now write as
d
dt
∂l
∂ξ − ad∗ξ

∂l
∂ξ = 0.

Here the notation ad∗ is defined by
〈
− ad∗ξ

∂l
∂ξ
, η
〉

:= ∂l
∂ξk
ξjcij

kηi = ∂l
∂ξk

[eiη
i, ejξ

j]k =:
〈
∂l
∂ξ
, − adξη

〉
.
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• Exercise: Write Noether’s theorem for the Euler-Poincaré theory.

• Answer: To each continuous symmetry group G of the Lagrangian l(ξ), the quantity ( ∂l
∂ξi

ηi) is conserved, where ηiei ∈ g is the
infinitesimal transformation of the action of the group G× g→ g.

• Exercise: The Lie algebra so(3) of the Lie group SO(3) of rotations in three dimensions has structure constants cijk = εij
k, where

εij
k with i, j, k ∈ {1, 2, 3} is totally antisymmetric under pairwise permutations of its indices, with ε12

3 = 1, ε21
3 = −1, etc.

Identify the Lie bracket [a, b] of two elements a = aiei, b = bjej ∈ so(3) with the cross product a × b of two vectors a,b ∈ R3

according to 2

[a, b] = [aiei, b
jej] = aibjεij

kek = (a× b)kek .

(a) Show that in this case the EP equation
µ̇i = −εijkξjµk

is equivalent to the vector equation for ξ,µ ∈ R3

µ̇ = − ξ × µ .

(b) Show that when the Lagrangian is given by the quadratic

l(ξ) =
1

2
‖ξ‖2

K =
1

2
ξ ·Kξ =

1

2
ξiKijξ

j

for a symmetric constant Riemannian metric KT = K, then Euler’s equations for a rotating rigid body are recovered.

That is, Euler’s equations for rigid body motion are contained in Poincaré’s equations for motion on Lie groups!

And Poincaré’s equations generalise Euler’s equations for rigid body motion from R3 to motion on Lie groups!

(c) Identify the functional dependence of µ on ξ and give the physical meanings of the symbols ξ,µ and K in Euler’s rigid body
equations.

2 (a’) Show that this formula implies the Jacobi identity for the cross product of vectors in R3. This is no surprise because, that familiar cross product relation
for vectors may be proven directly by using the antisymmetric tensor εijk.



M 3-4-5 A16 Notes: Geometric Mechanics, Part I DD Holm Autumn term 2012 47

8 Motion on SO(n): the rigid body

8.1 Manakov’s formulation of the SO(n) rigid body

Proposition 7 (Manakov [Ma1976]). Euler’s equations for a rigid body on SO(n) take the matrix commutator form,

dM

dt
= [M , Ω ] with M = AΩ + ΩA , (62)

where the n× n matrices M, Ω are skew-symmetric (forgoing superfluous hats) and A is symmetric.

Proof. Manakov’s commutator form of the SO(n) rigid-body Equations (62) follows as the Euler–Lagrange equations for Hamilton’s
principle δS = 0 with S =

∫
l dt for the Lagrangian

l =
1

2
tr(ΩTAΩ) = −1

2
tr(ΩAΩ) ,

where Ω = O−1Ȯ ∈ so(n) and the n× n matrix A is symmetric. Taking matrix variations in Hamilton’s principle yields

δS = −1

2

∫ b

a

tr
(
δΩ (AΩ + ΩA)

)
dt = −1

2

∫ b

a

tr
(
δΩM

)
dt ,

after cyclically permuting the order of matrix multiplication under the trace and substituting M := AΩ + ΩA.
Using the variational formula

δΩ = δ(O−1Ȯ) = Ξ˙ + [ Ω , Ξ ] , with Ξ = (O−1δO) (63)

for δΩ now leads to

δS = −1

2

∫ b

a

tr
(
(Ξ˙ + ΩΞ− ΞΩ)M

)
dt .

Integrating by parts and permuting under the trace then yields the equation

δS =
1

2

∫ b

a

tr
(
Ξ ( Ṁ + ΩM −MΩ )

)
dt .

Finally, invoking stationarity for arbitrary Ξ implies the commutator form (62).
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8.2 Matrix Euler–Poincaré equations

Manakov’s commutator form of the rigid-body equations in (62) recalls much earlier work by Poincaré [Po1901], who also noticed that
the matrix commutator form of Euler’s rigid-body equations suggests an additional mathematical structure going back to Lie’s theory of
groups of transformations depending continuously on parameters. In particular, Poincaré [Po1901] remarked that the commutator form
of Euler’s rigid-body equations would make sense for any Lie algebra, not just for so(3). The proof of Manakov’s commutator form (62)
by Hamilton’s principle is essentially the same as Poincaré’s proof in [Po1901].

Theorem 8 (Matrix Euler–Poincaré equations). The Euler–Lagrange equations for Hamilton’s principle δS = 0 with S =
∫
l(Ω) dt

may be expressed in matrix commutator form,

dM

dt
= [M , Ω ] with M =

δl

δΩ
, (64)

for any Lagrangian l(Ω), where Ω = g−1ġ ∈ g and g is the matrix Lie algebra of any matrix Lie group G.

Proof. The proof here is the same as the proof of Manakov’s commutator formula via Hamilton’s principle, modulo replacing O−1Ȯ ∈
so(n) with g−1ġ ∈ g.

Remark 9.
Poincaré’s observation leading to the matrix Euler–Poincaré Equation (64) was reported in two pages with no references [Po1901]. The
proof above shows that the matrix Euler–Poincaré equations possess a natural variational principle. Note that if Ω = g−1ġ ∈ g, then
M = δl/δΩ ∈ g∗, where the dual is defined in terms of the matrix trace pairing.

Exercise. Retrace the proof of the variational principle for the Euler–Poincaré equation, replacing the left-invariant quantity
g−1ġ with the right-invariant quantity ġg−1. F



M 3-4-5 A16 Notes: Geometric Mechanics, Part I DD Holm Autumn term 2012 49

8.3 An isospectral eigenvalue problem for the SO(n) rigid body

The solution of the SO(n) rigid-body dynamics

dM

dt
= [M , Ω ] with M = AΩ + ΩA ,

for the evolution of the n × n skew-symmetric matrices M, Ω, with constant symmetric A, is given by a similarity transformation
(later to be identified as coadjoint motion),

M(t) = O(t)−1M(0)O(t) =: Ad∗O(t)M(0) ,

with O(t) ∈ SO(n) and Ω := O−1Ȯ(t). Consequently, the evolution of M(t) is isospectral. This means that

• The initial eigenvalues of the matrix M(0) are preserved by the motion; that is, dλ/dt = 0 in

M(t)ψ(t) = λψ(t) ,

provided its eigenvectors ψ ∈ Rn evolve according to

ψ(t) = O(t)−1ψ(0) .

The proof of this statement follows from the corresponding property of similarity transformations.

• Its matrix invariants are preserved:
d

dt
tr(M − λId)K = 0 ,

for every non-negative integer power K.

This is clear because the invariants of the matrix M may be expressed in terms of its eigenvalues; but these are invariant under
a similarity transformation.

Proposition 10. Isospectrality allows the quadratic rigid-body dynamics (62) on SO(n) to be rephrased as a system of two coupled
linear equations: the eigenvalue problem for M and an evolution equation for its eigenvectors ψ, as follows:

Mψ = λψ and ψ̇ = −Ωψ , with Ω = O−1Ȯ(t) .



M 3-4-5 A16 Notes: Geometric Mechanics, Part I DD Holm Autumn term 2012 50

Proof. Applying isospectrality in the time derivative of the first equation yields

( Ṁ + [ Ω,M ] )ψ + (M − λId)(ψ̇ + Ωψ) = 0 .

Now substitute the second equation to recover (62).

8.4 Manakov’s integration of the SO(n) rigid body

Manakov [Ma1976] observed that Equations (62) may be “deformed” into

d

dt
(M + λA) = [(M + λA), (Ω + λB)] , (65)

where A, B are also n× n matrices and λ is a scalar constant parameter. For these deformed rigid-body equations on SO(n) to hold for
any value of λ, the coefficient of each power must vanish.

• The coefficent of λ2 is
0 = [A,B] .

Therefore, A and B must commute. For this, let them be constant and diagonal:

Aij = diag(ai)δij , Bij = diag(bi)δij (no sum).

• The coefficent of λ is
0 =

dA

dt
= [A,Ω] + [M,B] .

Therefore, by antisymmetry of M and Ω,
(ai − aj)Ωij = (bi − bj)Mij ,

which implies that

Ωij =
bi − bj
ai − aj

Mij (no sum).

Hence, angular velocity Ω is a linear function of angular momentum, M .
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• Finally, the coefficent of λ0 recovers the Euler equation

dM

dt
= [M,Ω] ,

but now with the restriction that the moments of inertia are of the form

Ωij =
bi − bj
ai − aj

Mij (no sum).

This relation turns out to possess only five free parameters for n = 4.

Under these conditions, Manakov’s deformation of the SO(n) rigid-body equation into the commutator form (65) implies for every
non-negative integer power K that

d

dt
(M + λA)K = [(M + λA)K , (Ω + λB)] .

Since the commutator is antisymmetric, its trace vanishes and K conservation laws emerge, as

d

dt
tr(M + λA)K = 0 ,

after commuting the trace operation with the time derivative. Consequently,

tr(M + λA)K = constant ,

for each power of λ. That is, all the coefficients of each power of λ are constant in time for the SO(n) rigid body. Manakov [?] proved
that these constants of motion are sufficient to completely determine the solution for n = 4.

Remark 11.
This result generalises considerably. For example, Manakov’s method determines the solution for all the algebraically solvable rigid bodies
on SO(n). The moments of inertia of these bodies possess only 2n− 3 parameters. (Recall that in Manakov’s case for SO(4) the moment
of inertia possesses only five parameters.)

Exercise. Try computing the constants of motion tr(M + λA)K for the values K = 2, 3, 4.

Hint: Keep in mind that M is a skew-symmetric matrix, MT = −M , so the trace of the product of any diagonal matrix times
an odd power of M vanishes. F
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Answer. The traces of the powers trace(M + λA)n are given by

n = 2 : trM2 + 2λtr(AM) + λ2trA2 ,

n = 3 : trM3 + 3λtr(AM2) + 3λ2trA2M + λ3trA3 ,

n = 4 : trM4 + 4λtr(AM3)

+ λ2(2trA2M2 + 4trAMAM)

+ λ3trA3M + λ4trA4 .

The number of conserved quantities for n = 2, 3, 4 are, respectively, one (C2 = trM2), one (C3 = trAM2) and two (C4 = trM4 and
I4 = 2trA2M2 + 4trAMAM). N

Exercise. How do the Euler equations look on so(4)∗ as a matrix equation? Is there an analogue of the hat map for so(4)?

Hint: The Lie algebra so(4) is locally isomorphic to so(3)× so(3). F
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9 Transformation Theory
motion
motion equation
vector field
diffeomorphism
flow
fixed point
equilibrium

linearisation
infinitesimal transformation
pull-back
push-forward
Jacobian matrix
directional derivative
commutator

differential, d
differential k-form
wedge product, ∧
Lie derivative, £Q

product rule
fluid dynamics
other flows

9.1 Motions, pull-backs, push-forwards, commutators & differentials

• A motion is defined as a smooth curve q(t) ∈ M parameterised by t ∈ R that solves the motion equation, which is a system of
differential equations

q̇(t) =
dq

dt
= f(q) ∈ TM , (66)

or in components

q̇i(t) =
dqi

dt
= f i(q) i = 1, 2, . . . , n , (67)

• The map f : q ∈M → f(q) ∈ TqM is a vector field.

According to standard theorems about differential equations that are not proven in this course, the solution, or integral curve, q(t)
exists, provided f is sufficiently smooth, which will always be assumed to hold.

• Vector fields can also be defined as differential operators that act on functions, as

d

dt
G(q) = q̇i(t)

∂G

∂qi
= f i(q)

∂G

∂qi
i = 1, 2, . . . , n, (sum on repeated indices) (68)

for any smooth function G(q) : M → R.

• To indicate the dependence of the solution of its initial condition q(0) = q0, we write the motion as a smooth transformation

q(t) = φt(q0) .
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Because the vector field f is independent of time t, for any fixed value of t we may regard φt as mapping from M into itself that
satisfies the composition law

φt ◦ φs = φt+s

and
φ0 = Id .

Setting s = − t shows that φt has a smooth inverse. A smooth mapping that has a smooth inverse is called a diffeomorphism.
Geometric mechanics deals with diffeomorphisms.

• The smooth mapping φt : R ×M → M that determines the solution φt ◦ q0 = q(t) ∈ M of the motion equation (66) with initial
condition q(0) = q0 is called the flow of the vector field Q.

A point q? ∈M at which f(q?) = 0 is called a fixed point of the flow φt, or an equilibrium.

Vice versa, the vector field f is called the infinitesimal transformation of the mapping φt, since

d

dt

∣∣∣∣
t=0

(φt ◦ q0) = f(q) .

That is, f(q) is the linearisation of the flow map φt at the point q ∈M .

More generally, the directional derivative of the function h along the vector field f is given by the action of a differential operator,
as

d

dt

∣∣∣∣
t=0

h ◦ φt =

[
∂h

∂φt

d

dt
(φt ◦ q0)

]
t=0

=
∂h

∂qi
q̇i =

∂h

∂qi
f i(q) =: Qh .

• Under a smooth change of variables q = c(r) the vector field Q in the expression Qh transforms as

Q = f i(q)
∂

∂qi
7→ R = gj(r)

∂

∂rj
with gj(r)

∂ci

∂rj
= f i(c(r)) or g = c−1

r f ◦ c , (69)

where cr is the Jacobian matrix of the transformation. That is, since h(q) is a function of q,

(Qh) ◦ c = R(h ◦ c) .
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We express the transformation between the vector fields as R = c∗Q and write this relation as

(Qh) ◦ c =: c∗Q(h ◦ c) . (70)

The expression c∗Q is called the pull-back of the vector field Q by the map c. Two vector fields are equivalent under a map c, if
one is the pull-back of the other, and fixed points are mapped into fixed points.

The inverse of the pull-back is called the push-forward. It is the pull-back by the inverse map.

• The commutator
QR−RQ =:

[
Q, R

]
of two vector fields Q and R defines another vector field. Indeed, if

Q = f i(q)
∂

∂qi
and R = gj(q)

∂

∂qj

then [
Q, R

]
=

(
f i(q)

∂gj(q)

∂qi
− gi(q)∂f

j(q)

∂qi

)
∂

∂qj

because the second-order derivative terms cancel. By the pull-back relation (70) we have

c∗
[
Q, R

]
=
[
c∗Q, c∗R

]
(71)

under a change of variables defined by a smooth map, c. This means the definition of the vector field commutator is independent
of the choice of coordinates. As we shall see, the tangent to the relation c∗t

[
Q, R

]
=
[
c∗tQ, c

∗
tR
]
at the identity t = 0 is the Jacobi

condition for the vector fields to form an algebra.

• The differential of a smooth function f : M →M is defined as

df =
∂f

∂qi
dqi .
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• Under a smooth change of variables s = φ ◦ q = φ(q) the differential of the composition of functions d(f ◦ φ) transforms according
to the chain rule as

df =
∂f

∂qi
dqi , d(f ◦ φ) =

∂f

∂φj(q)

∂φj

∂qi
dqi =

∂f

∂sj
dsj =⇒ d(f ◦ φ) = (df) ◦ φ (72)

That is, the differential d commutes with the pull-back φ∗ of a smooth transformation φ,

d(φ∗f) = φ∗df . (73)

In a moment, this pull-back formula will give us the rule for transforming differential forms of any order.

9.2 Wedge products

• Differential k-forms on an n-dimensional manifold are defined in terms of the differential d and the antisymmetric wedge product
(∧) satisfying

dqi ∧ dqj = − dqj ∧ dqi , for i, j = 1, 2, . . . , n (74)

By using wedge product, any k-form α ∈ Λk on M may be written locally at a point q ∈M in the differential basis dqj as

αm = αi1...ik(m)dqi1 ∧ · · · ∧ dqik ∈ Λk , i1 < i2 < · · · < ik , (75)

where the sum over repeated indices is ordered, so that it must be taken over all ij satisfying i1 < i2 < · · · < ik. Roughly speaking
differential forms Λk are objects that can be integrated. As we shall see, vector fields also act on differential forms in interesting
ways.

• Pull-backs of other differential forms may be built up from their basis elements, the dqik . By equation (73),

Theorem 12 (Pull-back of a wedge product). The pull-back of a wedge product of two differential forms is the wedge product of
their pull-backs:

φ∗t (α ∧ β) = φ∗tα ∧ φ∗tβ . (76)
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9.3 Lie derivatives

Definition 13 (Lie derivative of a differential k-form). The Lie derivative of a differential k-form Λk by a vector field Q ∈ X is
defined by linearising its flow φt around the identity t = 0,

£QΛk =
d

dt

∣∣∣∣
t=0

φ∗tΛ
k maps £QΛk 7→ Λk .

Hence, by equation (76), the Lie derivative satisfies the product rule for the wedge product.

Corollary 14 (Product rule for the Lie derivative of a wedge product).

£Q(α ∧ β) = £Qα ∧ β + α ∧£Qβ . (77)

• Pullbacks of vector fields lead to Lie derivative expressions, too.

Definition 15 (Lie derivative of a vector field). The Lie derivative of a vector field Y ∈ X by another vector field X ∈ X is
defined by linearising the flow φt of X around the identity t = 0,

£XY =
d

dt

∣∣∣∣
t=0

φ∗tY maps £X ∈ X 7→ X .

Theorem 16. The Lie derivative £XY of a vector field Y by a vector field X satisfies

£XY =
d

dt

∣∣∣∣
t=0

φ∗tY = [X, Y ] , (78)

where [X, Y ] = XY − Y X is the commutator of the vector fields X and Y .

Proof. Denote the vector fields in components as

X = X i(q)
∂

∂qi
=

d

dt

∣∣∣∣
t=0

φ∗t and Y = Y j(q)
∂

∂qj
.



M 3-4-5 A16 Notes: Geometric Mechanics, Part I DD Holm Autumn term 2012 58

Then, by the pull-back relation (70) a direct computation yields, on using the matrix identity dM−1 = −M−1dMM−1,

£XY =
d

dt

∣∣∣∣
t=0

φ∗tY =
d

dt

∣∣∣∣
t=0

(
Y j(φtq)

∂

∂(φtq)j

)

=
d

dt

∣∣∣∣
t=0

Y j(φtq)

[
∂(φtq)

∂q

−1
]k
j

∂

∂qk


=

(
Xj ∂Y

k

∂qj
− Y j ∂X

k

∂qj

)
∂

∂qk

= [X, Y ] .

Corollary 17. The Lie derivative of the relation (71) for the pull-back of the commutator c∗t
[
Y, Z

]
=
[
c∗tY, c

∗
tZ
]
yields the Jacobi

condition for the vector fields to form an algebra.

Proof. By the product rule and the definition of the Lie bracket (78) we have

d

dt

∣∣∣∣
t=0

φ∗t
[
Y, Z

]
=
[
X,
[
Y, Z

]]
=
[
[X, Y ], Z

]
+
[
Y, [X,Z]

]
=

d

dt

∣∣∣∣
t=0

[
φ∗tY, φ

∗
tZ
]

This is the Jacobi identity for vector fields.

Use the hat map and the relation Rt(x×y) = Rtx×Rty to show that the same argument gives the Jacobi identity for the cross
product of vectors in R3, when φ∗t is a rotation.
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9.4 Contraction

Definition 18 (Contraction). In exterior calculus, the operation of contraction denoted as introduces a pairing between vector fields
and differential forms. Contraction is also called substitution of a vector field into a differential form. For basis elements in phase space,
contraction defines duality relations,

∂q dq = 1 = ∂p dp , and ∂q dp = 0 = ∂p dq , (79)

so that differential forms are linear functions of vector fields. A Hamiltonian vector field,

XH = q̇
∂

∂q
+ ṗ

∂

∂p
= Hp∂q −Hq∂p = { · , H } , (80)

satisfies the intriguing linear functional relations with the basis elements in phase space,

XH dq = Hp and XH dp = −Hq . (81)

Definition 19 (Contraction rules with higher forms). The rule for contraction or substitution of a vector field into a differential form is
to sum the substitutions of XH over the permutations of the factors in the differential form that bring the corresponding dual basis element
into its leftmost position. For example, substitution of the Hamiltonian vector field XH into the symplectic form ω = dq ∧ dp yields

XH ω = XH (dq ∧ dp) = (XH dq) dp− (XH dp) dq .

In this example, XH dq = Hp and XH dp = −Hq, so

XH ω = Hpdp+Hqdq = dH ,

which follows from the duality relations (79).

This calculation has proved the following.

Theorem 20 (Hamiltonian vector field). The Hamiltonian vector field XH = { · , H } satisfies

XH ω = dH with ω = dq ∧ dp . (82)
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Remark 21.
The purely geometric nature of relation (82) argues for it to be taken as the definition of a Hamiltonian vector field.

Lemma 22. d2 = 0 for smooth phase-space functions.

Proof. For any smooth phase-space function H(q, p), one computes

dH = Hqdq +Hpdp

and taking the second exterior derivative yields

d2H = Hqp dp ∧ dq +Hpq dq ∧ dp
= (Hpq −Hqp) dq ∧ dp = 0 .

Relation (82) also implies the following.

Corollary 23 (Poincaré’s theorem). The flow of XH preserves the exact two-form ω for any Hamiltonian H.

Proof. Preservation of ω may be verified first by a formal calculation using (82). Along

XH = (dq/dt, dp/dt) = (q̇, ṗ) = (Hp,−Hq) ,

for a solution of Hamilton’s equations, we have

£XHω = £XH (dq ∧ dp)

=
d

dt

∣∣∣
t=0
g∗t (dq ∧ dp)

=
d

dt

∣∣∣
t=0

(g∗t dq ∧ g∗t dp)

= dq̇ ∧ dp+ dq ∧ dṗ

= dHp ∧ dp− dq ∧ dHq

= d(Hp dp+Hq dq)

= d(XH ω)

= d(dH) = 0 .
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The first two steps use the product rule for Lie derivatives of differential forms

£XH (dq ∧ dp) =
d

dt

∣∣∣
t=0
g∗t (dq ∧ dp) =

d

dt

∣∣∣
t=0

(g∗t dq ∧ g∗t dp)

=
[ d
dt
g∗t dq ∧ g∗t dp+ g∗t dq ∧

d

dt
g∗t dp

]
t=0

= £XHdq ∧ dp+ dq ∧£XHdp

(83)

and the third-to-the-last and last steps use the property of the exterior derivative d that d2 = 0 for continuous forms. The latter is due
to the equality of cross derivatives Hpq = Hqp and antisymmetry of the wedge product dq ∧ dp = − dp ∧ dq.

Definition 24 (Symplectic flow). A flow is symplectic if it preserves the phase-space area or symplectic two-form, ω = dq ∧ dp.

According to this definition, Corollary 23 may be simply re-stated as

Corollary 25 (Poincaré’s theorem). The flow of a Hamiltonian vector field is symplectic.

Definition 26 (Canonical ṫransformations). A smooth invertible map g of the phase space T ∗M is called a canonical transformation
if it preserves the canonical symplectic form ω on T ∗M , i.e., g∗ω = ω, where g∗ω denotes the pull-back of ω under the map g.

Remark 27 (Criterion for a canonical transformation).
Suppose in original coordinates (p, q) the symplectic form is expressed as ω = dq ∧ dp. A transformation g : T ∗M 7→ T ∗M written as
(Q,P ) = (Q(p, q), P (p, q) is canonical if the direct computation shows that dQ ∧ dP = g∗(dq ∧ dp) = c dq ∧ dp, up to a constant factor c.
(Such a constant factor c is unimportant, since it may be absorbed into the units of time in Hamilton’s canonical equations.)

Remark 28.
By Corollary 25 (Poincaré’s Theorem), the Hamiltonian phase flow gt is a one-parameter group of canonical transformations.

Theorem 29 (Preservation of Hamiltonian form). Canonical transformations preserve the Hamiltonian form.

Proof. The coordinate-free relation XH ω = dH with ω = dq ∧ dp keeps its form if

dQ ∧ dP = g∗(dq ∧ dp) = c dq ∧ dp ,

up to the constant factor c. Hence, Hamilton’s equations re-emerge in canonical form in the new coordinates, up to a rescaling by c which
may be absorbed into the units of time.
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9.5 Summary of differential-form operations

Besides the wedge product, three basic operations are commonly applied to differential forms. These are contraction, exterior derivative
and Lie derivative.

• Contraction with a vector field X lowers the degree:

X Λk 7→ Λk−1 .

• Exterior derivative d raises the degree:

dΛk 7→ Λk+1 .

• Lie derivative £X by vector field X preserves the degree:

£XΛk 7→ Λk , where £XΛk =
d

dt

∣∣∣∣
t=0

φ∗tΛ
k ,

in which φt is the flow of the vector field X. In analogy with fluids one may write £XΛk = d
dt

Λk along dx
dt

= X.

• Lie derivative £X satisfies Cartan’s formula: (The proof is a direct calculation.)

£Xα = X dα + d(X α) for α = αi1...ikdx
i1 ∧ · · · ∧ dxik ∈ Λk .

Remark 30.
Note also that the Lie derivative commutes with the exterior derivative. That is,

d(£Xα) = £Xdα , for α ∈ Λk(M) and X ∈ X(M) .
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9.6 Examples of contraction, or interior product

Definition 31 (Contraction, or interior product). Let α ∈ Λk be a k-form on a manifold M ,

α = αi1...ikdx
i1 ∧ · · · ∧ dxik ∈ Λk , with i1 < i2 < · · · < ik ,

and let X = Xj∂j be a vector field. The contraction or interior product X α of a vector field X with a k-form α is defined by

X α = Xjαji2...ikdx
i2 ∧ · · · ∧ dxik . (84)

Note that

X (Y α) = X lY mαmli3...ikdx
i3 ∧ · · · ∧ dxik

= −Y (X α) ,

by antisymmetry of αmli3...ik , particularly in its first two indices.

Remark 32 (Examples of contraction).

1. A mnemonic device for keeping track of signs in contraction or substitution of a vector field into a differential form is to sum
the substitutions of X = Xj∂j over the permutations that bring the corresponding dual basis element into the leftmost position
in the k-form α. For example, in two dimensions, contraction of the vector field X = Xj∂j = X1∂1 + X2∂2 into the two-form
α = αjkdx

j ∧ dxk with α21 = −α12 yields

X α = Xjαji2dx
i2 = X1α12dx

2 +X2α21dx
1 .

Likewise, in three dimensions, contraction of the vector field X = X1∂1 +X2∂2 +X3∂3 into the three-form α = α123dx
1 ∧ dx2 ∧ dx3

with α213 = −α123, etc. yields

X α = X1α123dx
2 ∧ dx3 + cyclic permutations

= Xjαji2i3dx
i2 ∧ dxi3 with i2 < i3 .
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2. The rule for contraction of a vector field with a differential form develops from the relation

∂j dxk = δkj ,

in the coordinate basis ej = ∂j := ∂/∂xj and its dual basis ek = dxk. Contraction of a vector field with a one-form yields the dot
product, or inner product, between a covariant vector and a contravariant vector is given by

Xj∂j vkdx
k = vkδ

k
jX

j = vjX
j ,

or, in vector notation,

X v · dx = v ·X .

This is the dot product of vectors v and X.

3. By the linearity of its definition (84), contraction of a vector field X with a differential k-form α satisfies

(hX) α = h(X α) = X hα .

Our previous calculations for two-forms and three-forms provide the following additional expressions for contraction of a vector
field with a differential form, which may be written in vector notation as:

X B · dS = −X×B · dx ,
X d 3x = X · dS ,

d(X d 3x) = d(X · dS) = (div X) d 3x .

Remark 33 (Physical examples of contraction).
The first of these contraction relations represents the Lorentz, or Coriolis force, when X is particle velocity and B is either magnetic field,
or rotation rate, respectively. The second contraction relation is the flux of the vector X through a surface element. The third is the
exterior derivative of the second, thereby yielding the divergence of the vector X.
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Exercise. Show that
X (X B · dS) = 0

and
(X B · dS) ∧B · dS = 0 ,

for any vector field X and two-form B · dS. F

Proposition 34 (Contracting through wedge product). Let α be a k-form and β be a one-form on a manifold M and let X = Xj∂j be
a vector field. Then the contraction of X through the wedge product α ∧ β satisfies

X (α ∧ β) = (X α) ∧ β + (−1)kα ∧ (X β) . (85)

Proof. The proof is a straightforward calculation using the definition of contraction. The exponent k in the factor (−1)k counts the
number of exchanges needed to get the one-form β to the left most position through the k-form α.

Proposition 35. [Contraction is natural under pull-back]
That is,

φ∗(X(m) α) = X(φ(m)) φ∗α = φ∗X φ∗α . (86)

Proof. Direct verification using the relation between pull-back of forms and push-forward of vector fields. Note the implication,
£X(Y α) = [X , Y ] α + Y (£Xα).

Definition 36 (Alternative notations for contraction). Besides the hook notation with , one also finds in the literature the following
two alternative notations for contraction of a vector field X with k-form α ∈ Λk on a manifold M :

X α = iXα = α(X, · , · , . . . , ·︸ ︷︷ ︸
k − 1 slots

) ∈ Λk−1 . (87)

In the last alternative, one leaves a dot ( · ) in each remaining slot of the form that results after contraction. For example, contraction of
the Hamiltonian vector field XH = { · , H} with the symplectic two-form ω ∈ Λ2 produces the one-form

XH ω = ω(XH , · ) = −ω( · , XH) = dH .
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In this alternative notation, the proof of formula (86) in Proposition 35 may be written, as follows.

Proof. Since forms are multilinear maps to the real numbers, one may define the pull back of a k-form, α, by

φ∗α(X1, X2, ...) := α(φ∗X,φ∗X2, ...) .

Therefore, we are able to use the following proof.

φ∗X φ∗α(X1, X2, ....) = φ∗α(φ∗X,X1, X2, ...)

= α(φ∗φ
∗X,φ∗X1, φ∗X2, ...)

= α(X,φ∗X1, φ∗X2, ...)

= (X α)(φ∗X1, φ∗X2, ...)

= φ∗(X α)(X1, X2, ...)

Now, if we allow X1, X2, . . . to be arbitrary, then formula (86) in Proposition 35 follows.

Proposition 37 (Hamiltonian vector field definitions). The two definitions of Hamiltonian vector field XH

dH = XH ω and XH = { · , H}

are equivalent.

Proof. The symplectic Poisson bracket satisfies {F,H} = ω(XF , XH), because

ω(XF , XH) := XH XF ω = XH dF = −XF dH = {F, H} .

Remark 38.
The relation {F, H} = ω(XF , XH) means that the Hamiltonian vector field defined via the symplectic form coincides exactly with the
Hamiltonian vector field defined using the Poisson bracket.
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9.7 Exercises in exterior calculus operations

Vector notation for differential basis elements One denotes differential basis elements dxi and dSi = 1
2
εijkdx

j ∧ dxk, for i, j, k =
1, 2, 3 in vector notation as

dx := (dx1, dx2, dx3) ,

dS = (dS1, dS2, dS3)

:= (dx2 ∧ dx3, dx3 ∧ dx1, dx1 ∧ dx2) ,

dSi :=
1

2
εijkdx

j ∧ dxk ,

d 3x = dVol := dx1 ∧ dx2 ∧ dx3

=
1

6
εijkdx

i ∧ dxj ∧ dxk .

Exercise. (Vector calculus operations) Show that contraction of the vector field X = Xj∂j =: X · ∇ with the differential
basis elements recovers the following familiar operations among vectors:

X dx = X ,

X dS = X× dx ,
(or, X dSi = εijkX

jdxk)

Y X dS = X×Y ,

X d 3x = X · dS = XkdSk ,

Y X d 3x = X×Y · dx = εijkX
iY jdxk ,

Z Y X d 3x = X×Y · Z . F

Exercise. (Exterior ḋerivatives in vector notation) Show
that the exterior derivative and wedge product satisfy the following relations in components and in three-dimensional vector
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notation:

df = f,j dx
j =: ∇f · dx ,

0 = d2f = f,jk dx
k ∧ dxj ,

df ∧ dg = f,j dx
j ∧ g,k dxk

=: (∇f ×∇g) · dS ,
df ∧ dg ∧ dh = f,j dx

j ∧ g,k dxk ∧ h,l dxl

=: (∇f · ∇g ×∇h) d 3x . F

Exercise. (Vector calculus formulas) Show that the exterior derivative yields the following vector calculus formulas:

df = ∇f · dx ,
d(v · dx) = (curl v) · dS ,
d(A · dS) = (div A) d 3x .

The compatibility condition d2 = 0 is written for these forms as

0 = d2f = d(∇f · dx) = (curl grad f) · dS ,
0 = d2(v · dx) = d

(
(curl v) · dS

)
= (div curl v) d 3x .

The product rule is written for these forms as

d
(
f(A · dx)

)
= df ∧A · dx + fcurl A · dS
=
(
∇f ×A + fcurl A

)
· dS

= curl (fA) · dS ,

d
(
(A · dx) ∧ (B · dx)

)
= (curl A) · dS ∧B · dx−A · dx ∧ (curl B) · dS
=
(
B · curl A−A · curl B

)
d 3x

= d
(
(A×B) · dS

)
= div(A×B) d 3x .

These calculations yield familiar formulas from vector calculus for quantities curl(grad), div(curl), curl(fA) and div(A×B).
F
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9.8 Integral calculus formulas

Exercise. (Integral calculus formulas) Show that the Stokes’ theorem for the vector calculus formulas yields the following
familiar results in R3:

• The fundamental theorem of calculus, upon integrating df along a curve in R3 starting at point a and ending at
point b: ∫ b

a

df =

∫ b

a

∇f · dx = f(b)− f(a) .

• The classical Stokes theorem, for a compact surface S with boundary ∂S:∫
S

(curl v) · dS =

∮
∂S

v · dx .

(For a planar surface S ∈ R2, this is Green’s theorem.)

• The Gauss divergence theorem, for a compact spatial domain D with boundary ∂D:∫
D

(div A) d 3x =

∮
∂D

A · dS .
F

These exercises illustrate the following,

Theorem 39 (Stokes’ ṫheorem). Suppose M is a compact oriented k-dimensional manifold with boundary ∂M and α is a smooth
(k − 1)-form on M . Then ∫

M

dα =

∮
∂M

α .
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9.9 Summary and an exercise

Summary

The pull-back φ∗t of a smooth flow φt generated by a smooth vector field X on a smooth manifold
M commutes with the exterior derivative d, wedge product ∧ and contraction .

That is, for k-forms α, β ∈ Λk(M), and m ∈M , the pull-back φ∗t satisfies

d(φ∗tα) = φ∗tdα ,

φ∗t (α ∧ β) = φ∗tα ∧ φ∗tβ ,
φ∗t (X α) = φ∗tX φ∗tα .

In addition, the Lie derivative £Xα of a k-form α ∈ Λk(M) by the vector field X tangent to the
flow φt on M is defined either dynamically or geometrically (by Cartan’s formula) as

£Xα =
d

dt

∣∣∣∣
t=0

(φ∗tα) = X dα + d(X α), (88)

in which the last is Cartan’s geometric formula in (88) for the Lie derivative.
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Exercise.

(a) Verify the formula [X , Y ] α = £X(Y α)− Y (£Xα).

(b) Use (b) to verify £[X ,Y ]α = £X£Y α−£Y£Xα.

(c) Use (c) to verify the Jacobi identity.

(d) Use (c) to verify that the divergence-free vector fields are closed under commutation.

(e) For a top-form α show that
[X , Y ] α = d

(
X (Y α)

)
. (89)

(f) Write the equivalent of equation (89) as a formula in vector calculus.

F

Answer.

(a) The required formula follows immediately from the product rule in (83) for the dynamical definition of the Lie derivative. Since
pull-back commutes with contraction, insertion of a vector field into a k-form transforms under the flow φt of a smooth vector field
Y as

φ∗t (Y α) = φ∗tY φ∗tα .

A direct computation using the dynamical definition of the Lie derivative £Y α = d
dt
|t=0(φ∗tα) , then yields

d

dt

∣∣∣
t=0
φ∗t
(
Y α

)
=

( d
dt

∣∣∣
t=0
φ∗tY

)
α

+ Y
( d
dt

∣∣∣
t=0
φ∗tα

)
.

Hence, we recognise that the desired formula is the product rule met earlier in equation (83):

£X(Y α) = (£XY ) α + Y (£Xα) .
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(b) Insert £XY = [X , Y ] into the product rule formula in part (b). Then

[X , Y ] α = £X(Y α)− Y (£Xα).

Now use Cartan’s formula in (88)

£Xα =
d

dt

∣∣∣∣
t=0

(φ∗tα) = X dα + d(X α),

to compute the required result, as

£[X ,Y ]α = d([X , Y ] α) + [X , Y ] dα

= d
(
£X(Y α)− Y (£Xα)

)
+ £X(Y dα)− Y (£Xdα)

= £Xd(Y α)− d(Y (£Xα)

+ £X(Y dα)− Y d(£Xα)

= £X(£Y α)−£Y (£Xα) .

Can you think of an alternative proof based on the dynamical definition of the Lie derivative?

(c) Applying part (b), (£[X ,Y ]α = £X£Y α−£Y£Xα) to α = d3x proves that £[X ,Y ]d
3x = 0; since both £Y d

3x = 0 = £Xd
3x, because,

e.g., £Y d
3x = (divY ) d3x.

(d) As a consequence of part (b),
£[Z , [X ,Y ] ]α = £Z(£X£Y −£Y£X)α− (£X£Y −£Y£X)£Zα

= £Z£X£Y α−£Z£Y£Xα−£X£Y£Zα + £Y£X£Zα ,

and summing over cyclic permutations verifies that

£[Z , [X ,Y ] ] α + £[X , [Y ,Z] ] α + £[Y , [Z ,X] ] α = 0 .

This is the Jacobi identity for the Lie derivative.
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(e) Substituting the relation £XY = [X, Y ] into the product rule above in part (b) and rearranging yields

[X, Y ] α = £X(Y α)− Y (£Xα) , (90)

as required, for an arbitrary k-form α.
From formula (90), we have

[X , Y ] α = £X(Y α)− Y (£Xα)

= d
(
X (Y α) +X d(Y α)

)
− Y (£Xα)

= d
(
X (Y α)

)
+X (£Y α− Y dα)− Y (£Xα)

= d
(
X (Y α)

)
+X (£Y α)− Y (£Xα)

[X , Y ] α = d
(
X (Y α)

)
+ (div Y)X α− (div X)Y α. (91)

The last two steps to obtain (91) follow, because dα = 0 and £Xα = (div X)α for a top-form α.
For divergence-free vectors X and Y, the last result takes the elegant form,

[X , Y ] α = d
(
X (Y α)

)
, (92)

when div X = 0 = div Y.

(f) The vector calculus formula to which equation (91) is equivalent may be found by writing its left and right sides in a coordinate basis,
as

[X , Y ] α = (X · ∇Y −Y · ∇X) · dS
d
(
X (Y α)

)
+X (£Y α)− Y (£Xα) = − curl (X×Y) · dS + (div Y) X · dS− (div X) Y · dS

Thus, equation (91) is equivalent to the vector calculus identity

(X · ∇Y −Y · ∇X) = − curl (X×Y) + (div Y) X− (div X) Y .

This is the fundamental identity of fluid mechanics when X = u and Y = ω. That is,

− curl (u× ω) = u · ∇ω + (div u)ω − ω · ∇u− (divω) u .

N
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10 Geometric formulations of ideal fluid dynamics

10.1 Euler’s fluid equations

Euler’s equations for the incompressible motion of an ideal flow of a fluid of unit density and velocity u satisfying div u = 0 in a rotating
frame with Coriolis parameter curl R = 2Ω are given in the form of Newton’s law of force by

∂t u + u · ∇u︸ ︷︷ ︸
acceleration

= u× 2Ω︸ ︷︷ ︸
Coriolis

− ∇p︸︷︷︸
pressure

. (93)

Requiring preservation of the divergence-free (volume-preserving) constraint ∇ ·u = 0 results in a Poisson equation for pressure p, which
may be written in several equivalent forms,

−∆p = div
(
u · ∇u− u× 2Ω

)
= ui,juj,i − div

(
u× 2Ω

)
= tr S2 − 1

2
|curl u|2 − div

(
u× 2Ω

)
, (94)

where S = 1
2
(∇u +∇uT ) is the strain-rate tensor.

The Newton’s law equation for Euler fluid motion in (93) may be rearranged into an alternative form,

∂t v − u× ω +∇
(
p+

1

2
|u|2
)

= 0 , (95)

where we denote
v ≡ u + R , ω = curl v = curl u + 2Ω , (96)

and introduce the Lamb vector,
` := −u× ω , (97)

which represents the nonlinearity in Euler’s fluid equation (95). The Poisson equation (94) for pressure p may now be expressed in terms
of the divergence of the Lamb vector,

−∆

(
p+

1

2
|u|2

)
= div(−u× curl v) = div ` . (98)
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Remark 40 (Boundary conditions).
Because the velocity u must be tangent to any fixed boundary, the normal component of the motion equation must vanish. This
requirement produces a Neumann condition for pressure given by

∂n

(
p+

1

2
|u|2

)
+ n̂ · ` = 0 , (99)

at a fixed boundary with unit outward normal vector n̂.

Remark 41 (Helmholtz vorticity dynamics).
Taking the curl of the Euler fluid equation (95) yields the Helmholtz vorticity equation

∂tω − curl(u× ω) = 0 , (100)

whose geometrical meaning will emerge in discussing Stokes’ Theorem 57 for the vorticity of a rotating fluid.

The rotation terms have now been fully integrated into both the dynamics and the boundary conditions. In this form, the Kelvin
circulation theorem and the Stokes vorticity theorem will emerge naturally together as geometrical statements.

10.2 Kelvin’s circulation theorem

Theorem 42 (Kelvin’s circulation theorem). The Euler equations (93) preserve the circulation integral I(t) defined by

I(t) =

∮
c(u)

v · dx , (101)

where c(u) is a closed circuit moving with the fluid at velocity u.
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Proof. The dynamical definition of the Lie derivative in (88) yields the following for the time rate of change of this circulation integral:

d

dt

∮
c(u)

v · dx =

∮
c(u)

(
∂

∂t
+ £u

)
(v · dx)

=

∮
c(u)

(
∂v

∂t
+
∂v

∂xj
uj + vj

∂uj

∂x

)
· dx

= −
∮
c(u)

∇
(
p+

1

2
|u|2 − u · v

)
· dx

= −
∮
c(u)

d

(
p+

1

2
|u|2 − u · v

)
= 0 . (102)

The Cartan formula in (88) defines the Lie derivative of the circulation integrand in the equivalent form that we need for the third step
and will also use in a moment for Stokes’ theorem:

£u(v · dx) =
(
u · ∇v + vj∇uj

)
· dx

= u d(v · dx) + d(u v · dx)

= u (curl v · dS) + d(u · v)

=
(
− u× curl v +∇(u · v)

)
· dx . (103)

This identity recasts Euler’s equation into the following geometric form:(
∂

∂t
+ £u

)
(v · dx) = (∂tv − u× curl v +∇(u · v)) · dx

= −∇
(
p+

1

2
|u|2 − u · v

)
· dx

= − d
(
p+

1

2
|u|2 − u · v

)
. (104)

This finishes the last step in the proof (102), because the integral of an exact differential around a closed loop vanishes.
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The exterior derivative of the Euler fluid equation in the form (104) yields Stokes’ theorem, after using the commutativity of the exterior
and Lie derivatives [d, £u] = 0,

d£u(v · dx) = £u d(v · dx)

= £u(curl v · dS)

= − curl
(
u× curl v

)
· dS

=
[
u · ∇curl v + curl v(div u)− (curl v) · ∇u

]
· dS ,

(by div u = 0) =
[
u · ∇curl v − (curl v) · ∇u

]
· dS

=: [u, curl v ] · dS , (105)

where [u, curl v ] denotes (minus) the Jacobi–Lie bracket of the vector fields u and curl v.
This calculation proves the following.

Theorem 43. Euler’s fluid equations (95) imply that

∂ω

∂t
= − [u, ω ] (106)

where [u, ω ] denotes the Jacobi–Lie bracket of the divergenceless vector fields u and ω := curl v.

The exterior derivative of Euler’s equation in its geometric form (104) is equivalent to the curl of its vector form (95). That is,

d

(
∂

∂t
+ £u

)
(v · dx) =

(
∂

∂t
+ £u

)
(curl v · dS) = 0 . (107)

Hence from the calculation in (105) and the Helmholtz vorticity equation (107) we have(
∂

∂t
+ £u

)
(curl v · dS) =

(
∂tω − curl(u× ω)

)
· dS = 0 , (108)

in which one denotes ω := curl v. This Lie-derivative version of the Helmholtz vorticity equation may be used to prove the following form
of Stokes’ theorem for the Euler equations in a rotating frame.
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Theorem 44. [Kelvin/Stokes’ theorem for vorticity of a rotating fluid]

d

dt

∮
c(u)

v · dx =
d

dt

∫∫
S(u)

curl v · dS

=

∫∫
S(u)

(
∂

∂t
+ £u

)
(curl v · dS)

=

∫∫
S(u)

(
∂tω − curl (u× ω)

)
· dS = 0 ,

(109)

where the surface S(u) is bounded by an arbitrary circuit ∂S = c(u) moving with the fluid.

10.3 Steady solutions: Lamb surfaces

According to Theorem 43, Euler’s fluid equations (95) imply that

∂ω

∂t
= − [u, ω ] . (110)

Consequently, the vector fields u, ω in steady Euler flows, which satisfy ∂tω = 0, also satisfy the condition necessary for the Frobenius
theorem to hold – namely, that their Jacobi–Lie bracket vanishes. That is, in smooth steady, or equilibrium, solutions of Euler’s fluid
equations, the flows of the two divergenceless vector fields u and ω commute with each other and lie on a surface in three dimensions.

A sufficient condition for this commutation relation is that the Lamb vector ` := −u× curl v in (97) satisfies

` := −u× curl v = ∇H(x) , (111)

for some smooth function H(x). This condition means that the flows of vector fields u and curl v (which are steady flows of the Euler
equations) are both confined to the same surface H(x) = const. Such a surface is called a Lamb surface.

The vectors of velocity (u) and total vorticity (curl v) for a steady Euler flow are both perpendicular to the normal vector to the
Lamb surface along ∇H(x). That is, the Lamb surface is invariant under the flows of both vector fields, viz

£uH = u · ∇H = 0 and £curl vH = curl v · ∇H = 0 . (112)

The Lamb surface condition (111) has the following coordinate-free representation.
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Theorem 45 (Lamb surface condition). The Lamb surface condition (111) is equivalent to the following double substitution of vector
fields into the volume form,

dH = u curl v d 3x . (113)

Proof. Recall that the contraction of vector fields with forms yields the following useful formula for the surface element:

∇ d 3x = dS . (114)

Then using results from previous exercises in vector calculus operations one finds by direct computation that

u curl v d 3x = u (curl v · dS)

= −
(
u× curl v

)
· dx

= ∇H · dx
= dH . (115)

Remark 46.
Formula (115)

u (curl v · dS) = dH

is to be compared with
Xh ω = dH ,

in the definition of a Hamiltonian vector field in Equation (82) of Theorem 20. Likewise, the stationary case of the Helmholtz vorticity
equation (107), namely,

£u(curl v · dS) = 0 , (116)

is to be compared with the proof of Poincaré’s theorem in Corollary 23

£Xhω = d(Xh ω) = d2H = 0 .

Thus, the two-form curl v · dS plays the same role for stationary Euler fluid flows as the symplectic form dq ∧ dp plays for canonical
Hamiltonian flows. We seek the corresponding symplectic coordinates.
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Definition 47. The Clebsch representation of the one-form v · dx is defined by

v · dx = −Π dΞ + dΨ . (117)

The functions Ξ, Π and Ψ are called Clebsch potentials for the vector v.3

In terms of the Clebsch representation (117) of the one-form v · dx, the total vorticity flux curl v · dS = d(v · dx) is the exact two-form,

curl v · dS = dΞ ∧ dΠ . (118)

This amounts to writing the flow lines of the vector field of the total vorticity curl v as the intersections of level sets of surfaces Ξ = const
and Π = const. In other words,

curl v = ∇Ξ×∇Π , (119)

with the assumption that these level sets foliate R3. That is, one assumes that any point in R3 along the flow of the total vorticity vector
field curl v may be assigned to a regular intersection of these level sets. The main result of this assumption is the following theorem.

Theorem 48 (Lamb surfaces are symplectic manifolds). [ArKh1992, ArKh1998] The steady flow of the vector field u satisfying
the symmetry relation given by the vanishing of the commutator [u, curl v ] = 0 on a three-dimensional manifold M ∈ R3 reduces to
incompressible flow on a two-dimensional symplectic manifold whose canonically conjugate coordinates (Ξ, Π) are provided by the total
vorticity flux

curl v d 3x = curl v · dS = dΞ ∧ dΠ .

The reduced flow is canonically Hamiltonian on this symplectic manifold. Furthermore, the reduced Hamiltonian is precisely the restriction
of the invariant H onto the reduced phase space.

Proof. Restricting formula (115) to coordinates on a total vorticity flux surface (118) yields the exterior derivative of the Hamiltonian,

dH(Ξ, Π) = u (curl v · dS)

= u (dΞ ∧ dΠ)

= (u · ∇Ξ) dΠ− (u · ∇Π) dΞ

=:
dΞ

dT
dΠ− dΠ

dT
dΞ

=
∂H

∂Π
dΠ +

∂H

∂Ξ
dΞ , (120)

3The Clebsch representation is another example of a cotangent lift momentum map.
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where T ∈ R is the time parameter along the flow lines of the steady vector field u, which carries the Lagrangian fluid parcels. On
identifying corresponding terms, the steady flow of the fluid velocity u is found to obey the canonical Hamiltonian equations,

(u · ∇Ξ) = £uΞ =:
dΞ

dT
=
∂H

∂Π
=
{

Ξ, H
}
, (121)

(u · ∇Π) = £uΠ =:
dΠ

dT
= − ∂H

∂Ξ
=
{

Π, H
}
, (122)

where { · , · } is the canonical Poisson bracket for the symplectic form dΞ ∧ dΠ.

Corollary 49. The vorticity flux dΞ ∧ dΠ is invariant under the flow of the velocity vector field u.

Proof. By (120), one verifies
£u(dΞ ∧ dΠ) = d

(
u (dΞ ∧ dΠ)

)
= d2H = 0 .

This is the standard computation in the proof of Poincaré’s theorem in Corollary 23 for the preservation of a symplectic form by a
canonical transformation. Its interpretation here is that the steady Euler flows preserve the total vorticity flux, curl v · dS = dΞ∧ dΠ.

10.4 The conserved helicity of ideal incompressible flows

Definition 50 (Helicity). The helicity Λ[curl v] of a divergence-free vector field curl v that is tangent to the boundary ∂D of a simply
connected domain D ∈ R3 is defined as

Λ[curl v] =

∫
D

v · curl v d 3x , (123)

where v is a divergence-free vector-potential for the field curl v.

Remark 51.
The helicity is unchanged by adding a gradient to the vector v. Thus, v is not unique and div v = 0 is not a restriction for simply
connected domains in R3, provided curl v is tangent to the boundary ∂D.

The helicity of a vector field curl v measures the total linking of its field lines, or their relative winding. (For details and mathematical
history, see [ArKh1998].) The idea of helicity goes back to Helmholtz and Kelvin in the 19th century. The principal feature of this concept
for fluid dynamics is embodied in the following theorem.
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Theorem 52 (Euler flows preserve helicity). When homogeneous or periodic boundary conditions are imposed, Euler’s equations for
an ideal incompressible fluid flow in a rotating frame with Coriolis parameter curl R = 2Ω preserves the helicity

Λ[curl v] =

∫
D

v · curl v d 3x , (124)

with v = u + R, for which u is the divergenceless fluid velocity (div u = 0) and curl v = curl u + 2Ω is the total vorticity.

Proof. Rewrite the geometric form of the Euler equations (104) for rotating incompressible flow with unit mass density in terms of the
circulation one-form v := v · dx as (

∂t + £u

)
v = − d

(
p+

1

2
|u|2 − u · v

)
=: − d$ , (125)

and £u d
3x = 0, where $ is an augmented pressure variable,

$ := p+
1

2
|u|2 − u · v . (126)

The fluid velocity vector field is denoted as u = u · ∇ with div u = 0. Then the helicity density, defined as

v ∧ dv = v · curl v d 3x = λ d 3x , with λ = v · curl v , (127)

obeys the dynamics it inherits from the Euler equations,(
∂t + £u

)
(v ∧ dv) = −d$ ∧ dv − v ∧ d2$ = −d($dv) , (128)

after using d2$ = 0 and d2v = 0. In vector form, this result may be expressed as a conservation law,(
∂tλ+ div λu

)
d 3x = − div($ curl v) d 3x . (129)

Consequently, the time derivative of the integrated helicity in a domain D obeys

d

dt
Λ[curl v] =

∫
D

∂tλ d
3x = −

∫
D

div(λu +$ curl v) d 3x

= −
∮
∂D

(λu +$ curl v) · dS , (130)

which vanishes when homogeneous, or periodic, or even Neumann boundary conditions are imposed on the values of u and curl v at the
boundary ∂D.
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Remark 53.
This result means the helicity integral

Λ[curl v] =

∫
D

λ d 3x

is conserved in periodic domains, or in all of R3 with vanishing boundary conditions at spatial infinity. However, if either the velocity
or total vorticity at the boundary possesses a nonzero normal component, then the boundary is a source of helicity (that is, it causes
winding of field lines of curl v). For a fixed impervious boundary, the normal component of velocity does vanish, but no such condition
is imposed on the total vorticity by the physics of fluid flow. Thus, we have the following.

Corollary 54. A flux of total vorticity curl v into the domain is a source of helicity.

Exercise. Use Cartan’s formula in (88) to compute £u(v ∧ dv) in Equation (128). F

Exercise. Compute the helicity for the one-form v = v · dx in the Clebsch representation (117). What does this mean for
the linkage of the vortex lines that admit the Clebsch representation? F

Theorem 55 (Diffeomorphisms preserve helicity). The helicity Λ[ξ] of any divergenceless vector field ξ is preserved under the action on
ξ of any volume-preserving diffeomorphism of the manifold M [ArKh1998].

Remark 56 (Helicity is a topological invariant).
The helicity Λ[ξ] is a topological invariant, not a dynamical invariant, because its invariance is independent of which diffeomorphism
acts on ξ. This means the invariance of helicity is independent of which Hamiltonian flow produces the diffeomorphism. This is the
hallmark of a Casimir function. Although it is defined above with the help of a metric, every volume-preserving diffeomorphism carries
a divergenceless vector field ξ into another such field with the same helicity. However, independently of any metric properties, the action
of diffeomorphisms does not create or destroy linkages of the characteristic curves of divergenceless vector fields.

10.5 Ertel theorem for potential vorticity

Euler–Boussinesq equations The Euler–Boussinesq equations for the incompressible motion of an ideal flow of a stratified fluid and
velocity u satisfying div u = 0 in a rotating frame with Coriolis parameter curl R = 2Ω are given by

∂t u + u · ∇u︸ ︷︷ ︸
acceleration

= − gb∇z︸ ︷︷ ︸
buoyancy

+ u× 2Ω︸ ︷︷ ︸
Coriolis

− ∇p︸ ︷︷ ︸
pressure

(131)
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where −g∇z is the constant downward acceleration of gravity and b is the buoyancy, which satisfies the advection relation,

∂t b+ u · ∇b = 0 . (132)

As for Euler’s equations without buoyancy, requiring preservation of the divergence-free (volume-preserving) constraint ∇ · u = 0 results
in a Poisson equation for pressure p,

−∆

(
p+

1

2
|u|2
)

= div(−u× curl v) + g∂zb , (133)

which satisfies a Neumann boundary condition because the velocity u must be tangent to the boundary.
The Newton’s law form of the Euler–Boussinesq equations (131) may be rearranged as

∂t v − u× curl v + gb∇z +∇
(
p+

1

2
|u|2
)

= 0 , (134)

where v ≡ u + R and ∇ · u = 0.

Theorem 57. [The Kelvin/Stokes’ theorem for vorticity of a stratified, rotating fluid]

d

dt

∮
c(u)

v · dx =
d

dt

∫∫
S(u)

curl v · dS

=

∫∫
S(u)

(
∂

∂t
+ £u

)
(curl v · dS)

=

∫∫
S(u)

(
∂tω − curl (u× ω)

)
· dS

=

∫∫
S(u)

(
− g∇b×∇z

)
· dS ,

(135)

where the surface S(u) is bounded by an arbitrary circuit ∂S = c(u) moving with the fluid. Thus, non-alignment of the gradient of
buoyancy ∇b with the vertical ∇z creates circulation. Compare this result with equation (109) in the absence of stratification.

Geometrically, equation (134) may be written as (
∂t + £u

)
v + gbdz + d$ = 0 , (136)
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where $ is defined in (125). In addition, the buoyancy satisfies(
∂t + £u

)
b = 0 , with £u d

3x = 0 . (137)

The fluid velocity vector field is denoted as u = u · ∇ and the circulation one-form as v = v · dx. The exterior derivatives of the two
equations in (136) are written as (

∂t + £u

)
dv = −gdb ∧ dz and

(
∂t + £u

)
db = 0 . (138)

Consequently, one finds from the product rule for Lie derivatives (83) that(
∂t + £u

)
(dv ∧ db) = 0 or ∂t q + u · ∇q = 0 , (139)

in which the quantity
q = ∇b · curl v (140)

is called potential vorticity and is abbreviated as PV. The potential vorticity is an important diagnostic for many processes in geophysical
fluid dynamics. Conservation of PV on fluid parcels is called Ertel’s theorem.

Remark 58 (Ertel’s theorem for the vorticity vector field).
Writing the vorticity vector field ω = ω · ∇, we have(

∂t + £u

)
ω = ∂tω + [u, ω] = g∇z ×∇b · ∇ .

Thus, conservation of the potential vorticity may also be proved by the product rule, as(
∂t + £u

)
q =

(
∂t + £u

)
(ω · ∇b) =

(
∂t + £u

)
(ωb) =

((
∂t + £u

)
ω
)
b+ ω

(
∂t + £u

)
b = 0 .

Remark 59 (Material derivative formulation).
Denoting

D

Dt
= ∂t + £u and ω = ω · ∇

provides an intuitive expression of the Ertel theorem (139) that helps understand it in terms of the time derivative D
Dt

following the flow
of the fluid particles. Namely, it suggests writing in vector form

D

Dt
(ω · ∇) = g∇z ×∇b · ∇ and

Db

Dt
= 0 ,
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so that the product rule for derivatives yields conservation of PV on fluid parcels, as

Dq

Dt
=

D

Dt
(ω · ∇b) =

( D
Dt

(ω · ∇)
)
b+ (ω · ∇)

Db

Dt
= g∇z ×∇b · ∇b+ (ω · ∇)

Db

Dt
= 0 .

Remark 60 (The conserved quantities associated with Ertel’s theorem).
The constancy of the scalar quantities b and q on fluid parcels implies conservation of the spatially integrated quantity,

CΦ =

∫
D

Φ(b, q) d 3x , (141)

for any smooth function Φ for which the integral exists.

Proof.

d

dt
CΦ =

∫
D

Φb∂tb+ Φq∂tq d
3x = −

∫
D

Φbu · ∇b+ Φqu · ∇q d 3x

= −
∫
D

u · ∇Φ(b, q) d 3x = −
∫
D

∇ ·
(
u Φ(b, q)

)
d 3x = −

∮
∂D

Φ(b, q) u · n̂ d S = 0 ,

when the normal component of the velocity u · n̂ vanishes at the boundary ∂D.

Remark 61 (Energy conservation).
In addition to CΦ, the Euler–Boussinesq fluid equations (134) also conserve the total energy

E =

∫
D

1

2
|u|2 + gbz d 3x , (142)

which is the sum of the kinetic and potential energies.

We do not develop the Hamiltonian formulation of the three-dimensional stratified rotating fluid equations studied here. However,
one may imagine that the conserved quantity CΦ with the arbitrary function Φ would play an important role. For more explanation in
the framework of Geometric Mechanics, see [Ho2011GM] and references therein.
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