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2 M3-4-5A16 Assessed Problems # 2:
Do all four problems

Exercise 2.1 (Adjoint and coadjoint actions for SE(2)).

(A) Compute the the adjoint and coadjoint actions AD, Ad, ad, Ad∗ and ad∗ for SE(2).

(B) Show that
d

dt

∣∣∣∣
t=0

Ad∗(Rθ(t),v(t))−1(µ, β) = − ad∗(ξ,α)(µ, β) ,

where one takes Ṙθ(t)|t=0 = ξ ∈ R, v̇(t)|t=0 = α ∈ R2 and the pairing

〈 · , · 〉 : se(2)∗ × se(2)→ R

is given by the dot product of vectors in R3,〈
(µ, β) , (ξ, α)

〉
= µξ + β · α .

(C) Compute the equations of motion for the dynamics on se(2)∗ resulting from Hamilton’s principle
δS = 0 with S =

∫
l(ξ, α) dt for the Lagrangian

l(ξ, α) =
1

2
Aξ2 +

1

2
αTCα

(D) Derive the corresponding Lie-Poisson bracket for the Hamiltonian description of dynamics on
se(2)∗.

(E) Sketch the coadjoint orbits in coordinates (µ, β) ∈ R3.

(F) Work out the cotangent-lift momentum maps for the action of SE(2) on R2.

Answer.

(A) The special Euclidean group of the plane SE(2) ' SO(2)sR2 acts on a vector q = (q1, q2)T ∈ R2

in the plane by

(Rθ(t), v(t))(q) =

(
Rθ(t) v(t)

0 1

)[
q
1

]
=

[
Rθ(t)q + v(t)

1

]
,

where v = (v1, v2)T ∈ R2 is a vector in the plane and Rθ is the 2 × 2 matrix for rotations of
vectors in the plane by angle θ about the normal to the plane ẑ,

Rθ =

(
cos θ − sin θ
sin θ cos θ

)
.

The infinitesimal action is found by taking d
dt |t=0 of this action, which yields

(Rθ(t), v(t))(q) =

(
−ξẑ× α

0 0

)[
q
1

]
=

[
−ξẑ × q + α

1

]
,

where ξ = θ̇(0) and α = v̇(0).
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By following Section 6.2 of the text, one computes the actions AD, Ad, ad, Ad∗ and ad∗ for
SE(3). By specialising, one finds the se(2) ad-action in vector notation,

ad(ξ , α)(ξ̃ , α̃) = [(ξ, α) , (ξ̃, α̃) ]

=
(

[ξ , ξ̃ ] , ξα̃− ξ̃α
)

=
(

0 , −ξẑ × α̃+ ξ̃ẑ × α
)
.

This expression is useful in interpreting the ad and ad∗ actions as motion on R3. In particular,
the pairing between the Lie algebra se(2) and its dual se(2)∗ is given by the dot product of vectors
in R3, 〈

(µ, β) , (ξ, α)
〉

= µξ + β · α .

Combining this definition of the pairing with the previous result yields an expression for the
pairing of vectors using the dot product,〈

(µ, β) , ad(ξ , α)(ξ̃ , α̃)
〉

= −α× β · ξ̃ẑ − ξẑ × β · α̃ ,

which produces an expression for ad∗(ξ , α)(µ, β),〈
ad∗(ξ , α)(µ, β) , (ξ̃ , α̃)

〉
=
(
− α× β,− ξẑ × β

)
·
(
ξ̃ẑ , α̃

)
.

From here, one is able to write the Euler-Poincaré equation on se(2)∗ as(
dµ

dt
,
dβ

dt

)
= ad∗(ξ , α)(µ, β) =

(
− α× β,− ξẑ × β

)
with (µ, β) :=

(
∂l

∂ξ
,
∂l

∂α

)
As we shall see, one may then Legendre transform over to the Lie-Poisson Hamiltonian formulation
of motion on se(2)∗, by identifying

(ξẑ , α) =

(
∂h

∂µ
ẑ ,

∂h

∂β

)
.

The Casimirs of the Lie-Poisson bracket also determine the coadjoint orbits, which turn out to
be concentric cylinders of radius |β| centered on the µ-axis, plus fixed points on the µ-axis, as we
discuss below.

(B) This is a special case of the following general result.

Co-Adjoint motion equation:
Let g(t) be a path in a Lie group G and µ(t) be a path in g∗. Then

d

dt
Ad∗g(t)−1µ(t) = Ad∗g(t)−1

[
dµ

dt
− ad∗ξ(t)µ(t)

]
, (2.1)

where ξ(t) = g(t)−1ġ(t).

(C) The Euler-Poincaré equation on se(2)∗ is(
dµ

dt
,
dβ

dt

)
= ad∗(ξ , α)(µ, β) =

(
− α× β,− ξẑ × β

)
with (µ, β) :=

(
∂l

∂ξ
,
∂l

∂α

)
= (Aξ, Cα)

(D) Legendre transforming the Euler-Poincaré equation yields

(
µ̇ẑ , β̇

)
= ad∗(∂h/∂µ,∂h/∂β)(µẑ, β) =

(
− ∂h

∂β
× β , −∂h

∂µ
ẑ × β

)
.
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After taking the time-derivative of an arbitrary function f of the Hamiltonian momentum vari-
ables (µẑ, β) this yields the Lie-Poisson bracket,{

f, h
}

(µẑ, β) = −β ·
(
∂f

∂µ
ẑ × ∂h

∂β
− ∂h

∂µ
ẑ × ∂f

∂β

)
(E) The Casimirs for this Lie-Poisson bracket are concentric cylinders of radius

|β| =
√
β2

1 + β2
2

centered on the µ-axis, plus fixed points on the µ-axis for which µẑ · β = 0.

(F) The infinitesimal action of SE(2) on coordinates q ∈ R2 in the plane is

q→ q′ = −ξẑ× q + α ,

where α ∈ R2. The cotangent lift of this infinitesimal action is

J (ξ,α) = p ·
(
− ξẑ× q + α

)
= p× q · ξẑ + p · α =

〈(
p× q , p

)
,
(
ξẑ , α

)〉
,

for p ∈ T ∗R2 at q ∈ R2. That is, the momentum map J (ξ,α) has 2 components.

• The component µ ẑ = p × q is the angular momentum of rotations in the plane. It points
normal to the plane.

• The component p = β is the linear momentum in the plane.

• The Euler-Poincaré and Lie-Poisson formulations of the dynamics determines how these two
components of the SE(2) momentum map evolve for a given Lagrangian or Hamiltonian.

N

Exercise 2.2 (GL(n,R)-invariant motions).

Consider the Lagrangian

L =
1

2
tr
(
ṠS−1ṠS−1

)
+

1

2
q̇ · S−1q̇ ,

where S is an n× n symmetric matrix and q ∈ Rn is an n−component column vector.

(A) Legendre transform to construct the corresponding Hamiltonian and canonical equations.

(B) Show that the Lagrangian and Hamiltonian are invariant under the group action

q→ Gq and S → GSGT

for any constant invertible n× n matrix, G.

(C) Compute the infinitesimal generator for this group action and construct its corresponding mo-
mentum map. Is this momentum map equivariant? Prove it.

(D) Verify directly that this momentum map is a conserved n × n matrix quantity by using the
equations of motion.

Answer.
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(A) Legendre transform as

P =
∂L

∂Ṡ
= S−1ṠS−1 and p =

∂L

∂q̇
= S−1q̇

Thus, the Hamiltonian H(Q,P ) and its canonical equations are:

H(q,p, S, P ) =
1

2
tr
(
PS · PS

)
+

1

2
p · Sp ,

Ṡ =
∂H

∂P
= SPS , Ṗ = − ∂H

∂S
= −

(
PSP +

1

2
p⊗ p

)
,

q̇ =
∂H

∂p
= Sp , ṗ =

∂H

∂q
= 0 .

(B) Under the group action q→ Gq and S → GSGT for any constant invertible n× n matrix, G,
one finds ṠS−1 → GṠS−1G−1 and q̇·S−1q̇→ q̇·S−1q̇. Hence, L→ L. Likewise, P → G−TPG−1

so PS → G−TPSGT and p → G−Tp so that Sp → GSp. Hence, H → H, as well; so both L
and H for the system are invariant.

(C) The infinitesimal actions for G(ε) = Id+ εA+O(ε2), where A ∈ gl(n) are

XAq =
d

dε

∣∣∣
ε=0

G(ε)q = Aq

and

XAS =
d

dε

∣∣∣
ε=0

(
G(ε)SG(ε)T

)
= AS + SAT

The defining relation for the corresponding momentum map yields

〈J,A〉 = 〈(Q,P ), XA〉 = tr (PXAS) + p ·XAq

= tr
(
P (AS + SAT )

)
+ p ·Aq

Hence, 〈J,A〉 := tr
(
JAT

)
= tr

(
(2SP + q⊗ p)A

)
, so

J = (2PS + p⊗ q)

This momentum map is a cotangent lift, so it is equivariant.

(D) Conservation of the momentum map is verified directly by:

J̇ = (2ṖS + 2PṠ + p⊗ q̇) = 0

N

Exercise 2.3 (Canonical variables for the rigid body on SO(n)).

The Euler-Lagrange equation for the rigid body on SO(n) are given in matrix commutator form

dM

dt
= [M , Ω ] with M = AΩ + ΩA , (2.2)

where the n× n matrices M, Ω are skew-symmetric. The tangent lift of the right action of the group
SO(n) on itself is given by

Qt = Q0Ot =⇒ Q̇t = QtΩt with Ωt = O−1
t Ot

where Ωt = O−1
t Ot is left-invariant under O → UO, with U ∈ SO(n).
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(A) Show that equation (2.2) may be derived from Hamilton’s principle δS = 0 whose action integral
is constrained by the tangent lift of the right-action of the group SO(n) on itself. That is, for

S(Ω, Q, P ) =

∫ b

a
l(Ω) +

〈
P, Q̇−QΩ

〉
dt

=

∫ b

a
l(Ω) + tr

(
P T
(
Q̇−QΩ

))
dt , (2.3)

derive equation (2.2), in which M = δl/δΩ = 1
2(QTP − P TQ), and the Q,P ∈ SO(n) satisfy the

following equations,

Q̇ = QΩ and Ṗ = PΩ , (2.4)

as a result of the constraints.

(B) Write these equations in Hamiltonian form and show that they recover the motion equation (2.2).
What is the Hamiltonian in these variables?

(C) Compute the Poisson bracket for functions of M by making the change of variables M : T ∗Q→
so(n)∗ given by

M =
1

2
(QTP − P TQ).

Answer.

(A) The constraint implies an angular velocity Q−1(t)Q̇(t) = Ω(t), that is left-invariant under Q →
UQ, for any fixed U ∈ SO(n). Thus, the Lagrangian in (2.3) is left-invariant under this action,
too. This invariance sets up the transformation from the (Q, P ) equations to the M equation.
In terms of the trace pairing for skew-symmetric matrices,

〈A , B 〉 := tr(ATB),

we find

δS(Ω, Q, P ) =

∫ b

a

〈
∂l

∂Ω
−QTP , δΩ

〉
+
〈
δP , Q̇−QΩ

〉
−
〈
Ṗ − PΩ , δQ

〉
dt ,

after using the identity

− δ〈P, QΩ〉 = 〈δP, −QΩ〉+ 〈PΩ, δQ〉+ 〈−QTP, δΩ〉.

Given Ω, setting δS = 0 produces the canonical equations

Q̇ = QΩ =
∂JΩ

∂P
and Ṗ = PΩ = − ∂J

Ω

∂Q

for the Hamiltonian JΩ = 〈QTP, Ω〉 with variations

δJΩ = 〈(δQT )P +QT δP, Ω〉

= tr
(
P T δQΩ + (δP T )QΩ

)
= tr

(
(PΩT )T δQ+ (δP T )QΩ

)
= 〈PΩT , δQ〉+ 〈δP, QΩ〉
= 〈−PΩ, δQ〉+ 〈δP, QΩ〉
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Thus, the vector field consisting of the tangent and cotangent lifts

(Q̇, Ṗ ) = (QΩ, PΩ)

is the Hamiltonian vector field
XJΩ := { · , JΩ}

for the Hamiltonian
JΩ = 〈QTP, Ω〉 = 〈12(QTP − P TQ), Ω〉

at fixed Ω. The quantity M = 1
2(QTP − P TQ) is called the momentum map M : T ∗SO(n) →

so(n)∗ for the right-action of SO(n) on itself.

Extra credit:
Compute the momentum map for the left-action of SO(n) on itself.

(B) To find the Hamiltonian form, set M := ∂l/∂Ω = 1
2(QTP − P TQ) and take ξ = − ξT ∈ so(n).

Compute the pairing 〈
Ṁ, ξ

〉
= −

〈
Ṗ TQ+ P T Q̇, ξ

〉
= −

〈
(PΩ)TQ+ P T (QΩ), ξ

〉
= −

〈
− ΩP TQ+ P TQΩ, ξ

〉
=

〈
− ΩM +MΩ, ξ

〉
=

〈
−
[
Ω , M

]
, ξ
〉

The Hamiltonian in these variables is found from the Legendre transform,

h(M) =
〈
M,Ω

〉
− l(Ω)

which satisfies

δh(M) =

〈
∂h

∂M
, δM

〉
=

〈
M − ∂l

∂Ω
, δΩ

〉
+
〈
δM,Ω

〉
.

Hence, we have the dual velocity-momentum relations

∂h

∂M
= Ω and M =

∂l

∂Ω

and the equation of motion Ṁ = −[Ω, M ] becomes

Ṁ = −
[
∂h

∂M
, M

]
= {M, h}LP

with Lie-Poisson brackets given by

df

dt
= −

〈
∂f

∂M
,

[
∂h

∂M
, M

]〉
= −

〈
M ,

[
∂f

∂M
,
∂h

∂M

]〉
= {f, h}LP

(C) A direct computation using the canonical brackets {Qi, Pj} = δij gives the Lie-Poisson bracket
in terms of matrix components of M ∈ so(n)∗,

{Mij , Mkl} = 1
4{PiQj −QiPj , PkQl −QkPl}

= 1
2

(
−Mjkδil +Mikδjl −Milδjk +Mjlδik

)
.
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The motion equation is then obtained from

Ṁij = {Mij , h} = {Mij , Mkl}
∂h

∂Mkl
=: {Mij , Mkl}Ωkl

= (MΩ)ij − (MΩ)ji = [M, Ω]ij

where the angular velocity components are defined as

Ωkl :=
∂h

∂Mkl
.

N

Exercise 2.4 (Euler-Poincaré equation EPDiff in one dimension).

The EPDiff(R) equation for the H1 norm of the velocity u is obtained from the Euler-Poincaré
reduction theorem for a right-invariant Lagrangian, when one defines the Lagrangian to be half the
square of the H1 norm ‖u‖H1 of the vector field of velocity u = ġg−1 ∈ X(R) on the real line R with
g ∈ Diff(R). Namely,

l(u) =
1

2
‖u‖2H1 =

1

2

∫ ∞
−∞

u2 + u2
x dx .

(Assume u(x) vanishes as |x| → ∞.)

(A) Derive the EPDiff equation on the real line in terms of its velocity u and its momentum m =
δl/δu = u− uxx in one spatial dimension for this Lagrangian.

Hint: Prove a Lemma first, that u = ġg−1 implies δu = ξt − aduξ with ξ = δgg−1.

(B) Use the Clebsch constrained Hamilton’s principle

S(u, p, q) =

∫
l(u) dt+

∫
p(t)

(
q̇(t)− u(q(t), t)

)
dt

to derive the peakon singular solution m(x, t) of EPDiff as a momentum map in terms of canon-
ically conjugate variables qi(t) and pi(t), with i = 1, 2, . . . , N .

Answer.

(A) Lemma

u = ġg−1 implies δu = ξt − aduξ with ξ = δgg−1.

Proof. Write ξ = ġg−1 and η = g′g−1 in natural notation and express the partial derivatives
ġ = ∂g/∂t and g′ = ∂g/∂ε using the right translations as

ġ = ξ ◦ g and g′ = η ◦ g .

By the chain rule, these definitions have mixed partial derivatives

ġ′ = ξ′ = ∇ξ · η and ġ′ = η̇ = ∇η · ξ .

The difference of the mixed partial derivatives implies the desired formula,

ξ′ − η̇ = ∇ξ · η −∇η · ξ =: −adξη .
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Deriving the EPDiff equation on the real line:

The EPDiff(H1) equation is written on the real line in terms of its velocity u and its momentum
m = δl/δu in one spatial dimension as

mt + umx + 2mux = 0 , where m = u− uxx

where subscripts denote partial derivatives in x and t.

Proof. This equation is derived from the variational principle with l(u) = 1
2‖u‖

2
H1 as follows.

0 = δS = δ

∫
l(u)dt =

1

2
δ

∫∫
u2 + u2

x dx dt

=

∫∫
(u− uxx) δu dx dt =:

∫∫
mδudx dt

=

∫∫
m (ξt − aduξ) dx dt

=

∫∫
m (ξt + uξx − ξux) dx dt

= −
∫∫

(mt + (um)x +mux) ξ dx dt

= −
∫∫

(mt + ad∗um) ξ dx dt ,

where u = ġg−1 implies δu = ξt − aduξ with ξ = δgg−1.

Hamiltonian structure for EPDiff:

Legendre transformation:

h(m) =

∫
mudx− l(u)

so

δh =

∫
uδmdx+

∫
(m− u+ uxx) δu dx

Thus, u = δh/δm, m = δl/δu− u− uxx and

mt = −ad∗δh/δmm = −(∂xm+m∂x)
δh

δm

The corresponding Lie-Poisson bracket is

{f, h}(m) = −
∫

δf

δm
(∂xm+m∂x)

δh

δm
dx

with Casimir

C =

∫ √
mdx

(B) The constrained Clebsch action integral is given as

S(u, p, q) =

∫
l(u) dt+

∫
p(t)

(
q̇(t)− u(q(t), t)

)
dt

whose variation in u is gotten by inserting a delta function, so that

0 = δS =

∫ (
δl

δu
− p(t)δ(x− q(t))

)
δu dx dt

−
∫ (

ṗ(t) +
∂u

∂q
p(t)

)
δq − δp

(
q̇(t)− u(q(t), t)

)
dt .
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The singular momentum solution m(x, t) of EPDiff(H1) is written as the momentum map

m(x, t) = δl/δu = p(t)δ(x− q(t))∫
m(x, t)u(x, t) dx =

∫
p(t)δ(x− q(t))u(x, t) dx = p(t)u(q(t), t)

Consequently, the variables (q, p) satisfy canonical Hamiltonian equations,

q̇(t) = u(q(t), t) =
∂h

∂p
, ṗ(t) = −∂u

∂q
p(t) = −∂h

∂q
,

with u(q(t), t) = p(t)G(q(t)) where G(x) is the Green’s function for the Helmholtz operator 1−∂2
x.

That is,

G(x) =
1

2
e−|x|

Consequently, one may write the Hamiltonian for the canonical parameters of the singular solution
explicitly as

h(p, q) =
1

2
p2G(q) =

1

4
p(t)2e−|q(t)|

Note that all of this calculation goes through just the same for the multi-particle case. E.g., for
N particles,

S(u, {p}, {q}) =

∫
l(u) dt+

N∑
A=1

∫
pA(t)

(
q̇A(t)− u(qA(t), t)

)
dt

N


